1
|
Shannon A, Chazot A, Feracci M, Falcou C, Fattorini V, Selisko B, Good S, Moussa A, Sommadossi JP, Ferron F, Alvarez K, Canard B. An exonuclease-resistant chain-terminating nucleotide analogue targeting the SARS-CoV-2 replicase complex. Nucleic Acids Res 2024; 52:1325-1340. [PMID: 38096103 PMCID: PMC10853775 DOI: 10.1093/nar/gkad1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis. For Coronaviruses, natural resistance to NAs is provided by a viral 3'-to-5' exonuclease heterodimer nsp14/nsp10, which can remove terminal analogues. Here, we show that the replacement of the α-phosphate of Bemnifosbuvir 5'-triphosphate form (AT-9010) by an α-thiophosphate renders it resistant to excision. The resulting α-thiotriphosphate, AT-9052, exists as two epimers (RP/SP). Through co-crystallization and activity assays, we show that the Sp isomer is preferentially used as a substrate by nucleotide diphosphate kinase (NDPK), and by SARS-CoV-2 nsp12, where its incorporation causes immediate chain-termination. The same -Sp isomer, once incorporated by nsp12, is also totally resistant to the excision by nsp10/nsp14 complex. However, unlike AT-9010, AT-9052-RP/SP no longer inhibits the N-terminal nucleotidylation domain of nsp12. We conclude that AT-9052-Sp exhibits a unique mechanism of action against SARS-CoV-2. Moreover, the thio modification provides a general approach to rescue existing NAs whose activity is hampered by coronavirus proofreading capacity.
Collapse
Affiliation(s)
- Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Aurélie Chazot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Mikael Feracci
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Camille Falcou
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Véronique Fattorini
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Steven Good
- ATEA Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA 02110, USA
| | - Adel Moussa
- ATEA Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA 02110, USA
| | | | - François Ferron
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Karine Alvarez
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
2
|
Dillenburg M, Smith J, Wagner CR. The Many Faces of Histidine Triad Nucleotide Binding Protein 1 (HINT1). ACS Pharmacol Transl Sci 2023; 6:1310-1322. [PMID: 37854629 PMCID: PMC10580397 DOI: 10.1021/acsptsci.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 10/20/2023]
Abstract
The histidine triad nucleotide binding protein 1 (HINT1) is a nucleoside phosphoramidase that has garnered interest due to its widespread expression and participation in a broad range of biological processes. Herein, we discuss the role of HINT1 as a regulator of several CNS functions, tumor suppressor, and mast cell activator via its interactions with multiple G-protein-coupled receptors and transcription factors. Importantly, altered HINT1 expression and mutation are connected to the progression of multiple disease states, including several neuropsychiatric disorders, peripheral neuropathy, and tumorigenesis. Additionally, due to its involvement in the activation of several clinically used phosphoramidate prodrugs, tremendous efforts have been made to better understand the interactions behind nucleoside binding and phosphoramidate hydrolysis by HINT1. We detail the substrate specificity and catalytic mechanism of HINT1 hydrolysis, while highlighting the structural biology behind these efforts. The aim of this review is to summarize the multitude of biological and pharmacological functions in which HINT1 participates while addressing the areas of need for future research.
Collapse
Affiliation(s)
- Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob Smith
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Krakowiak A, Pietrasik S. New Insights into Oxidative and Reductive Stress Responses and Their Relation to the Anticancer Activity of Selenium-Containing Compounds as Hydrogen Selenide Donors. BIOLOGY 2023; 12:875. [PMID: 37372159 DOI: 10.3390/biology12060875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Redox balance is important for the homeostasis of normal cells, but also for the proliferation, progression, and survival of cancer cells. Both oxidative and reductive stress can be harmful to cells. In contrast to oxidative stress, reductive stress and the therapeutic opportunities underlying the mechanisms of reductive stress in cancer, as well as how cancer cells respond to reductive stress, have received little attention and are not as well characterized. Therefore, there is recent interest in understanding how selective induction of reductive stress may influence therapeutic treatment and disease progression in cancer. There is also the question of how cancer cells respond to reductive stress. Selenium compounds have been shown to have chemotherapeutic effects against cancer, and their anticancer mechanism is thought to be related to the formation of their metabolites, including hydrogen selenide (H2Se), which is a highly reactive and reducing molecule. Here, we highlight recent reports on the molecular mechanism of how cells recognize and respond to oxidative and reductive stress (1) and the mechanisms through which different types of selenium compounds can generate H2Se (2) and thus selectively affect reductive stress under controlled conditions, which may be important for their anticancer effects.
Collapse
Affiliation(s)
- Agnieszka Krakowiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Sylwia Pietrasik
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
4
|
Krakowiak A, Czernek L, Pichlak M, Kaczmarek R. Intracellular HINT1-Assisted Hydrolysis of Nucleoside 5'- O-Selenophosphate Leads to the Release of Hydrogen Selenide That Exhibits Toxic Effects in Human Cervical Cancer Cells. Int J Mol Sci 2022; 23:ijms23020607. [PMID: 35054788 PMCID: PMC8775712 DOI: 10.3390/ijms23020607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/20/2022] Open
Abstract
In this study, we present a new selenium derivative, 2′-deoxyguanosine-5′-O-selenophosphate (dGMPSe), synthesized by the oxathiaphospholane method and adapted here for the synthesis of nucleoside selenophosphates. Using biochemical assays (HPLC- and fluorescence-based), we investigated the enzymatic activity of HINT1 towards dGMPSe in comparison with the corresponding thiophosphate nucleoside, i.e., dGMPS. Both substrates showed similar kcat and a small difference in Km, and during the reactions the release of reducing agents such as H2Se and H2S were expected and detected. MTT viability assay and microscopic analysis showed that dGMPSe was toxic to HeLa cancer cells, and this cytotoxicity was due to the release of H2Se. The release of H2Se or H2S in the living cells after administration of dGMPSe and/or dGMPS, both without carrier and by electroporation, was observed using a fluorescence assay, as previously for NMPS. In conclusion, our comparative experiments with dGMPSe and dGMPS indicate that the HINT1 enzyme is capable of converting (d)NMPSe to (d)NMP and H2Se, both in vitro and intracellularly. Since the anticancer activity of various selenium compounds depends on the formation of hydrogen selenide, the actual inducer of cell death, we propose that selenium-containing nucleotides represent another option as novel compounds with anticancer therapeutic potential.
Collapse
|
5
|
Dolot R, Krakowiak A, Kaczmarek R, Włodarczyk A, Pichlak M, Nawrot B. Biochemical, crystallographic and biophysical characterization of histidine triad nucleotide-binding protein 2 with different ligands including a non-hydrolyzable analog of Ap4A. Biochim Biophys Acta Gen Subj 2021; 1865:129968. [PMID: 34329705 DOI: 10.1016/j.bbagen.2021.129968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Human HINT2 is an important mitochondrial enzyme involved in many processes such as apoptosis and bioenergetics, but its endogenous substrates and the three-dimensional structure of the full-length protein have not been identified yet. METHODS An HPLC assay was used to test the hydrolytic activity of HINT2 against various adenosine, guanosine, and 2'-deoxyguanosine derivatives containing phosphate bonds of different types and different leaving groups. Data on binding affinity were obtained by microscale thermophoresis (MST). Crystal structures of HINT2, in its apo form and with a dGMP ligand, were resolved to atomic resolution. RESULTS HINT2 substrate specificity was similar to that of HINT1, but with the major exception of remarkable discrimination against substrates lacking the 2'-hydroxyl group. The biochemical results were consistent with binding affinity measurements. They showed a similar binding strength of AMP and GMP to HINT2, and much weaker binding of dGMP, in contrast to HINT1. A non-hydrolyzable analog of Ap4A (JB419) interacted with both proteins with similar Kd and Ap4A is the signaling molecule that can interact with hHINT1 and regulate the activity of some transcription factors. CONCLUSIONS Several forms of homo- and heterodimers of different lengths of N-terminally truncated polypeptides resulting from degradation of the full-length protein were described. Ser144 in HINT2 appeared to be functionally equivalent to Ser107 in HINT1 by supporting the protonation of the leaving group in the hydrolytic mechanism of HINT2. SIGNIFICANCE Our results should be considered in future studies on the natural function of HINT2 and its role in nucleotide prodrug processing.
Collapse
Affiliation(s)
- Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Renata Kaczmarek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Artur Włodarczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Marta Pichlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|