1
|
Wijerathna HMSM, Shanaka KASN, Raguvaran SS, Jayamali BPMV, Kim SH, Kim MJ, Jung S, Lee J. CRISPR/Cas9-Mediated fech Knockout Zebrafish: Unraveling the Pathogenesis of Erythropoietic Protoporphyria and Facilitating Drug Screening. Int J Mol Sci 2024; 25:10819. [PMID: 39409147 PMCID: PMC11476521 DOI: 10.3390/ijms251910819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Erythropoietic protoporphyria (EPP1) results in painful photosensitivity and severe liver damage in humans due to the accumulation of fluorescent protoporphyrin IX (PPIX). While zebrafish (Danio rerio) models for porphyria exist, the utility of ferrochelatase (fech) knockout zebrafish, which exhibit EPP, for therapeutic screening and biological studies remains unexplored. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated fech-knockout zebrafish larvae as a model of EPP1 for drug screening. CRISPR/Cas9 was employed to generate fech-knockout zebrafish larvae exhibiting morphological defects without lethality prior to 9 days post-fertilization (dpf). To assess the suitability of this model for drug screening, ursodeoxycholic acid (UDCA), a common treatment for cholestatic liver disease, was employed. This treatment significantly reduced PPIX fluorescence and enhanced bile-secretion-related gene expression (abcb11a and abcc2), indicating the release of PPIX. Acridine orange staining and quantitative reverse transcription polymerase chain reaction analysis of the bax/bcl2 ratio revealed apoptosis in fech-/- larvae, and this was reduced by UDCA treatment, indicating suppression of the intrinsic apoptosis pathway. Neutral red and Sudan black staining revealed increased macrophage and neutrophil production, potentially in response to PPIX-induced cell damage. UDCA treatment effectively reduced macrophage and neutrophil production, suggesting its potential to alleviate cell damage and liver injury in EPP1. In conclusion, CRISPR/Cas9-mediated fech-/- zebrafish larvae represent a promising model for screening drugs against EPP1.
Collapse
Affiliation(s)
- Hitihami M. S. M. Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Department of Aquaculture and Seafood Technology, Faculty of Fisheries and Ocean Sciences, Ocean University of Sri Lanka, Colombo 01500, Sri Lanka
| | - Kateepe A. S. N. Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Sarithaa S. Raguvaran
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Bulumulle P. M. V. Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
| | - Seok-Hyung Kim
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si 37242, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| |
Collapse
|
2
|
Liu S, Liu Y, Zhang D, Li H, Shao X, Xie P, Li J. Novel insights into perfluorinated compound-induced hepatotoxicity: Chronic dietary restriction exacerbates the effects of PFBS on hepatic lipid metabolism in mice. ENVIRONMENT INTERNATIONAL 2023; 181:108274. [PMID: 37879206 DOI: 10.1016/j.envint.2023.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Perfluorobutane sulfonates (PFBS) have garnered extensive utilization because of their distinctive physicochemical properties. The liver acts as a key target organ for toxicity within the body and is vital for regulating metabolic processes, particularly lipid metabolism. However, there is currently a significant research gap regarding the influences of PFBS on hepatic lipid metabolism, especially in individuals with different dietary statuses. Here, the objective of this research was to examine the effects of PFBS on hepatic function under different dietary conditions. The results suggested that the levels of liver injury biomarkers were significantly upregulated, e.g., transaminase (GPT, GOT), while liver lipid levels were downregulated after exposure to PFBS at concentration of 50 μg/L for 42 days. Moreover, restricted diet further intensified the adverse effects of PFBS on the liver. Metabolomics analysis identified significant alterations in lipid-related metabolites in PFBS-induced hepatotoxicity, PFBS exposure induced a decrease in lysophosphatidylethanolamine and lysophosphatidylcholine. PFBS exposure caused an increase in aldosterone and prostaglandin f2alpha under restricted diet. In PFBS treatment group, histidine metabolism, beta-alanine metabolism, and arginine biosynthesis were the main pathway for PFBS toxicity. Aldosterone-regulated sodium reabsorption as a vital factor in inducing PFBS toxicity in the RD-PFBS treatment group. The analysis of 16S rRNA sequencing revealed that exposure to PFBS resulted in imbalance of gut microbial communities. PFBS exposure induced a decrease in Akkermansia and Lactobacillus, but an increase in Enterococcus. PFBS exposure caused the abundance of Lachnospiraceae_NK4A136_group was significantly elevated under restricted diet. Additionally, disruptions in the expression of genes involved in lipid production and consumption may significantly contribute to lipid imbalance in the liver. This study underscores the importance of recognizing the harmful impact of PFBS on liver function, along with the biotoxicity of contaminant influenced by dietary habits.
Collapse
Affiliation(s)
- Su Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yafeng Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Huan Li
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xicheng Shao
- Faculty of Land and Food Systems, Vancouver Campus, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Pengfei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianmei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Identification of four hub genes in venous thromboembolism via weighted gene coexpression network analysis. BMC Cardiovasc Disord 2021; 21:577. [PMID: 34861826 PMCID: PMC8642897 DOI: 10.1186/s12872-021-02409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background The pathogenic mechanisms of venous thromboembolism (VT) remain to be defined. This study aimed to identify differentially expressed genes (DEGs) that could serve as potential therapeutic targets for VT. Methods Two human datasets (GSE19151 and GSE48000) were analyzed by the robust rank aggregation method. Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were conducted for the DEGs. To explore potential correlations between gene sets and clinical features and to identify hub genes, we utilized weighted gene coexpression network analysis (WGCNA) to build gene coexpression networks incorporating the DEGs. Then, the levels of the hub genes were analyzed in the GSE datasets. Based on the expression of the hub genes, the possible pathways were explored by gene set enrichment analysis and gene set variation analysis. Finally, the diagnostic value of the hub genes was assessed by receiver operating characteristic (ROC) analysis in the GEO database. Results In this study, we identified 54 upregulated and 10 downregulated genes that overlapped between normal and VT samples. After performing WGCNA, the magenta module was the module with the strongest negative correlation with the clinical characteristics. From the key module, FECH, GYPA, RPIA and XK were chosen for further validation. We found that these genes were upregulated in VT samples, and high expression levels were related to recurrent VT. Additionally, the four hub genes might be highly correlated with ribosomal and metabolic pathways. The ROC curves suggested a diagnostic value of the four genes for VT. Conclusions These results indicated that FECH, GYPA, RPIA and XK could be used as promising biomarkers for the prognosis and prediction of VT. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02409-4.
Collapse
|
4
|
Kim M, Jang WJ, Shakya R, Choi B, Jeong CH, Lee S. Current Understanding of Methamphetamine-Associated Metabolic Changes Revealed by the Metabolomics Approach. Metabolites 2019; 9:metabo9100195. [PMID: 31547093 PMCID: PMC6835349 DOI: 10.3390/metabo9100195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
Metabolomics is a powerful tool used in the description of metabolic system perturbations caused by diseases or abnormal conditions, and it usually involves qualitative and/or quantitative metabolome determination, accompanied by bioinformatics assessment. Methamphetamine is a psychostimulant with serious abuse potential and due to the absence of effective pharmacotherapy and a high recurrence potential, methamphetamine addiction is a grave issue. Moreover, its addiction mechanisms remain unclear, probably due to the lack of experimental models that reflect personal genetic variances and environmental factors determining drug addiction occurrence. The metabolic approach is only recently being used to study the metabolic effects induced by a variety of methamphetamine exposure statuses, in order to investigate metabolic disturbances related to the adverse effects and discover potential methamphetamine addiction biomarkers. To provide a critical overview of methamphetamine-associated metabolic changes revealed in recent years using the metabolomics approach, we discussed methamphetamine toxicity, applications of metabolomics in drug abuse and addiction studies, biological samples used in metabolomics, and previous studies on metabolic alterations in a variety of biological samples—including the brain, hair, serum, plasma, and urine—following methamphetamine exposure in animal studies. Metabolic alterations observed in animal brain and other biological samples after methamphetamine exposure were associated with neuronal and energy metabolism disruptions. This review highlights the significance of further metabolomics studies in the area of methamphetamine addiction research. These findings will contribute to a better understanding of metabolic changes induced by methamphetamine addiction progress and to the design of further studies targeting the discovery of methamphetamine addiction biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Won-Jun Jang
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Rupa Shakya
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Boyeon Choi
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| |
Collapse
|
5
|
Rissone A, Burgess SM. Rare Genetic Blood Disease Modeling in Zebrafish. Front Genet 2018; 9:348. [PMID: 30233640 PMCID: PMC6127601 DOI: 10.3389/fgene.2018.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|