1
|
You YL, Byun HJ, Lee JS, Choi HS, Youk JS. Euonymus alatus and its compounds suppress hydrogen peroxide-induced oxidative stress in HT22 cells. Food Sci Biotechnol 2024; 33:3567-3577. [PMID: 39493395 PMCID: PMC11525359 DOI: 10.1007/s10068-024-01601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 11/05/2024] Open
Abstract
This study aimed to explore the protective effects of Euonymus alatus (EA) leaves and its compounds on hydrogen peroxide (H2O2)-induced neuronal cell death. EA effectively reversed the H2O2-induced decrease in HT22 cell viability. Anti-apoptotic marker poly(ADP-ribose) polymerase significantly increased with EA treatment, whereas BAX/BCL2 and cleaved caspase-3/procaspase-3 ratios, which represent apoptotic markers, were dose-dependently decreased by EA treatment. Additionally, EA effectively decreased β-secretase production, acetylcholine esterase activity, and Tau phosphorylation, pathological features observed in Alzheimer's disease. Furthermore, EA significantly increased the protein levels of NRF2 and HO-1, as well as the gene expression of antioxidant enzymes, including catalase, superoxide dismutase 1, and glutathione peroxidase. LC-MS/MS and HPLC analyses revealed the presence of chlorogenic acid and leucosides in EA. Both chlorogenic acid and leucosides showed protective effects against H2O2-induced neuronal cell death. This study highlights the potential of EA and its compounds as functional edible agents for neuroprotection against oxidative stress. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01601-4.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016 Republic of Korea
| | - Ha-Jun Byun
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016 Republic of Korea
| | - Jeong Soon Lee
- Forest Environment Research Institute of Gyeongsangbuk-do, Gyeongju, 38174 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul, 03016 Republic of Korea
| | - Jin-Soo Youk
- Department of Food & Beverage Management, Hanyang Women’s University, 200, Salgoji-gil, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
2
|
Zhu Z, Zhong X, Wang B, Lu H, Li L. Probing Protein Structural Changes in Alzheimer's Disease via Quantitative Cross-linking Mass Spectrometry. Anal Chem 2024; 96:7506-7515. [PMID: 38690851 PMCID: PMC11114074 DOI: 10.1021/acs.analchem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder featuring abnormal protein aggregation in the brain, including the pathological hallmarks of amyloid plaques and hyperphosphorylated tau. Despite extensive research efforts, understanding the molecular intricacies driving AD development remains a formidable challenge. This study focuses on identifying key protein conformational changes associated with the progression of AD. To achieve this, we employed quantitative cross-linking mass spectrometry (XL-MS) to elucidate conformational changes in the protein networks in cerebrospinal fluid (CSF). By using isotopically labeled cross-linkers BS3d0 and BS3d4, we reveal a dynamic shift in protein interaction networks during AD progression. Our comprehensive analysis highlights distinct alterations in protein-protein interactions within mild cognitive impairment (MCI) states. This study accentuates the potential of cross-linked peptides as indicators of AD-related conformational changes, including previously unreported site-specific binding between α-1-antitrypsin (A1AT) and complement component 3 (CO3). Furthermore, this work enables detailed structural characterization of apolipoprotein E (ApoE) and reveals modifications within its helical domains, suggesting their involvement in MCI pathogenesis. The quantitative approach provides insights into site-specific interactions and changes in the abundance of cross-linked peptides, offering an improved understanding of the intricate protein-protein interactions underlying AD progression. These findings lay a foundation for the development of potential diagnostic or therapeutic strategies aimed at mitigating the negative impact of AD.
Collapse
Affiliation(s)
- Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Chang YB, Jung EJ, Jo K, Suh HJ, Choi HS. Neuroprotective effect of whey protein hydrolysate containing leucine-aspartate-isoleucine-glutamine-lysine on HT22 cells in hydrogen peroxide-induced oxidative stress. J Dairy Sci 2024; 107:2620-2632. [PMID: 38101744 DOI: 10.3168/jds.2023-24284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
This study aimed to investigate the neuroprotective effects of whey protein hydrolysate (WPH) containing the pentapeptide leucine-aspartate-isoleucine-glutamine-lysine (LDIQK). Whey protein hydrolysate (50, 100, and 200 µg/mL) demonstrated the ability to restore the viability of HT22 cells subjected to 300 µM hydrogen peroxide (H2O2)-induced oxidative stress. Furthermore, at a concentration of 200 µg/mL, it significantly reduced the increase in reactive oxygen species production and calcium ion (Ca2+) influx induced by H2O2 by 46.1% and 46.2%, respectively. Similarly, the hydrolysate significantly decreased the levels of p-tau, a hallmark of tauopathy, and BCL2 associated X (BAX), a proapoptosis factor, while increasing the protein levels of choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, brain-derived neurotrophic factor (BDNF), a nerve growth factor, and B-cell lymphoma 2 (BCL2, an antiapoptotic factor. Furthermore, it increased nuclear factor erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1(HO-1) signaling, which is associated with the antioxidant response, while reducing the activation of mitogen-activated protein kinase (MAPK) signaling pathway components, namely phosphor-extracellular signal-regulated kinases (p-ERK), phosphor-c-Jun N-terminal kinases (p-JNK), and p-p38. Column chromatography and tandem mass spectrometry analysis identified LDIQK as a compound with neuroprotective effects in WPH; it inhibited Ca2+ influx and regulated the BAX/BCL2 ratio. Collectively, WPH containing LDIQK demonstrated neuroprotective effects against H2O2-induced neuronal cell damage, suggesting that WPH or its active peptide, LDIQK, may serve as a potential edible agent for improving cognitive dysfunction.
Collapse
Affiliation(s)
- Yeok B Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Jin Jung
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyung J Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
4
|
Wang D, Zheng J, Sun X, Xie L, Yang Y. Study on the Pharmacological Mechanism of Icariin for the Treatment of Alzheimer's Disease Based on Network Pharmacology and Molecular Docking Techniques. Metabolites 2023; 14:1. [PMID: 38276291 PMCID: PMC10820555 DOI: 10.3390/metabo14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The purpose of this study is to explore the pharmacological mechanism of icariin (ICA) in the treatment of Alzheimer's disease (AD) based on network pharmacology and network molecular docking technology. In order to investigate the regulatory effect of ICA on the expression level of AD pathological phosphorylation regulatory proteins, this study further explored the possible molecular mechanism of ICA regulating AD autophagy through network pharmacology. Macromolecular docking network was verified by Autodock Vina 1.1.2 software. The main active ingredients of ICA, the physicochemical properties, and pharmacokinetic information of ICA were predicted using online databases and relevant information. The results showed that the targets of MAPK3, AKT1, HSP90AA1, ESR1, and HSP90AA1 were more critical in the treatment of AD. Autophagy, apoptosis, senescence factors, phosphatidylinositide 3-kinase/protein kinase B (P13K/AKT) signaling pathway, MAKP, mTOR, and other pathways were significantly associated with AD. Docking of ICA with HIF-1, BNIP3, PINK1, and Parkin pathway molecules showed that the key targets of the signaling pathway were more stably bound to ICA, which may provide a better pathway for ICA to regulate autophagy by providing a better pathway. ICA can improve AD, and its mechanism may be related to the P13K/AKT, MAKP, and mTOR signaling pathways, thereby regulating autophagy-related proteins.
Collapse
Affiliation(s)
- Dongwei Wang
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang 110854, China; (D.W.); (J.Z.); (X.S.); (L.X.)
| | - Jilong Zheng
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang 110854, China; (D.W.); (J.Z.); (X.S.); (L.X.)
| | - Xingsheng Sun
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang 110854, China; (D.W.); (J.Z.); (X.S.); (L.X.)
| | - Liuwei Xie
- College of Police Dog Technology, Criminal Investigation Police University of China, Shenyang 110854, China; (D.W.); (J.Z.); (X.S.); (L.X.)
- The Second Affiliated Hospital of Shenyang Medical College, Shenyang 110031, China
| | - Yang Yang
- The Second Affiliated Hospital of Shenyang Medical College, Shenyang 110031, China
| |
Collapse
|
5
|
Ricciardi NR, Modarresi F, Lohse I, Andrade NS, Newman IR, Brown JM, Borja C, Marples B, Wahlestedt CR, Volmar CH. Investigating the Synergistic Potential of Low-Dose HDAC3 Inhibition and Radiotherapy in Alzheimer's Disease Models. Mol Neurobiol 2023; 60:4811-4827. [PMID: 37171575 PMCID: PMC10293392 DOI: 10.1007/s12035-023-03373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
We have previously shown that histone deacetylase (HDAC) inhibition and cranial radiotherapy (RT) independently improve molecular and behavioral Alzheimer's disease (AD)-like phenotypes. In the present study, we investigate the synergistic potential of using both RT and HDACi as a low-dose combination therapy (LDCT) to maximize disease modification (reduce neuroinflammation and amyloidogenic APP processing, increase neurotrophic gene expression) while minimizing the potential for treatment-associated side effects.LDCT consisted of daily administration of the HDAC3 inhibitor RGFP966 and/or bi-weekly cranial x-irradiation. Amyloid-beta precursor protein (APP) processing and innate immune response to LDCT were assessed in vitro and in vivo using human and murine cell models and 3xTg-AD mice. After 2 months of LDCT in mice, behavioral analyses as well as expression and modification of key AD-related targets (Aβ, tau, Csf1r, Bdnf, etc.) were assessed in the hippocampus (HIP) and prefrontal cortex (PFC).LDCT induced a tolerant, anti-inflammatory innate immune response in microglia and increased non-amyloidogenic APP processing in vitro. Both RT and LDCT improved the rate of learning and spatial memory in the Barnes maze test. LDCT induced a unique anti-AD HIP gene expression profile that included upregulation of neurotrophic genes and downregulation of inflammation-related genes. RT lowered HIP Aβ42/40 ratio and Bace1 protein, while LDCT lowered PFC p-tau181 and HIP Bace1 levels.Our study supports the rationale for combining complementary therapeutic approaches at low doses to target multifactorial AD pathology synergistically. Namely, LDCT with RGFP966 and cranial RT shows disease-modifying potential against a wide range of AD-related hallmarks.
Collapse
Affiliation(s)
- Natalie R. Ricciardi
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Farzaneh Modarresi
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
| | - Ines Lohse
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Nadja S. Andrade
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Ian R. Newman
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
| | - Jonathan M. Brown
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Caroline Borja
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miami, FL 33136 USA
| | - Claes R. Wahlestedt
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136 USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| | - Claude-Henry Volmar
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
6
|
Schmidt-Morgenroth I, Michaud P, Gasparini F, Avrameas A. Central and Peripheral Inflammation in Mild Cognitive Impairment in the Context of Alzheimer's Disease. Int J Mol Sci 2023; 24:10523. [PMID: 37445700 DOI: 10.3390/ijms241310523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mild cognitive impairment (MCI) is characterized by an abnormal decline in mental and cognitive function compared with normal cognitive aging. It is an underlying condition of Alzheimer's disease (AD), an irreversible neurodegenerative disease. In recent years, neuroinflammation has been investigated as a new leading target that contributes to MCI progression into AD. Understanding the mechanism underlying inflammatory processes involved in the early onset of the disease could help find a safe and effective way to diagnose and treat patients. In this article, we assessed over twenty different blood and cerebrospinal fluid (CSF) inflammatory biomarker concentrations with immunoassay methods in patients with MCI (mild cognitive impairment), non-impaired control (NIC), and serum healthy control (HC). We performed group comparisons and analyzed in-group correlations between the biomarkers. We included 107 participants (mean age: 64.7 ± 7.8, women: 58.9%). CSF osteopontin and YKL-40 were significantly increased in the MCI group, whereas serum C-reactive protein and interleukin-6 were significantly higher (p < 0.001) in the NIC group compared with the MCI and HC groups. Stronger correlations between interleukin-1β and inflammasome markers were observed in the serum of the MCI group. We confirmed specific inflammatory activation in the central nervous system and interleukin-1β pathway upregulation in the serum of the MCI cohort.
Collapse
Affiliation(s)
- Inès Schmidt-Morgenroth
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
| | - Fabrizio Gasparini
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
| | - Alexandre Avrameas
- Novartis Institutes for Biomedical Research (NIBR), Translational Medicine, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Jia B, Li J, Song Y, Luo C. ACSL4-Mediated Ferroptosis and Its Potential Role in Central Nervous System Diseases and Injuries. Int J Mol Sci 2023; 24:10021. [PMID: 37373168 DOI: 10.3390/ijms241210021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
As an iron-dependent regulated form of cell death, ferroptosis is characterized by iron-dependent lipid peroxidation and has been implicated in the occurrence and development of various diseases, including nervous system diseases and injuries. Ferroptosis has become a potential target for intervention in these diseases or injuries in relevant preclinical models. As a member of the Acyl-CoA synthetase long-chain family (ACSLs) that can convert saturated and unsaturated fatty acids, Acyl-CoA synthetase long-chain familymember4 (ACSL4) is involved in the regulation of arachidonic acid and eicosapentaenoic acid, thus leading to ferroptosis. The underlying molecular mechanisms of ACSL4-mediated ferroptosis will promote additional treatment strategies for these diseases or injury conditions. Our review article provides a current view of ACSL4-mediated ferroptosis, mainly including the structure and function of ACSL4, as well as the role of ACSL4 in ferroptosis. We also summarize the latest research progress of ACSL4-mediated ferroptosis in central nervous system injuries and diseases, further proving that ACSL4-medicated ferroptosis is an important target for intervention in these diseases or injuries.
Collapse
Affiliation(s)
- Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Yiting Song
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Cho E, Jeon SJ, Jeon J, Yi JH, Kwon H, Kwon HJ, Kwon KJ, Moon M, Shin CY, Kim DH. Phyllodulcin improves hippocampal long-term potentiation in 5XFAD mice. Biomed Pharmacother 2023; 161:114511. [PMID: 36913892 DOI: 10.1016/j.biopha.2023.114511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known neurodegenerative brain disease, and no curative treatment has yet been developed. The main symptoms include various brain lesions, caused by amyloid β (Aβ) aggregation, and cognitive decline. Therefore, it is believed that substances that control Aβ will inhibit the onset of Alzheimer's disease and slow its progression. In this study, the effect of phyllodulcin, a major component of hydrangea, on Aβ aggregation and brain pathology in an animal model of AD was studied. Phyllodulcin inhibited the aggregation of Aβ and decomposed the pre-aggregated Aβ in a concentration-dependent manner. In addition, it inhibited the cytotoxicity of Aβ aggregates. Oral administration of phyllodulcin improved Aβ-induced memory impairments in normal mice, reduced Aβ deposition in the hippocampus, inhibited the activation of microglia and astrocytes, and improved synaptic plasticity in 5XFAD mice. These results suggest that phyllodulcin may be a candidate for the treatment of AD.
Collapse
Affiliation(s)
- Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Se Jin Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jieun Jeon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Huiyoung Kwon
- Department of Health Sciences, The Graduate School of Dong-A University, Dong-A University, Busan 49315, Republic of Korea
| | - Hyun-Ji Kwon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyoung Ja Kwon
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of Biomedical Research Using Animals - A Narrative Review. Altern Lab Anim 2023; 51:102-135. [PMID: 36883244 DOI: 10.1177/02611929231157756] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The failure rate for the translation of drugs from animal testing to human treatments remains at over 92%, where it has been for the past few decades. The majority of these failures are due to unexpected toxicity - that is, safety issues revealed in human trials that were not apparent in animal tests - or lack of efficacy. However, the use of more innovative tools, such as organs-on-chips, in the preclinical pipeline for drug testing, has revealed that these tools are more able to predict unexpected safety events prior to clinical trials and so can be used for this, as well as for efficacy testing. Here, we review several disease areas, and consider how the use of animal models has failed to offer effective new treatments. We also make some suggestions as to how the more human-relevant new approach methodologies might be applied to address this.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Animal Research Issues, 94219The Humane Society of the United States, Gaithersburg, MD, USA
| | - Jarrod Bailey
- 380235Cruelty Free International, London, UK; 542332Animal Free Research UK, London, UK
| | | | - Kathrin Herrmann
- Johns Hopkins Bloomberg School of Public Health, 457389Center for Alternatives to Animal Testing, Baltimore, MD, USA; Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action, Berlin, Germany
| | | |
Collapse
|
10
|
Wang B, Zhong X, Fields L, Lu H, Zhu Z, Li L. Structural Proteomic Profiling of Cerebrospinal Fluids to Reveal Novel Conformational Biomarkers for Alzheimer's Disease. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:459-471. [PMID: 36745855 PMCID: PMC10276618 DOI: 10.1021/jasms.2c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Alzheimer's disease (AD) is the most common representation of dementia, with brain pathological hallmarks of protein abnormal aggregation, such as with amyloid beta and tau protein. It is well established that posttranslational modifications on tau protein, particularly phosphorylation, increase the likelihood of its aggregation and subsequent formation of neurofibrillary tangles, another hallmark of AD. As additional misfolded proteins presumably exist distinctly in AD disease states, which would serve as potential source of AD biomarkers, we used limited proteolysis-coupled with mass spectrometry (LiP-MS) to probe protein structural changes. After optimizing the LiP-MS conditions, we further applied this method to human cerebrospinal fluid specimens collected from healthy control, mild cognitive impairment (MCI), and AD subject groups to characterize proteome-wide misfolding tendencies as a result of disease progression. The fully tryptic peptides embedding LiP sites were compared with the half-tryptic peptides generated from internal cleavage of the same region to determine any structural unfolding or misfolding. We discovered hundreds of significantly up- and down-regulated peptides associated with MCI and AD indicating their potential structural changes in AD progression. Moreover, we detected 53 structurally changed regions in 12 proteins with high confidence between the healthy control and disease groups, illustrating the functional relevance of these proteins with AD progression. These newly discovered conformational biomarker candidates establish valuable future directions for exploring the molecular mechanism of designing therapeutic targets for AD.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
11
|
Ma T, Chang RCC, Macauley SL. Editorial: Metabolic signaling dysregulation and cognitive impairments in aging and Alzheimer's disease, volume II. Front Aging Neurosci 2023; 15:1150101. [PMID: 36819722 PMCID: PMC9936185 DOI: 10.3389/fnagi.2023.1150101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, LKS Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Shannon L. Macauley
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
12
|
Lu B. Translation stalling and ribosome collision leading to proteostasis failure: implications for neurodegenerative diseases. Neural Regen Res 2023; 18:111-112. [PMID: 35799519 PMCID: PMC9241430 DOI: 10.4103/1673-5374.340404] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Kepp KP, Sensi SL, Johnsen KB, Barrio JR, Høilund-Carlsen PF, Neve RL, Alavi A, Herrup K, Perry G, Robakis NK, Vissel B, Espay AJ. The Anti-Amyloid Monoclonal Antibody Lecanemab: 16 Cautionary Notes. J Alzheimers Dis 2023; 94:497-507. [PMID: 37334596 DOI: 10.3233/jad-230099] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
After the CLARITY-AD clinical trial results of lecanemab were interpreted as positive, and supporting the amyloid hypothesis, the drug received accelerated Food and Drug Administration approval. However, we argue that benefits of lecanemab treatment are uncertain and may yield net harm for some patients, and that the data do not support the amyloid hypothesis. We note potential biases from inclusion, unblinding, dropouts, and other issues. Given substantial adverse effects and subgroup heterogeneity, we conclude that lecanemab's efficacy is not clinically meaningful, consistent with numerous analyses suggesting that amyloid-β and its derivatives are not the main causative agents of Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Kasper P Kepp
- Department of Chemistry, Section of Biophysical and Biomedicinal Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology - CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Kasper B Johnsen
- Department of Health Science and Technology, Neurobiology Research and Drug Delivery Group, Aalborg University, Aalborg, Denmark
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rachael L Neve
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
14
|
Sehar U, Rawat P, Reddy AP, Kopel J, Reddy PH. Amyloid Beta in Aging and Alzheimer's Disease. Int J Mol Sci 2022; 23:12924. [PMID: 36361714 PMCID: PMC9655207 DOI: 10.3390/ijms232112924] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 12/06/2022] Open
Abstract
Alzheimer's disease (AD), is a progressive neurodegenerative disease that affects behavior, thinking, learning, and memory in elderly individuals. AD occurs in two forms, early onset familial and late-onset sporadic; genetic mutations in PS1, PS2, and APP genes cause early onset familial AD, and a combination of lifestyle, environment and genetic factors causes the late-onset sporadic form of the disease. However, accelerated disease progression is noticed in patients with familial AD. Disease-causing pathological changes are synaptic damage, and mitochondrial structural and functional changes, in addition to increased production and accumulation of phosphorylated tau (p-tau), and amyloid beta (Aβ) in the affected brain regions in AD patients. Aβ is a peptide derived from amyloid precursor protein (APP) by proteolytic cleavage of beta and gamma secretases. APP is a glycoprotein that plays a significant role in maintaining neuronal homeostasis like signaling, neuronal development, and intracellular transport. Aβ is reported to have both protective and toxic effects in neurons. The purpose of our article is to summarize recent developments of Aβ and its association with synapses, mitochondria, microglia, astrocytes, and its interaction with p-tau. Our article also covers the therapeutic strategies that reduce Aβ toxicities in disease progression and discusses the reasons for the failures of Aβ therapeutics.
Collapse
Affiliation(s)
- Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
15
|
Arrué L, Cigna-Méndez A, Barbosa T, Borrego-Muñoz P, Struve-Villalobos S, Oviedo V, Martínez-García C, Sepúlveda-Lara A, Millán N, Márquez Montesinos JCE, Muñoz J, Santana PA, Peña-Varas C, Barreto GE, González J, Ramírez D. New Drug Design Avenues Targeting Alzheimer's Disease by Pharmacoinformatics-Aided Tools. Pharmaceutics 2022; 14:1914. [PMID: 36145662 PMCID: PMC9503559 DOI: 10.3390/pharmaceutics14091914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases (NDD) have been of great interest to scientists for a long time due to their multifactorial character. Among these pathologies, Alzheimer's disease (AD) is of special relevance, and despite the existence of approved drugs for its treatment, there is still no efficient pharmacological therapy to stop, slow, or repair neurodegeneration. Existing drugs have certain disadvantages, such as lack of efficacy and side effects. Therefore, there is a real need to discover new drugs that can deal with this problem. However, as AD is multifactorial in nature with so many physiological pathways involved, the most effective approach to modulate more than one of them in a relevant manner and without undesirable consequences is through polypharmacology. In this field, there has been significant progress in recent years in terms of pharmacoinformatics tools that allow the discovery of bioactive molecules with polypharmacological profiles without the need to spend a long time and excessive resources on complex experimental designs, making the drug design and development pipeline more efficient. In this review, we present from different perspectives how pharmacoinformatics tools can be useful when drug design programs are designed to tackle complex diseases such as AD, highlighting essential concepts, showing the relevance of artificial intelligence and new trends, as well as different databases and software with their main results, emphasizing the importance of coupling wet and dry approaches in drug design and development processes.
Collapse
Affiliation(s)
- Lily Arrué
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480094, Chile
| | - Alexandra Cigna-Méndez
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Tábata Barbosa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paola Borrego-Muñoz
- Escuela de Medicina, Fundación Universitaria Juan N. Corpas, Bogotá 110311, Colombia
| | - Silvia Struve-Villalobos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Victoria Oviedo
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Claudia Martínez-García
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alexis Sepúlveda-Lara
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4780000, Chile
| | - Natalia Millán
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Juana Muñoz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Paula A. Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
16
|
Cheng Y, Zamrini E, Ahmed A, Wu WC, Shao Y, Zeng-Treitler Q. Medication-Wide Association Study Plus (MWAS+): A Proof of Concept Study on Drug Repurposing. Med Sci (Basel) 2022; 10:48. [PMID: 36135833 PMCID: PMC9503040 DOI: 10.3390/medsci10030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The high cost and time for developing a new drug or repositioning a partially-developed drug has fueled interest in "repurposing" drugs. Drug repurposing is particularly of interest for Alzheimer's disease (AD) or AD-related dementias (ADRD) because there are no unrestricted disease-modifying treatments for ADRD. We have designed and pilot tested a 3-Step Medication-Wide Association Study Plus (MWAS+) approach to rigorously accelerate the identification of drugs with a high potential to be repurposed for delaying and preventing AD/ADRD: Step 1 is a hypothesis-free exploration; Step 2 is mechanistic filtering; And Step 3 is hypothesis testing using observational data and prospective cohort design. Our results demonstrated the feasibility of the MWAS+ approach. The Step 1 analysis identified potential candidate drugs including atorvastatin and GLP1. The literature search in Step 2 found evidence supporting the mechanistic plausibility of the statin-ADRD association. Finally, Step 3 confirmed our hypothesis that statin may lower the risk of incident ADRD, which was statistically significant using a target trial design that emulated randomized controlled trials.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Clinical Research and Leadership, George Washington University, Washington, DC 20037, USA
- Center for Data Science and Outcome Research, Washington DC VA Medical Center, Washington, DC 20422, USA
| | - Edward Zamrini
- Department of Clinical Research and Leadership, George Washington University, Washington, DC 20037, USA
- Center for Data Science and Outcome Research, Washington DC VA Medical Center, Washington, DC 20422, USA
- Department of Neurology, University of Utah Hospital, Salt Lake City, UT 84132, USA
- Division of Neurology, Irvine Clinical Research, Irvine, CA 92614, USA
| | - Ali Ahmed
- Department of Clinical Research and Leadership, George Washington University, Washington, DC 20037, USA
- Center for Data Science and Outcome Research, Washington DC VA Medical Center, Washington, DC 20422, USA
- Department of Medicine, Georgetown University, Washington, DC 20057, USA
| | - Wen-Chih Wu
- Providence VA Medical Center, Providence, RI 02908, USA
- Department of Medicine and Department of Epidemiology, Brown University, Providence, RI 02912, USA
| | - Yijun Shao
- Department of Clinical Research and Leadership, George Washington University, Washington, DC 20037, USA
- Center for Data Science and Outcome Research, Washington DC VA Medical Center, Washington, DC 20422, USA
| | - Qing Zeng-Treitler
- Department of Clinical Research and Leadership, George Washington University, Washington, DC 20037, USA
- Center for Data Science and Outcome Research, Washington DC VA Medical Center, Washington, DC 20422, USA
| |
Collapse
|
17
|
Targeted Mitochondrial Epigenetics: A New Direction in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23179703. [PMID: 36077101 PMCID: PMC9456144 DOI: 10.3390/ijms23179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial epigenetic alterations are closely related to Alzheimer’s disease (AD), which is described in this review. Reports of the alteration of mitochondrial DNA (mtDNA) methylation in AD demonstrate that the disruption of the dynamic balance of mtDNA methylation and demethylation leads to damage to the mitochondrial electron transport chain and the obstruction of mitochondrial biogenesis, which is the most studied mitochondrial epigenetic change. Mitochondrial noncoding RNA modifications and the post-translational modification of mitochondrial nucleoproteins have been observed in neurodegenerative diseases and related diseases that increase the risk of AD. Although there are still relatively few mitochondrial noncoding RNA modifications and mitochondrial nuclear protein post-translational modifications reported in AD, we have reason to believe that these mitochondrial epigenetic modifications also play an important role in the AD process. This review provides a new research direction for the AD mechanism, starting from mitochondrial epigenetics. Further, this review summarizes therapeutic approaches to targeted mitochondrial epigenetics, which is the first systematic summary of therapeutic approaches in the field, including folic acid supplementation, mitochondrial-targeting antioxidants, and targeted ubiquitin-specific proteases, providing a reference for therapeutic targets for AD.
Collapse
|
18
|
Srivastava V, Mathur D, Rout S, Mishra BK, Pannu V, Anand A, Anand A. Ayurvedic Herbal Therapies: A Review of Treatment and Management of Dementia. Curr Alzheimer Res 2022; 19:568-584. [PMID: 35929620 DOI: 10.2174/1567205019666220805100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
Dementia has been characterized by atypical neurological syndromes and several cognitive deficits, such as extended memory loss, strange behavior, unusual thinking, impaired judgment, impotence, and difficulty with daily living activities. Dementia is not a disease, but it is caused by several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Lewy's bodies. Several drugs and remedies are indicated for alleviating unusual cognitive decline, but no effective pharmacological treatment regimens are available without side effects. Herbal drugs or traditional medicines like Ayurveda have been known for facilitating and corroborating the balance between mind, brain, body, and environment. Ayurvedic therapy comprises 600 herbal formulas, 250 single plant remedies, and natural and holistic health-giving treatments that relieve dementia in patients and increase vitality. Ayurvedic Rasayana herbs [rejuvenating elements] strengthen the brain cells, enhance memory, and decrease stress. The current medicine scenario in the treatment of dementia has prompted the shift in exploring the efficacy of ayurvedic medicine, its safety, and its efficiency. This review presents the literature on several herbal treatments for improving dementia symptomatology and patients' quality of life.
Collapse
Affiliation(s)
- Vinod Srivastava
- College of Health and Behavioral Sciences, Fort Hays State University, Hays, Kansas 67601, USA
| | - Deepali Mathur
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | - Soumyashree Rout
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | | | - Viraaj Pannu
- Department of Internal Medicine, Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh, India
| |
Collapse
|
19
|
Li L, Liu J, Li X, Tang Y, Shi C, Zhang X, Cui Y, Wang L, Xu W. Influencing factors and characterization methods of nanoparticles regulating amyloid aggregation. SOFT MATTER 2022; 18:3278-3290. [PMID: 35437550 DOI: 10.1039/d1sm01704g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human disorders associated with amyloid aggregation, such as Alzheimer's disease and Parkinson's disease, afflict the lives of millions worldwide. When peptides and proteins in the body are converted to amyloids, which have a tendency to aggregate, the toxic oligomers produced during the aggregation process can trigger a range of diseases. Nanoparticles (NPs) have been found to possess surface effects that can modulate the amyloid aggregation process and they have potential application value in the treatment of diseases related to amyloid aggregation and fibrillary tangles. In this review, we discuss recent progress relating to studies of nanoparticles that regulate amyloid aggregation. The review focuses on the factors influencing this regulation, which are important as guidelines for the future design of NPs for the treatment of amyloid aggregation. We describe the characterization methods that have been utilized so far in such studies. This review provides research information and characterization methods for the rational design of NPs, which should result in therapeutic strategies for amyloid diseases.
Collapse
Affiliation(s)
- Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Jianhui Liu
- Yantai Center of Ecology and Environment Monitoring of Shandong Province, Yantai 264025, China
| | - Xinyue Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuming Cui
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Linlin Wang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai 264000, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
20
|
Krafft GA, Jerecic J, Siemers E, Cline EN. ACU193: An Immunotherapeutic Poised to Test the Amyloid β Oligomer Hypothesis of Alzheimer’s Disease. Front Neurosci 2022; 16:848215. [PMID: 35557606 PMCID: PMC9088393 DOI: 10.3389/fnins.2022.848215] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/26/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects 50 million people worldwide, with 10 million new cases occurring each year. The emotional and economic impacts of AD on patients and families are devastating. Approved treatments confer modest improvement in symptoms, and recently one treatment obtained accelerated approval from the United States Food and Drug Administration (FDA) and may have modest disease modifying benefit. Research over the past three decades has established a clear causal linkage between AD and elevated brain levels of amyloid β (Aβ) peptide, and substantial evidence now implicates soluble, non-fibrillar Aβ oligomers (AβOs) as the molecular assemblies directly responsible for AD-associated memory and cognitive failure and accompanying progressive neurodegeneration. The widely recognized linkage of elevated Aβ and AD spawned a comprehensive 20-year therapeutic campaign that focused primarily on two strategies – inhibition of the secretase enzymes responsible for Aβ production and clearance of Aβ peptide or amyloid plaques with Aβ-directed immunotherapeutics. Unfortunately, all clinical trials of secretase inhibitors were unsuccessful. Of the completed phase 3 immunotherapy programs, bapineuzumab (targeting amyloid plaque) and solanezumab (targeting Aβ monomers) were negative, and the crenezumab program (targeting Aβ monomers and to a small extent oligomers) was stopped for futility. Aducanumab (targeting amyloid plaques), which recently received FDA accelerated approval, had one positive and one negative phase 3 trial. More than 25 negative randomized clinical trials (RCTs) have evaluated Aβ-targeting therapeutics, yet none has directly evaluated whether selective blockage of disease-relevant AβOs can stop or reverse AD-associated cognitive decline. Here, we briefly summarize studies that establish the AD therapeutic rationale to target AβOs selectively, and we describe ACU193, the first AβO-selective immunotherapeutic to enter human clinical trials and the first positioned to test the AβO hypothesis of AD.
Collapse
|
21
|
Banack SA, Stark AC, Cox PA. A possible blood plasma biomarker for early-stage Alzheimer's disease. PLoS One 2022; 17:e0267407. [PMID: 35446894 PMCID: PMC9022864 DOI: 10.1371/journal.pone.0267407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
We sought to identify a usable biomarker from blood samples to characterize early-stage Alzheimer’s disease (AD) patients, in order to facilitate rapid diagnosis, early therapeutic intervention, and monitoring of clinical trials. We compared metabolites from blood plasma in early-stage Alzheimer’s disease patients with blood plasma from healthy controls using two different analytical platforms: Amino Acid Analyzer and Tandem Mass-Spectrometer. Early-stage Alzheimer’s patient blood samples were obtained during an FDA-approved Phase IIa clinical trial (Clinicaltrial.gov NCT03062449). Participants included 25 early-stage Alzheimer’s patients and 25 healthy controls in the United States. We measured concentrations of 2-aminoethyl dihydrogen phosphate and taurine in blood plasma samples. We found that plasma concentrations of a phospholipid metabolite, 2-aminoethyl dihydrogen phosphate, normalized by taurine concentrations, distinguish blood samples of patients with early-stage AD. This possible new Alzheimer’s biomarker may supplement clinical diagnosis for early detection of the disease.
Collapse
Affiliation(s)
| | - Aleksandra C. Stark
- Dartmouth-Hitchock Medical Center, Lebanon, New Hampshire, United States of America
| | - Paul Alan Cox
- Brain Chemistry Labs, Jackson, Wyoming, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kumar A, Nemeroff CB, Cooper JJ, Widge A, Rodriguez C, Carpenter L, McDonald WM. Amyloid and Tau in Alzheimer's Disease: Biomarkers or Molecular Targets for Therapy? Are We Shooting the Messenger? Am J Psychiatry 2021; 178:1014-1025. [PMID: 34734743 DOI: 10.1176/appi.ajp.2021.19080873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease is a neuropsychiatric disorder with devastating clinical and socioeconomic consequences. Since the original description of the neuropathological correlates of the disorder, neuritic plaques and neurofibrillary tangles have been presumed to be critical to the underlying pathophysiology of the illness. The authors review the clinical and neuropathological origins of Alzheimer's disease and trace the evolution of modern biomarkers from their historical roots. They describe how technological innovations such as neuroimaging and biochemical assays have been used to measure and quantify key proteins and lipids in the brain, cerebrospinal fluid, and blood and advance their role as biomarkers of Alzheimer's disease. Together with genomics, these approaches have led to the development of a thematic and focused science in the area of degenerative disorders. The authors conclude by drawing distinctions between legitimate biomarkers of disease and molecular targets for therapeutic intervention and discuss future approaches to this complex neurobehavioral illness.
Collapse
Affiliation(s)
- Anand Kumar
- Department of Psychiatry, University of Illinois at Chicago (Kumar, Cooper); Department of Psychiatry and Behavioral Sciences, University of Texas Dell Medical School in Austin, and Mulva Clinic for the Neurosciences, UT Health Austin (Nemeroff); Department of Psychiatry, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald)
| | - Charles B Nemeroff
- Department of Psychiatry, University of Illinois at Chicago (Kumar, Cooper); Department of Psychiatry and Behavioral Sciences, University of Texas Dell Medical School in Austin, and Mulva Clinic for the Neurosciences, UT Health Austin (Nemeroff); Department of Psychiatry, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald)
| | - Joseph J Cooper
- Department of Psychiatry, University of Illinois at Chicago (Kumar, Cooper); Department of Psychiatry and Behavioral Sciences, University of Texas Dell Medical School in Austin, and Mulva Clinic for the Neurosciences, UT Health Austin (Nemeroff); Department of Psychiatry, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald)
| | - Alik Widge
- Department of Psychiatry, University of Illinois at Chicago (Kumar, Cooper); Department of Psychiatry and Behavioral Sciences, University of Texas Dell Medical School in Austin, and Mulva Clinic for the Neurosciences, UT Health Austin (Nemeroff); Department of Psychiatry, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald)
| | - Carolyn Rodriguez
- Department of Psychiatry, University of Illinois at Chicago (Kumar, Cooper); Department of Psychiatry and Behavioral Sciences, University of Texas Dell Medical School in Austin, and Mulva Clinic for the Neurosciences, UT Health Austin (Nemeroff); Department of Psychiatry, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald)
| | - Linda Carpenter
- Department of Psychiatry, University of Illinois at Chicago (Kumar, Cooper); Department of Psychiatry and Behavioral Sciences, University of Texas Dell Medical School in Austin, and Mulva Clinic for the Neurosciences, UT Health Austin (Nemeroff); Department of Psychiatry, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald)
| | - William M McDonald
- Department of Psychiatry, University of Illinois at Chicago (Kumar, Cooper); Department of Psychiatry and Behavioral Sciences, University of Texas Dell Medical School in Austin, and Mulva Clinic for the Neurosciences, UT Health Austin (Nemeroff); Department of Psychiatry, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald)
| |
Collapse
|
23
|
Zhang B, Lian W, Zhao J, Wang Z, Liu A, Du G. DL0410 Alleviates Memory Impairment in D-Galactose-Induced Aging Rats by Suppressing Neuroinflammation via the TLR4/MyD88/NF- κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6521146. [PMID: 34650664 PMCID: PMC8510815 DOI: 10.1155/2021/6521146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/05/2021] [Accepted: 08/21/2021] [Indexed: 11/18/2022]
Abstract
Oxidative stress and neuroinflammation have been demonstrated to be linked with Alzheimer's disease (AD). In this study, we examined the protective effects of DL0410 in aging rats and explored the underlying mechanism against oxidative damage and neuroinflammation, which was then validated in LPS-stimulated BV2 microglia. We firstly investigated the improvement effects of DL0410 on learning and memory abilities and explored the potential mechanisms in D-gal-induced aging rats. An 8-week treatment with DL0410 significantly improved the learning and cognitive function of D-gal-stimulated Alzheimer's-like rats in the Morris water maze test, step-down test, and novel object recognition test, and the therapeutic effect of DL0410 at 10 mg/kg was even better than that of donepezil. What is more, the results showed that DL0410 alleviated neuron injury, increased the number of synapses, and improved the level of postsynaptic density protein 95 (PSD95) in the hippocampus and cortex. Next, we examined the protective effects of DL0410 against oxidative damage and neuroinflammation. Our observations indicated that DL0410 reduced the production of harmful oxidation products and promoted the antioxidative system, decreased the levels of proinflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6), and increased anti-inflammatory cytokines IL-10. Moreover, DL0410 inhibited the activation of astrocytes and microglia and suppressed the activation of the TLR4/MyD88/NF-κB signaling pathway. The anti-inflammation effect of DL0410 was further confirmed in LPS-stimulated BV2 cells, and the results showed that DL0410 reduced the level of inflammatory factors and inhibited the activation of the TLR4/MyD88/TRAF6/NF-κB signaling pathway in BV2 microglia. Molecular docking results indicated that DL0410 occupied the LPS recognition site in the TLR4/MD2 complex. Furthermore, the enhanced expression of claudin-1, claudin-5, occludin, CX43, and ZO-1 indicated that DL0410 protected the blood-brain barrier (BBB) integrity. Together, these results suggest that DL0410 exerts neuroprotective effects against hippocampus and cortex injury induced by D-galactose, and the possible mechanisms include antioxidative stress, antineuroinflammation, improving synaptic plasticity, and maintaining BBB integrity, which is mediated by the TLR4/MyD88/NF-κB signaling pathway inhibition. We suggest that DL0410 is a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenwen Lian
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Hafez Ghoran S, Kijjoa A. Marine-Derived Compounds with Anti-Alzheimer's Disease Activities. Mar Drugs 2021; 19:410. [PMID: 34436249 PMCID: PMC8399123 DOI: 10.3390/md19080410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills, and, eventually, the ability to perform simple tasks. As the aging population continues to increase exponentially, AD has become a big concern for society. Therefore, neuroprotective compounds are in the spotlight, as a means to tackle this problem. On the other hand, since it is believed-in many cultures-that marine organisms in an individual diet cannot only improve brain functioning, but also slow down its dysfunction, many researchers have focused on identifying neuroprotective compounds from marine resources. The fact that the marine environment is a rich source of structurally unique and biologically and pharmacologically active compounds, with unprecedented mechanisms of action, marine macroorganisms, such as tunicates, corals, sponges, algae, as well as microorganisms, such as marine-derived bacteria, actinomycetes, and fungi, have been the target sources of these compounds. Therefore, this literature review summarizes and categorizes various classes of marine-derived compounds that are able to inhibit key enzymes involved in AD, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase (BACE-1), and different kinases, together with the related pathways involved in the pathogenesis of AD. The compounds discussed herein are emerging as promising anti-AD activities for further in-depth in vitro and in vivo investigations, to gain more insight of their mechanisms of action and for the development of potential anti-AD drug leads.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan 439361-79142, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 75919-94779, Iran
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. Eur J Med Chem 2021; 216:113320. [PMID: 33652356 DOI: 10.1016/j.ejmech.2021.113320] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that impairs mental ability development and interrupts neurocognitive function. This neuropathological condition is depicted by neurodegeneration, neural loss, and development of neurofibrillary tangles and Aβ plaques. There is also a greater risk of developing AD at a later age for people with cardiovascular diseases, hypertension and diabetes. In the biomedical sciences, effective treatment for Alzheimer's disease is a severe obstacle. There is no such treatment to cure Alzheimer's disease. The drug present in the market show only symptomatic relief. The cause of Alzheimer's disease is not fully understood and the blood-brain barrier restricts drug efficacy are two main factors that hamper research. Stem cell-based therapy has been seen as an effective, secure, and creative therapeutic solution to overcoming AD because of AD's multifactorial nature and inadequate care. Current developments in nanotechnology often offer possibilities for the delivery of active drug candidates to address certain limitations. The key nanoformulations being tested against AD include polymeric nanoparticles (NP), inorganic NPs and lipid-based NPs. Nano drug delivery systems are promising vehicles for targeting several therapeutic moieties by easing drug molecules' penetration across the CNS and improving their bioavailability. In this review, we focus on the causes of the AD and their treatment by different approaches.
Collapse
Affiliation(s)
- Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
26
|
Kabir MT, Uddin MS, Mathew B, Das PK, Perveen A, Ashraf GM. Emerging Promise of Immunotherapy for Alzheimer's Disease: A New Hope for the Development of Alzheimer's Vaccine. Curr Top Med Chem 2021; 20:1214-1234. [PMID: 32321405 DOI: 10.2174/1568026620666200422105156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. OBJECTIVE In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. SUMMARY Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine's immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. CONCLUSION Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Zhao Y, Jaber V, Alexandrov PN, Vergallo A, Lista S, Hampel H, Lukiw WJ. microRNA-Based Biomarkers in Alzheimer's Disease (AD). Front Neurosci 2020; 14:585432. [PMID: 33192270 PMCID: PMC7664832 DOI: 10.3389/fnins.2020.585432] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, age-related neurological disease characterized by complex pathophysiological dynamics taking place at multiple biological levels, including molecular, genetic, epigenetic, cellular and large-scale brain networks. These alterations account for multiple pathophysiological mechanisms such as brain protein accumulation, neuroinflammatory/neuro-immune processes, synaptic dysfunction, and neurodegeneration that eventually lead to cognitive and behavioral decline. Alterations in microRNA (miRNA) signaling have been implicated in the epigenetics and molecular genetics of all neurobiological processes associated with AD pathophysiology. These changes encompass altered miRNA abundance, speciation and complexity in anatomical regions of the CNS targeted by the disease, including modified miRNA expression patterns in brain tissues, the systemic circulation, the extracellular fluid (ECF) and the cerebrospinal fluid (CSF). miRNAs have been investigated as candidate biomarkers for AD diagnosis, disease prediction, prognosis and therapeutic purposes because of their involvement in multiple brain signaling pathways in both health and disease. In this review we will: (i) highlight the significantly heterogeneous nature of miRNA expression and complexity in AD tissues and biofluids; (ii) address how information may be extracted from these data to be used as a diagnostic, prognostic and/or screening tools across the entire continuum of AD, from the preclinical stage, through the prodromal, i.e., mild cognitive impairment (MCI) phase all the way to clinically overt dementia; and (iii) consider how specific miRNA expression patterns could be categorized using miRNA reporters that span AD pathophysiological initiation and disease progression.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Cell Biology and Anatomy, Louisiana State University Health Science Center, New Orleans, LA, United States
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, Paris, France
- Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l’hôpital, Paris, France
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Russian Academy of Medical Sciences, Moscow, Russia
- Department of Ophthalmology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Neurology, LSU Neuroscience Center Louisiana State University Health Science Center, New Orleans, LA, United States
| |
Collapse
|
28
|
Liu YCG, Lan SJ, Hirano H, Lin LM, Hori K, Lin CS, Zwetchkenbaum S, Minakuchi S, Teng AYT. Update and review of the gerodontology prospective for 2020's: Linking the interactions of oral (hypo)-functions to health vs. systemic diseases. J Dent Sci 2020; 16:757-773. [PMID: 33854730 PMCID: PMC8025188 DOI: 10.1016/j.jds.2020.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
New lines of evidence suggest that the oral-systemic medical links and oral hypo-function are progressively transcending beyond the traditional clinical signs and symptoms of oral diseases. Research into the dysbiotic microbiome, host immune/inflammatory regulations and patho-physiologic changes and subsequent adaptations through the oral-systemic measures under ageism points to pathways leading to mastication deficiency, dysphagia, signature brain activities for (neuro)-cognition circuitries, dementia and certain cancers of the digestive system as well. Therefore, the coming era of oral health-linked systemic disorders will likely reshape the future of diagnostics in oral geriatrics, treatment modalities and professional therapies in clinical disciplines. In parallel to these highlights, a recent international symposium was jointly held by the International Association of Gerontology and Geriatrics (IAGG), Japanese Society of Gerodontology (JSG), the representative of USA and Taiwan Academy of Geriatric Dentistry (TAGD) on Oct 25th, 2019. Herein, specific notes are briefly addressed and updated for a summative prospective from this symposium and the recent literature.
Collapse
Affiliation(s)
- Yen Chun G. Liu
- Center for Osteoimmunology & Biotechnology Research (COBR) and Dept. of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan
- Corresponding author. Dept. of Oral Hygiene & COBR, College of Dental Medicine, Kaohsiung Medical University; No. 100, Shih-Chun 1st Rd, Kaohsiung 807, Taiwan. Fax: +886 07 3223141.
| | - Shou-Jen Lan
- Dept. of Healthcare Administration, Asia University, Tai-Chung, Taiwan
| | - Hirohiko Hirano
- Research Team for Promoting Independence & Mental Health, and Dentistry & Oral Surgery, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Li-min Lin
- Div. of Oral Pathology & Oral Maxillo-facial Radiology, School of Dentistry, Kaohsiung Medical University & KMU-Hospital, Kaohsiung, Taiwan
| | - Kazuhiro Hori
- Div. of Comprehensive Prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Chia-shu Lin
- Dept. of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Samuel Zwetchkenbaum
- Rhode Island Dept. of Health, Rhode Island, USA
- School of Public Health, Brown University, Providence, RI, USA
| | - Shunsuke Minakuchi
- Gerodontology & Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Andy Yen-Tung Teng
- Center for Osteoimmunology & Biotechnology Research (COBR) and Dept. of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan
- Center for Osteoimmunology & Biotechnology Research (COBR) and School of Dentistry, College of Dental Medicine, Kaohsiung Medical University and KMU-Hospital, Kaohsiung, Taiwan
- Corresponding author. Center for Osteoimmunology and Biotechnology Research (COBR), College of Dental Medicine, Kaohsiung Medical University (KMU) & KMU-Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
29
|
Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer's disease. Drug Discov Today 2020; 25:2110-2129. [PMID: 33011341 DOI: 10.1016/j.drudis.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease leading to progressive loss of memory that mainly affects people above 60 years of age. It is one of the leading causes of deaths in the USA. Given its inherent heterogeneity and a still-incomplete understanding of its pathology, biomarkers, and targets available for therapy, it is a challenge to design an effective therapeutic strategy. Several hypotheses have been proposed to understand the disease and to identify reliable markers and targets for treatments. However, none have resulted in strong support from clinical trials. In this review, we objectively discuss the various therapeutic strategies and mechanistic approaches to improve the current clinical outcome of AD therapy.
Collapse
|
30
|
Uddin MS, Kabir MT, Rahman MS, Behl T, Jeandet P, Ashraf GM, Najda A, Bin-Jumah MN, El-Seedi HR, Abdel-Daim MM. Revisiting the Amyloid Cascade Hypothesis: From Anti-Aβ Therapeutics to Auspicious New Ways for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21165858. [PMID: 32824102 PMCID: PMC7461598 DOI: 10.3390/ijms21165858] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder related to age, characterized by the cerebral deposition of fibrils, which are made from the amyloid-β (Aβ), a peptide of 40–42 amino acids. The conversion of Aβ into neurotoxic oligomeric, fibrillar, and protofibrillar assemblies is supposed to be the main pathological event in AD. After Aβ accumulation, the clinical symptoms fall out predominantly due to the deficient brain clearance of the peptide. For several years, researchers have attempted to decline the Aβ monomer, oligomer, and aggregate levels, as well as plaques, employing agents that facilitate the reduction of Aβ and antagonize Aβ aggregation, or raise Aβ clearance from brain. Unluckily, broad clinical trials with mild to moderate AD participants have shown that these approaches were unsuccessful. Several clinical trials are running involving patients whose disease is at an early stage, but the preliminary outcomes are not clinically impressive. Many studies have been conducted against oligomers of Aβ which are the utmost neurotoxic molecular species. Trials with monoclonal antibodies directed against Aβ oligomers have exhibited exciting findings. Nevertheless, Aβ oligomers maintain equivalent states in both monomeric and aggregation forms; so, previously administered drugs that precisely decrease Aβ monomer or Aβ plaques ought to have displayed valuable clinical benefits. In this article, Aβ-based therapeutic strategies are discussed and several promising new ways to fight against AD are appraised.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
- Correspondence: ; Tel.: +880-171-022-0110
| | - Md. Tanvir Kabir
- Department of Pharmacy, BRAC University, Dhaka 1212, Bangladesh;
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France;
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
31
|
Fantini J, Chahinian H, Yahi N. Progress toward Alzheimer's disease treatment: Leveraging the Achilles' heel of Aβ oligomers? Protein Sci 2020; 29:1748-1759. [PMID: 32567070 DOI: 10.1002/pro.3906] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
After three decades of false hopes and failures, a pipeline of therapeutic drugs that target the actual root cause of Alzheimer's disease (AD) is now available. Challenging the old paradigm that focused on β-amyloid peptide (Aβ) aggregation in amyloid plaques, these compounds are designed to prevent the neurotoxicity of Aβ oligomers that form Ca2+ permeable pores in the membranes of brain cells. By triggering an intracellular Ca2+ overdose, Aβ oligomers induce a cascade of neurotoxic events including oxidative stress, tau hyperphosphorylation, and neuronal loss. Targeting any post-Ca2+ entry steps (e.g., tau) will not address the root cause of the disease. Thus, preventing Aβ oligomers formation and/or blocking their toxicity is by essence the best approach to stop any progression of AD. Three categories of anti-oligomer compounds are already available: antibodies, synthetic peptides, and small drugs. Independent in silico-based designs of a peptide (AmyP53) and a monoclonal antibody (PMN310) converged to identify a histidine motif (H13/H14) that is critical for oligomer neutralization. This "histidine trick" can be viewed as the Achilles' heel of Aβ in the fight against AD. Moreover, lipid rafts and especially gangliosides play a critical role in the formation and toxicity of Aβ oligomers. Recognizing AD as a membrane disorder and gangliosides as the key anti-oligomer targets will provide innovative opportunities to find an efficient cure. A "full efficient" solution would also need to be affordable to anyone, as the number of patients has been following an exponential increase, affecting every part of the globe.
Collapse
Affiliation(s)
- Jacques Fantini
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix-Marseille Université, Marseille, France
| |
Collapse
|
32
|
Mullane K, Williams M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol 2020; 177:113945. [DOI: 10.1016/j.bcp.2020.113945] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
33
|
Wang X, Zimmermann HR, Ma T. Therapeutic Potential of AMP-Activated Protein Kinase in Alzheimer's Disease. J Alzheimers Dis 2020; 68:33-38. [PMID: 30776001 DOI: 10.3233/jad-181043] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently there is no cure or effective disease-modifying therapy for Alzheimer's disease (AD), the most common form of dementia that is becoming a global threat to public health. It is important to develop novel therapeutic strategies targeting AD pathophysiology particularly synaptic failure and cognitive impairments. Recent studies revealed several molecular signaling pathways potentially linked to brain pathology and synaptic failure in AD, including AMP-activated protein kinase (AMPK), a master kinase that plays a central role in the maintenance of cellular energy homeostasis. Particularly, hyperactive AMPK via phosphorylation has been linked to AD-associated synaptic plasticity impairments, indicating suppression of AMPK activity might be beneficial for cognitive deficiency in AD. In this review, we will discuss how targeting dysregulation of AMPK signaling could be a feasible therapeutic approach for AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Helena R Zimmermann
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
34
|
Synaptic Loss, ER Stress and Neuro-Inflammation Emerge Late in the Lateral Temporal Cortex and Associate with Progressive Tau Pathology in Alzheimer's Disease. Mol Neurobiol 2020; 57:3258-3272. [PMID: 32514860 PMCID: PMC7340653 DOI: 10.1007/s12035-020-01950-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022]
Abstract
The complex multifactorial nature of AD pathogenesis has been highlighted by evidence implicating additional neurodegenerative mechanisms, beyond that of amyloid-β (Aβ) and tau. To provide insight into cause and effect, we here investigated the temporal profile and associations of pathological changes in synaptic, endoplasmic reticulum (ER) stress and neuro-inflammatory markers. Quantifications were established via immunoblot and immunohistochemistry protocols in post-mortem lateral temporal cortex (n = 46). All measures were assessed according to diagnosis (non-AD vs. AD), neuropathological severity (low (Braak ≤ 2) vs. moderate (3–4) vs. severe (≥ 5)) and individual Braak stage, and were correlated with Aβ and tau pathology and cognitive scores. Postsynaptic PSD-95, but not presynaptic synaptophysin, was decreased in AD cases and demonstrated a progressive decline across disease severity and Braak stage, yet not with cognitive scores. Of all investigated ER stress markers, only phospho-protein kinase RNA-like ER kinase (p-PERK) correlated with Braak stage and was increased in diagnosed AD cases. A similar relationship was observed for the astrocytic glial fibrillary acidic protein (GFAP); however, the associated aquaporin 4 and microglial Iba1 remained unchanged. Pathological alterations in these markers preferentially correlated with measures of tau over those related to Aβ. Notably, GFAP also correlated strongly with Aβ markers and with all assessments of cognition. Lateral temporal cortex-associated synaptic, ER stress and neuro-inflammatory pathologies are here determined as late occurrences in AD progression, largely associated with tau pathology. Moreover, GFAP emerged as the most robust indicator of disease progression, tau/Aβ pathology, and cognitive impairment.
Collapse
|
35
|
Majdi A, Sadigh-Eteghad S, Rahigh Aghsan S, Farajdokht F, Vatandoust SM, Namvaran A, Mahmoudi J. Amyloid-β, tau, and the cholinergic system in Alzheimer's disease: seeking direction in a tangle of clues. Rev Neurosci 2020; 31:391-413. [PMID: 32017704 DOI: 10.1515/revneuro-2019-0089] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022]
Abstract
The link between histopathological hallmarks of Alzheimer's disease (AD), i.e. amyloid plaques, and neurofibrillary tangles, and AD-associated cognitive impairment, has long been established. However, the introduction of interactions between amyloid-beta (Aβ) as well as hyperphosphorylated tau, and the cholinergic system to the territory of descriptive neuropathology has drastically changed this field by adding the theory of synaptic neurotransmission to the toxic pas de deux in AD. Accumulating data show that a multitarget approach involving all amyloid, tau, and cholinergic hypotheses could better explain the evolution of events happening in AD. Various species of both Aβ and tau could be traced in cholinergic neurons of the basal forebrain system early in the course of the disease. These molecules induce degeneration in the neurons of this system. Reciprocally, aberrant cholinergic system modulation promotes changes in amyloid precursor protein (APP) metabolism and tau phosphorylation, resulting in neurotoxicity, neuroinflammation, and neuronal death. Altogether, these changes may better correlate with the clinical findings and cognitive impairment detected in AD patients. Failure of several of Aβ- and tau-related therapies further highlights the need for special attention to molecules that target all of these mentioned pathologic changes. Another noteworthy fact here is that none of the popular hypotheses of AD such as amyloidopathy or tauopathy seem to be responsible for the changes observed in AD alone. Thus, the main culprit should be sought higher in the stream somewhere in APP metabolism or Wnt signaling in the cholinergic system of the basal forebrain. Future studies should target these pathological events.
Collapse
Affiliation(s)
- Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Sepideh Rahigh Aghsan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Ali Namvaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51368, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz 51368, Iran
| |
Collapse
|
36
|
Hampel H, Vergallo A, Afshar M, Akman-Anderson L, Arenas J, Benda N, Batrla R, Broich K, Caraci F, Cuello AC, Emanuele E, Haberkamp M, Kiddle SJ, Lucía A, Mapstone M, Verdooner SR, Woodcock J, Lista S. Blood-based systems biology biomarkers for next-generation clinical trials in Alzheimer's disease
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020. [PMID: 31636492 PMCID: PMC6787542 DOI: 10.31887/dcns.2019.21.2/hhampel] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD)-a complex disease showing multiple pathomechanistic alterations-is triggered by nonlinear dynamic interactions of genetic/epigenetic and environmental risk factors, which, ultimately, converge into a biologically heterogeneous disease. To tackle the burden of AD during early preclinical stages, accessible blood-based biomarkers are currently being developed. Specifically, next-generation clinical trials are expected to integrate positive and negative predictive blood-based biomarkers into study designs to evaluate, at the individual level, target druggability and potential drug resistance mechanisms. In this scenario, systems biology holds promise to accelerate validation and qualification for clinical trial contexts of use-including proof-of-mechanism, patient selection, assessment of treatment efficacy and safety rates, and prognostic evaluation. Albeit in their infancy, systems biology-based approaches are poised to identify relevant AD "signatures" through multifactorial and interindividual variability, allowing us to decipher disease pathophysiology and etiology. Hopefully, innovative biomarker-drug codevelopment strategies will be the road ahead towards effective disease-modifying drugs.
.
Collapse
Affiliation(s)
- Harald Hampel
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Andrea Vergallo
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Mohammad Afshar
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Leyla Akman-Anderson
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Joaquín Arenas
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Norbert Benda
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Richard Batrla
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Karl Broich
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Filippo Caraci
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - A Claudio Cuello
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Enzo Emanuele
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Marion Haberkamp
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Steven J Kiddle
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Alejandro Lucía
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Mark Mapstone
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Steven R Verdooner
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Janet Woodcock
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Simone Lista
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| |
Collapse
|
37
|
Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J. Pharmacotherapy of Alzheimer's Disease: Seeking Clarity in a Time of Uncertainty. Front Pharmacol 2020; 11:261. [PMID: 32265696 PMCID: PMC7105678 DOI: 10.3389/fphar.2020.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is recognized as a major health hazard that mostly affects people older than 60 years. AD is one of the biggest medical, economic, and social concerns to patients and their caregivers. AD was ranked as the 5th leading cause of global deaths in 2016 by the World Health Organization (WHO). Many drugs targeting the production, aggregation, and clearance of Aβ plaques failed to give any conclusive clinical outcomes. This mainly stems from the fact that AD is not a disease attributed to a single-gene mutation. Two hallmarks of AD, Aβ plaques and neurofibrillary tangles (NFTs), can simultaneously induce other AD etiologies where every pathway is a loop of consequential events. Therefore, the focus of recent AD research has shifted to exploring other etiologies, such as neuroinflammation and central hyperexcitability. Neuroinflammation results from the hyperactivation of microglia and astrocytes that release pro-inflammatory cytokines due to the neurological insults caused by Aβ plaques and NFTs, eventually leading to synaptic dysfunction and neuronal death. This review will report the failures and side effects of many anti-Aβ drugs. In addition, emerging treatments targeting neuroinflammation in AD, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and receptor-interacting serine/threonine protein kinase 1 (RIPK1), that restore calcium dyshomeostasis and microglia physiological function in clearing Aβ plaques, respectively, will be deliberately discussed. Other novel pharmacotherapy strategies in treating AD, including disease-modifying agents (DMTs), repurposing of medications used to treat non-AD illnesses, and multi target-directed ligands (MTDLs) are also reviewed. These approaches open new doors to the development of AD therapy, especially combination therapy that can cater for several targets simultaneously, hence effectively slowing or stopping AD.
Collapse
Affiliation(s)
- Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Glycofood Sdn Bhd, Selangor, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
D-Serine, the Shape-Shifting NMDA Receptor Co-agonist. Neurochem Res 2020; 45:1344-1353. [PMID: 32189130 DOI: 10.1007/s11064-020-03014-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022]
Abstract
Shape-shifting, a phenomenon wide-spread in folklore, refers to the ability to physically change from one identity to another, typically from an innocuous entity to a destructive one. The amino acid D-serine over the last 25 years has "shape-shifted" into several identities: a purported glial transmitter activating N-methyl-D-aspartate receptors (NMDARs), a co-transmitter concentrated in excitatory glutamatergic neurons, an autocrine that is released at dendritic spines to prime their post-synaptic NMDARs for an instantaneous response to glutamate and an excitotoxic moiety released from inflammatory (A1) astrocytes. This article will review evidence in support of these scenarios and the artifacts that misled investigators of the true identity of D-serine.
Collapse
|
39
|
Eckert GP, Eckert SH, Eckmann J, Hagl S, Muller WE, Friedland K. Olesoxime improves cerebral mitochondrial dysfunction and enhances Aβ levels in preclinical models of Alzheimer's disease. Exp Neurol 2020; 329:113286. [PMID: 32199815 DOI: 10.1016/j.expneurol.2020.113286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Approved drugs for Alzheimer's disease (AD) only have a symptomatic effects and do not intervene causally in the course of the disease. Olesoxime (TRO19622) has been tested in AD disease models characterized by improved amyloid precursor protein processing (AβPP) and mitochondrial dysfunction. METHODS Three months old Thy-1-AβPPSL (tg) and wild type mice (wt) received TRO19622 (100 mg/kg b.w.) in supplemented food pellets for 15 weeks (tg TRO19622). Mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) levels were determined in dissociated brain cells (DBC). Respiration was analyzed in mitochondria isolated from brain tissue. Citrate synthase (CS) activity and beta-amyloid peptide (Aβ1-40) levels were determined in brain tissue. Malondialdehyde (MDA) levels were determined as an indicator for lipid peroxidation. DBC and brain homogenates were additionally stressed with Rotenone and FeCl2, respectively. Mitochondrial respiration and Aβ1-40 levels were also determined in HEK-AβPPsw-cells. RESULTS Treatment of mice did not affect the body weight. TRO19622 was absorbed after oral treatment (plasma levels: 6,2 μg/ml). Mitochondrial respiration was significantly reduced in brains of tg-mice. Subsequently, DBC isolated from brains of tg-mice showed significantly lower MMP but not ATP levels. TRO19622 increased the activity of respiratory chain complexes and reversed complex IV (CIV) activity and MMP. Moreover, DBC isolated from brains of tg TRO19622 mice were protected from Rotenone induced inhibition of complex I activity. TRO19622 also increased the respiratory activity in HEKsw-cells. MDA basal levels were significantly higher in brain homogenates isolated from tg-mice. TRO19622 treatment had no effects on lipid peroxidation. TRO19622 increased cholesterol levels but did not change membrane fluidity of synaptosomal plasma and mitochondrial membranes isolated from brain of mice. TRO19622 significantly increased levels of Aβ1-40 in both, in brains of tg TRO19622 mice and in HEKsw cells. CONCLUSIONS TRO19622 improves mitochondrial dysfunction but enhances Aβ levels in disease models of AD. Further studies must evaluate whether TRO19622 offers benefits at the mitochondrial level despite the increased formation of Aβ, which could be harmful.
Collapse
Affiliation(s)
- Gunter P Eckert
- Institute of Nutritional Sciences, Justus-Liebig-University, Giessen, Germany.
| | - Schamim H Eckert
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Janett Eckmann
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Stephanie Hagl
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Walter E Muller
- Institute of Pharmacology, Goethe University, Frankfurt, Germany
| | - Kristina Friedland
- Institute of Pharmacology, Johannes-Gutenberg University, Mainz, Germany
| |
Collapse
|
40
|
Enhancing α-secretase Processing for Alzheimer's Disease-A View on SFRP1. Brain Sci 2020; 10:brainsci10020122. [PMID: 32098349 PMCID: PMC7071437 DOI: 10.3390/brainsci10020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Amyloid β (Aβ) peptides generated via sequential β- and γ-secretase processing of the amyloid precursor protein (APP) are major etiopathological agents of Alzheimer's disease (AD). However, an initial APP cleavage by an α-secretase, such as the a disintegrin and metalloproteinase domain-containing protein ADAM10, precludes β-secretase cleavage and leads to APP processing that does not produce Aβ. The latter appears to underlie the disease symptom-attenuating effects of a multitude of experimental therapeutics in AD animal models. Recent work has indicated that an endogenous inhibitor of ADAM10, secreted-frizzled-related protein 1 (SFRP1), is elevated in human AD brains and associated with amyloid plaques in mouse AD models. Importantly, genetic or functional attenuation of SFRP1 lowered Aβ accumulation and improved AD-related histopathological and neurological traits. Given SFRP1's well-known activity in attenuating Wnt signaling, which is also commonly impaired in AD, SFRP1 appears to be a promising therapeutic target for AD. This idea, however, needs to be addressed with care because of cancer enhancement potentials resulting from a systemic loss of SFRP1 activity, as well as an upregulation of ADAM10 activity. In this focused review, I shall discuss α-secretase-effected APP processing in AD with a focus on SFRP1, and explore the contrasting perspectives arising from the recent findings.
Collapse
|
41
|
Martins N, Heleno SA, Ferreira ICFR. An Upcoming Approach to Alzheimer's Disease: Ethnopharmacological Potential of Plant Bioactive Molecules. Curr Med Chem 2020; 27:4344-4371. [PMID: 32072889 DOI: 10.2174/0929867327666200219120806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders have achieved epidemic levels in the last decades; not only the elderly but also adult individuals have been increasingly affected. Among them, Alzheimer's disease is one of the most prevalent and crippling diseases, associated with high rates of multi-morbidities and dependency. Despite the existence of a wide variety of drugs used as the symptomatic treatment, they have some side effects and toxicity, apart from their limited effectiveness. Botanical preparations have a secular use, being widely recommended for a multitude of purposes, such as for the improvement of brain health. OBJECTIVE The aim of the present report is to systematize the knowledge on plant-food derived bioactive molecules with promising in vitro enzymatic inhibitory activities. RESULTS Alkaloids, phenolic compounds and terpenes are the most studied phytochemicals, both derived from natural and commercial sources. In spite of their efficient activity as enzymatic inhibitors, the number of in vivo studies and even clinical trials have confirmed that their real bioactive potential remains scarce. CONCLUSION Thus, it is of the utmost importance to deepen knowledge in this area, once those relevant and informative tools can significantly contribute to the promising advances in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Natália Martins
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Sandrina A Heleno
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| |
Collapse
|
42
|
Wolfe MS. Unraveling the complexity of γ-secretase. Semin Cell Dev Biol 2020; 105:3-11. [PMID: 31980377 PMCID: PMC7371508 DOI: 10.1016/j.semcdb.2020.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
γ-Secretase was initially defined as a proteolytic activity that cleaves within the transmembrane of the amyloid precursor protein (APP) to produce the amyloid β-peptide of Alzheimer's disease. The discovery of mutations in APP and the presenilins associated with familial Alzheimer's disease and their effects on APP processing dovetailed with pharmacological studies on γ-secretase, leading to the revelation that presenilins are unprecedented membrane-embedded aspartyl proteases. Other members of what became known as the γ-secretase complex were subsequently identified. In parallel with these advances, connections between presenilins and Notch receptors essential to metazoan development became evident, resulting in the concurrent realization that γ-secretase also carries out intramembrane proteolysis of Notch as part of its signaling mechanism. Substantial progress has been made toward elucidating how γ-secretase carries out complex processing of transmembrane domains, how it goes awry in familial Alzheimer's disease, the scope of its substrates, and the atomic details of its structure. Critical questions remain for future study, toward further unraveling the complexity of this unique membrane-embedded proteolytic machine and its roles in biology and disease.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
43
|
Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer's disease. Eur J Pharm Biopharm 2020; 148:38-53. [PMID: 31926222 DOI: 10.1016/j.ejpb.2019.12.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Since health care systems dedicate substantial resources to Alzheimer's disease (AD), it poses an increasing challenge to scientists and health care providers worldwide, especially that many decades of research in the medical field revealed no optimal effective treatment for this disease. The intranasal administration route seems to be a preferable route of anti-AD drug delivery over the oral one as it demonstrates an ability to overcome the related obstacles reflected in low bioavailability, limited brain exposure and undesired pharmacokinetics or side effects. This delivery route can bypass the systemic circulation through the intraneuronal and extraneuronal pathways, providing truly needleless and direct brain drug delivery of the therapeutics due to its large surface area, porous endothelial membrane, the avoidance of the first-pass metabolism, and ready accessibility. Among the different nano-carrier systems developed, lipid-based nanosystems have become increasingly popular and have proven to be effective in managing the common symptoms of AD when administered via the nose-to-brain delivery route, which provides an answer to circumventing the BBB. The design of such lipid-based nanocarriers could be challenging since many factors can contribute to the quality of the final product. Hence, according to the authors, it is recommended to follow the quality by design methodology from the early stage of development to ensure high product quality while saving efforts and costs. This review article aims to draw attention to the up-to-date findings in the field of lipid-based nanosystems and the potential role of developing such forms in the management of AD by means of the nose-to-brain delivery route, in addition to highlighting the significant role of applying QbD methodology in this development.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| |
Collapse
|
44
|
Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:1106-1125. [PMID: 32484110 PMCID: PMC7709159 DOI: 10.2174/1570159x18666200528142429] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The only conclusive way to diagnose Alzheimer's is to carry out brain autopsy of the patient's brain tissue and ascertain whether the subject had Alzheimer's or any other form of dementia. However, due to the non-feasibility of such methods, to diagnose and conclude the conditions, medical practitioners use tests that examine a patient's mental ability. OBJECTIVE Accurate diagnosis at an early stage is the need of the hour for initiation of therapy. The cause for most Alzheimer's cases still remains unknown except where genetic distinctions have been observed. Thus, a standard drug regimen ensues in every Alzheimer's patient, irrespective of the cause, which may not always be beneficial in halting or reversing the disease progression. To provide a better life to such patients by suppressing existing symptoms, early diagnosis, curative therapy, site-specific delivery of drugs, and application of hyphenated methods like artificial intelligence need to be brought into the main field of Alzheimer's therapeutics. METHODS In this review, we have compiled existing hypotheses to explain the cause of the disease, and highlighted gene therapy, immunotherapy, peptidomimetics, metal chelators, probiotics and quantum dots as advancements in the existing strategies to manage Alzheimer's. CONCLUSION Biomarkers, brain-imaging, and theranostics, along with artificial intelligence, are understood to be the future of the management of Alzheimer's.
Collapse
Affiliation(s)
- Sahil Khan
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| | - Kalyani H. Barve
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| | - Maushmi S. Kumar
- SVKM’S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle West, Mumbai-400056, India
| |
Collapse
|
45
|
Chen Y, Gao X, Liu Q, Zeng L, Zhang K, Mu K, Zhang D, Zou H, Wu N, Ou J, Wang Q, Mao S. Alpha-asarone improves cognitive function of aged rats by alleviating neuronal excitotoxicity via GABAA receptors. Neuropharmacology 2020; 162:107843. [DOI: 10.1016/j.neuropharm.2019.107843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
|
46
|
Park YH, Hodges A, Risacher SL, Lin K, Jang JW, Ahn S, Kim S, Lovestone S, Simmons A, Weiner MW, Saykin AJ, Nho K. Dysregulated Fc gamma receptor-mediated phagocytosis pathway in Alzheimer's disease: network-based gene expression analysis. Neurobiol Aging 2019; 88:24-32. [PMID: 31901293 DOI: 10.1016/j.neurobiolaging.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Transcriptomics has become an important tool for identification of biological pathways dysregulated in Alzheimer's disease (AD). We performed a network-based gene expression analysis of blood-based microarray gene expression profiles using 2 independent cohorts, Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 661) and AddNeuroMed (N = 674). Weighted gene coexpression network analysis identified 17 modules from ADNI and 13 from AddNeuroMed. Four of the modules derived in ADNI were significantly related to AD; 5 modules in AddNeuroMed were significant. Gene-set enrichment analysis of the AD-related modules identified and replicated 3 biological pathways including the Fc gamma receptor-mediated phagocytosis pathway. Module-based association analysis showed the AD-related module, which has the 3 pathways, to be associated with cognitive function and neuroimaging biomarkers. Gene-based association analysis identified PRKCD in the Fc gamma receptor-mediated phagocytosis pathway as being significantly associated with cognitive function and cerebrospinal fluid biomarkers. The identification of the Fc gamma receptor-mediated phagocytosis pathway implicates the peripheral innate immune system in the pathophysiology of AD. PRKCD is known to be related to neurodegeneration induced by amyloid-β.
Collapse
Affiliation(s)
- Young Ho Park
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Angela Hodges
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kuang Lin
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Soyeon Ahn
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | | | - Andrew Simmons
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, CA, USA; Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
47
|
Abstract
Next to cancer, Alzheimer's disease (AD) and dementia is probably the most worrying health problem facing the Western world today. A large number of clinical trials have failed to show any benefit of the tested drugs in stabilizing or reversing the steady decline in cognitive function that is suffered by dementia patients. Although the pathological features of AD consisting of beta-amyloid plaques and tau tangles are well established, considerable debate exists concerning the genetic or lifestyle factors that predispose individuals to developing dementia. Photobiomodulation (PBM) describes the therapeutic use of red or near-infrared light to stimulate healing, relieve pain and inflammation, and prevent tissue from dying. In recent years PBM has been applied for a diverse range of brain disorders, frequently applied in a non-invasive manner by shining light on the head (transcranial PBM). The present review discusses the mechanisms of action of tPBM in the brain, and summarizes studies that have used tPBM to treat animal models of AD. The results of a limited number of clinical trials that have used tPBM to treat patients with AD and dementia are discussed.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Qin Q, Li Y. Herpesviral infections and antimicrobial protection for Alzheimer's disease: Implications for prevention and treatment. J Med Virol 2019; 91:1368-1377. [PMID: 30997676 DOI: 10.1002/jmv.25481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
Abstract
Accumulating evidence suggests that infections by herpesviruses might be closely linked to Alzheimer's disease (AD). Pathological hallmarks of AD brains include senile plaques induced by amyloid β peptide (Aβ) in the extracellular space and intracellular neurofibrillary tangles (NFTs) consisting of phosphorylated tau protein. The prevailing hypothesis for the mechanism of AD is amyloid cascade reaction. Recent studies revealed that infections by herpesviruses induce the similar pathological hallmarks of AD, including Aβ production, phosphorylation of tau (P-tau), oxidative stress, neuroinflammation, etc. Aβ peptide is regarded as one of the antimicrobial peptides, which inhibits HSV-1 replication. In the elderly, reactivation of herpesviruses might act as an initiator for amyloid cascade reaction in vulnerable individuals, triggering the neurofibrillary formation of phosphorylated tau and inducing oxidative stress and neuroinflammation, which can further contribute to the accumulation of Aβ and P-tau by impairing mitochondria and autophagosome. Epidemiological studies have shown AD susceptibility genes, such as APOE-ε4 allele, are highly linked to infections by herpesviruses. Interestingly, anti-herpesviral therapy significantly reduced the risk of AD in a large population study. Given that herpesviruses are arguably the most prevalent opportunistic pathogens and often reactivate in the elderly, it is reasonable to argue reactivation of herpesviruses might be major culprits for initiating AD in individuals carrying AD susceptibility genes. In this review, we summarize epidemiological and molecular evidence that support for a hypothesis of herpesviral infections and antimicrobial protection in the development of AD, and discuss the implications for future prevention and treatment of the disease.
Collapse
Affiliation(s)
- Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Li
- Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China
- Mental Health Center, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
49
|
Forest KH, Nichols RA. Assessing Neuroprotective Agents for Aβ-Induced Neurotoxicity. Trends Mol Med 2019; 25:685-695. [DOI: 10.1016/j.molmed.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
|
50
|
Rodríguez-Soacha DA, Scheiner M, Decker M. Multi-target-directed-ligands acting as enzyme inhibitors and receptor ligands. Eur J Med Chem 2019; 180:690-706. [PMID: 31401465 DOI: 10.1016/j.ejmech.2019.07.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
Abstract
In this review, we present the latest advances in the field of multi-target-directed ligand (MTDL) design for the treatment of various complex pathologies of multifactorial origin. In particular, latest findings in the field of MTDL design targeting both an enzyme and a receptor are presented for different diseases such as Alzheimer's disease (AD), depression, addiction, glaucoma, non-alcoholic steatohepatitis and pain and inflammation. The ethology of the diseases is briefly described, with special emphasis on how the MTDL can evolve into novel therapies that replace the classic pharmacological dogma "one target one disease". Considering the current needs for therapy adherence improvement, it is exposed as from the medicinal chemistry, different molecular scaffolds are studied. With the use of structure activity relationship studies and molecular optimization, new hybrid molecules are generated with improved biological properties acting at two biologically very distinct targets.
Collapse
Affiliation(s)
- Diego Alejandro Rodríguez-Soacha
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|