1
|
Rahmati M, Moghtaderi H, Mohammadi S, Al-Harrasi A. Aryl hydrocarbon receptor dynamics in esophageal squamous cell carcinoma: From immune modulation to therapeutic opportunities. World J Exp Med 2024; 14:96269. [PMID: 39312702 PMCID: PMC11372732 DOI: 10.5493/wjem.v14.i3.96269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/26/2024] [Accepted: 06/14/2024] [Indexed: 08/29/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a substantial global health burden. Immune escape mechanisms are important in ESCC progression, enabling cancer cells to escape the surveillance of the host immune system. One key player in this process is the Aryl Hydrocarbon Receptor (AhR), which influences multiple cellular processes, including proliferation, differentiation, metabolism, and immune regulation. Dysregulated AhR signaling participates in ESCC development by stimulating carcinogenesis, epithelial-mesenchymal transition, and immune escape. Targeting AhR signaling is a potential therapeutic approach for ESCC, with AhR ligands showing efficacy in preclinical studies. Additionally, modification of AhR ligands and combination therapies present new opportunities for therapeutic intervention. This review aims to address the knowledge gap related to the role of AhR signaling in ESCC pathogenesis and immune escape.
Collapse
Affiliation(s)
- Mina Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Tehran, Iran
| | - Hassan Moghtaderi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Ad Dakhiliyah, Oman
| | - Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Ad Dakhiliyah, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Ad Dakhiliyah, Oman
| |
Collapse
|
2
|
Engin AB, Engin A. Tryptophan Metabolism in Obesity: The Indoleamine 2,3-Dioxygenase-1 Activity and Therapeutic Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:629-655. [PMID: 39287867 DOI: 10.1007/978-3-031-63657-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-β in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
3
|
Malnick SDH, Ohayon Michael S. The Intestinal Microbiome and the Metabolic Syndrome-How Its Manipulation May Affect Metabolic-Associated Fatty Liver Disease (MAFLD). Curr Issues Mol Biol 2023; 45:7197-7211. [PMID: 37754239 PMCID: PMC10527723 DOI: 10.3390/cimb45090455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is now the predominant liver disease worldwide consequent to the epidemic of obesity. The intestinal microbiome (IM), consisting of the bacteria, fungi, archaea, and viruses residing in the gastrointestinal tract, plays an important role in human metabolism and preserving the epithelial barrier function. Disturbances in the IM have been shown to influence the development and progression of MAFLD and play a role in the development of metabolic syndrome (MS). The main treatment for MAFLD involves lifestyle changes, which also influence the IM. Manipulation of the IM by fecal microbial transplantation (FMT) has been approved for the treatment of recurrent Closteroides difficile infection. This may be administered by endoscopic administration from the lower or upper GI tract. Other methods of administration include nasogastric tube, enema, and oral capsules of stool from healthy donors. In this narrative review, we elaborate on the role of the IM in developing MS and MAFLD and on the current experience with IM modulation by FMT on MAFLD.
Collapse
Affiliation(s)
- Stephen D. H. Malnick
- Department of Internal Medicine C, Kaplan Medical Center, Rehovot 76100, Israel;
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Sheral Ohayon Michael
- Department of Internal Medicine C, Kaplan Medical Center, Rehovot 76100, Israel;
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| |
Collapse
|
4
|
Unexpected content of kynurenine in mother's milk and infant formulas. Sci Rep 2022; 12:6464. [PMID: 35440600 PMCID: PMC9018775 DOI: 10.1038/s41598-022-10075-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Mother's milk is widely recommended as complete food for the offspring in earliest postnatal time. However, the knowledge about detailed composition and the physiological role of bioactive components of breast milk is incomplete. Therefore, the aim of our study was to determine the content of kynurenine (KYN) in human breast milk during lactation and to explore the effects exerted by intragastric KYN administration from birth to weaning on physical and psychomotor development of adult rats. We found that KYN is consistently present in human milk and its content gradually increased from day 4 to 28 after delivery and that it is present in commercial baby formulas in amounts noticeably exceeding its physiological range. Animal studies showed that KYN supplementation resulted in a marked elevation of absorptive surface of rat intestine and in enhanced expression of both, aryl hydrocarbon receptor and G protein-coupled receptor 35 in the intestinal tissue in rats. Moreover, we discovered that KYN administration from birth to weaning resulted in neurobehavioral changes in adult rats. Therefore, we postulate that further research is required to thoroughly understand the function of KYN in early developmental stages of mammals and to ensure the safety of its presence in baby food products.
Collapse
|
5
|
Ajeh EA, Kayode OO, Omoregie IP. Comparative analysis of groundwater quality statuses and associated health risk indices of metals and total hydrocarbons at locations of tank farm in Delta State, Nigeria. Toxicol Rep 2022; 9:404-421. [PMID: 35299872 PMCID: PMC8920876 DOI: 10.1016/j.toxrep.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022] Open
Abstract
The study aimed at assessing the groundwater quality and the associated health implications of oil storage tank farms in Asaba, Oghara, Warri, and Koko towns, in Delta State, Nigeria. Fe, Cr, Cd, Ni, Pb, and V concentrations in the groundwater samples were determined using Atomic Absorption Spectrophotometry (AAS), while total hydrocarbons (THC) concentrations were determined using gas chromatography coupled with a flame ionization detector (GC-FID). The quality index of Warri groundwater was 66.38; being within the range of 51-75 was considered poor quality. The water quality indices (WQI) of Oghara, Koko, and Asaba were 163.79, 161.43, and 129.95 respectively, which were all > 100, hence amounting to very poor water quality status. Results indicated that children in Oghara who are orally exposed to chromium are at risk of cancer. Both adults and children orally exposed to THC in Oghara are also at risk of cancer. Furthermore, THC posed an oral route cancer risk to the children in Koko town. The study showed that chromium posed carcinogenic threats to children in Oghara, while THC posed carcinogenic threats to adults and children in Oghara and children alone in Koko. These risks are liable to be mediated through ingestion of the groundwater of Oghara and Koko by the susceptible groups.
Collapse
Key Words
- CDI, Chronic daily intake
- CRI, Cancer risk index
- Carcinogenic
- DACR, Dermal-associated cancer risk
- Groundwater
- HQ, Harzard quotient
- Health risk
- IACR, Ingestion-associated cancer risk
- LOD, Limit of detection
- LOQ, Limit of quantification
- ORCR, Oral route cancer risk
- Oil exploration
- PCA, Principal component analysis
- SF, Slope factor
- THC, Total hydrocarbons
- Water quality index
Collapse
Affiliation(s)
- Enuneku Alex Ajeh
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria
| | - Odeniyi Olalere Kayode
- Ecotoxicology and Environmental Forensics Laboratory, University of Benin, PMB 1154, Benin City, Nigeria
| | - Isibor Patrick Omoregie
- Department of Biological Sciences, College of Science and Technology, Covenant University, PMB 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
6
|
Tryptophan Metabolism in Bipolar Disorder in a Longitudinal Setting. Antioxidants (Basel) 2021; 10:antiox10111795. [PMID: 34829665 PMCID: PMC8615217 DOI: 10.3390/antiox10111795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Immune-mediated inflammatory processes and oxidative stress are involved in the aetiopathogenesis of bipolar disorder (BD) and weight-associated comorbidities. Tryptophan breakdown via indoleamine 2,3-dioxygenase-1 (IDO-1) along the kynurenine axis concomitant with a pro-inflammatory state was found to be more active in BD, and associated with overweight/obesity. This study aimed to investigate tryptophan metabolism in BD compared to controls (C), stratified by weight classes, in a longitudinal setting, dependent on the incidence of BD episodes. Peripheral tryptophan, kynurenine, and neopterin were assessed in the serum of 226 BD individuals and 142 C. Three samples in a longitudinal assessment were used for 75 BD individuals. Results showed a higher kynurenine/tryptophan in both BD compared to C and overweight compared to normal weight persons. Levels remained stable over time. In the longitudinal course, no differences were found between individuals who were constantly euthymic or not, or who had an illness episode or had none. Findings indicate that tryptophan, kynurenine, and IDO-1 activity may play a role in pathophysiology in BD but are not necessarily associated with clinical manifestations. Accelerated tryptophan breakdown along the kynurenine axis may be facilitated by being overweight. This may increase the risk of accumulation of neurotoxic metabolites, impacting BD symptomatology, cognition, and somatic comorbidities.
Collapse
|
7
|
Liu M, Shi Z, Yin Y, Wang Y, Mu N, Li C, Ma H, Wang Q. Particulate matter 2.5 triggers airway inflammation and bronchial hyperresponsiveness in mice by activating the SIRT2-p65 pathway. Front Med 2021; 15:750-766. [PMID: 34181194 DOI: 10.1007/s11684-021-0839-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Exposure to particulate matter 2.5 (PM2.5) potentially triggers airway inflammation by activating nuclear factor-κB (NF-κB). Sirtuin 2 (SIRT2) is a key modulator in inflammation. However, the function and specific mechanisms of SIRT2 in PM2.5-induced airway inflammation are largely understudied. Therefore, this work investigated the mechanisms of SIRT2 in regulating the phosphorylation and acetylation of p65 influenced by PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Results revealed that PM2.5 exposure lowered the expression and activity of SIRT2 in bronchial tissues. Subsequently, SIRT2 impairment promoted the phosphorylation and acetylation of p65 and activated the NF-κB signaling pathway. The activation of p65 triggered airway inflammation, increment of mucus secretion by goblet cells, and acceleration of tracheal stenosis. Meanwhile, p65 phosphorylation and acetylation, airway inflammation, and bronchial hyperresponsiveness were deteriorated in SIRT2 knockout mice exposed to PM2.5. Triptolide (a specific p65 inhibitor) reversed p65 activation and ameliorated PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Our findings provide novel insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure. Triptolide inhibition of p65 phosphorylation and acetylation could be an effective therapeutic approach in averting PM2.5-induced airway inflammation and bronchial hyperresponsiveness.
Collapse
Affiliation(s)
- Manling Liu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaoling Shi
- Department of Pediatrics, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Qiong Wang
- Department of Cardiovascular Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Treating the Metabolic Syndrome by Fecal Transplantation-Current Status. BIOLOGY 2021; 10:biology10050447. [PMID: 34065241 PMCID: PMC8161223 DOI: 10.3390/biology10050447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
The intestinal microbiome (IM) is important for normal gastrointestinal (GI) and other organ systems' functioning. An alteration in the normal IM, dysbiosis, and changes in intestinal motility result in microorganisms' overgrowth and an alteration in intestinal permeability. The gut-brain axis is also of importance in the irritable bowel syndrome (IBS) and associated bowel overgrowth. Secondary to the epidemic of obesity, the metabolic syndrome has become a major health problem. Disturbances in the fecal microbiome are associated with the metabolic syndrome. Metabolic-associated fatty liver disease (MAFLD) is now the current terminology for non-alcoholic fatty liver disease. IM alteration by fecal transplantation is an approved treatment method for recurrent Clostridioides difficile infection. Initially performed by either duodenal infusion or colonoscopy, it is now easily performed by the administration of capsules containing stools. We discuss the intestinal microbiome-its composition, as well as the qualitative changes of microbiome composition leading to inflammation. In addition, we discuss the evidence of the effect of fecal transplantation on the metabolic syndrome and MAFLD, as well as its clinical indications.
Collapse
|
9
|
Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, Ro S. Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. J Neurogastroenterol Motil 2021; 27:19-34. [PMID: 33166939 PMCID: PMC7786094 DOI: 10.5056/jnm20149] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Of all microorganisms in the human body, the largest and most complex population resides in the gastrointestinal (GI) tract. The gut microbiota continuously adapts to the host environment and serves multiple critical functions for their hosts, including regulating host immunity, procuring energy from food, and preventing the colonization of pathogens. Mounting evidence has suggested gut microbial imbalance (dysbiosis) as a core pathophysiology in the development of GI motility and metabolic disorders, such as irritable bowel syndrome and diabetes. Current research has focused on discovering associations between these disorders and gut microbial dysbiosis; however, whether these associations are a consequence or cause is still mostly unexplored. State-of-the-art studies have investigated how gut microbes communicate with our body systems through microbiota-derived metabolites and how they are able to modulate host physiology. There is now mounting evidence that alterations in the composition of small intestinal microbes have an association with GI dysmotility and metabolic disorders. Although treatment options for gut microbial dysbiosis are currently limited, antibiotics, fecal microbiota transplantation, probiotics, and dietary interventions are currently the best options. However, treatment with broad-spectrum antibiotics has been viewed with skepticism due to the risk of developing antibiotic resistant bacteria. Studies are warranted to elucidate the cellular and molecular pathways underlying gut microbiota-host crosstalk and for the development of a powerful platform for future therapeutic approaches. Here, we review recent literature on gut microbial alterations and/or interactions involved in the pathophysiology of GI dysmotility and metabolic disorders.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Hannah Zogg
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Singh Rajender
- Department of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
10
|
Selmi-Ruby S, Marín-Sáez J, Fildier A, Buleté A, Abdallah M, Garcia J, Deverchère J, Spinner L, Giroud B, Ibanez S, Granjon T, Bardel C, Puisieux A, Fervers B, Vulliet E, Payen L, Vigneron AM. In Vivo Characterization of the Toxicological Properties of DPhP, One of the Main Degradation Products of Aryl Phosphate Esters. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127006. [PMID: 33296241 PMCID: PMC7725437 DOI: 10.1289/ehp6826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Aryl phosphate esters (APEs) are widely used and commonly present in the environment. Health hazards associated with these compounds remain largely unknown and the effects of diphenyl phosphate (DPhP), one of their most frequent derivatives, are poorly characterized. OBJECTIVE Our aim was to investigate whether DPhP per se may represent a more relevant marker of exposure to APEs than direct assessment of their concentration and determine its potential deleterious biological effects in chronically exposed mice. METHODS Conventional animals (FVB mice) were acutely or chronically exposed to relevant doses of DPhP or to triphenyl phosphate (TPhP), one of its main precursors. Both molecules were measured in blood and other tissues by liquid chromatography-mass spectrometry (LC-MS). Effects of chronic DPhP exposure were addressed through liver multi-omics analysis to determine the corresponding metabolic profile. Deep statistical exploration was performed to extract correlated information, guiding further physiological analyses. RESULTS Multi-omics analysis confirmed the existence of biological effects of DPhP, even at a very low dose of 0.1mg/mL in drinking water. Chemical structural homology and pathway mapping demonstrated a clear reduction of the fatty acid catabolic processes centered on acylcarnitine and mitochondrial β-oxidation in mice exposed to DPhP in comparison with those treated with vehicle. An interesting finding was that in mice exposed to DPhP, mRNA, expression of genes involved in lipid catabolic processes and regulated by peroxisome proliferator-activated receptor alpha (PPARα) was lower than that in vehicle-treated mice. Immunohistochemistry analysis showed a specific down-regulation of HMGCS2, a kernel target gene of PPARα. Overall, DPhP absorption disrupted body weight-gain processes. CONCLUSIONS Our results suggest that in mice, the effects of chronic exposure to DPhP, even at a low dose, are not negligible. Fatty acid metabolism in the liver is essential for controlling fast and feast periods, with adverse consequences on the overall physiology. Therefore, the impact of DPhP on circulating fat, cardiovascular pathologies and metabolic disease incidence deserves, in light of our results, further investigations. https://doi.org/10.1289/EHP6826.
Collapse
Affiliation(s)
- Samia Selmi-Ruby
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jesús Marín-Sáez
- Department of Chemistry and Physics, Analytical Chemistry Area, University of Almería, Research Centre for Agricultural and Food Biotechnology (BITAL), Agrifood Campus of International Excellence, Almería, Spain
| | - Aurélie Fildier
- CNRS, Institut des Sciences Analytiques, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Audrey Buleté
- CNRS, Institut des Sciences Analytiques, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Myriam Abdallah
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jessica Garcia
- Hospices Civils de Lyon, Centre Hospitalier Lyon–Sud, Biochemistry, Pharmacotoxicology, and Molecular Biology Department, Université de Lyon, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Julie Deverchère
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Loïc Spinner
- CNRS, Institut des Sciences Analytiques, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Barbara Giroud
- CNRS, Institut des Sciences Analytiques, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sébastien Ibanez
- CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Thierry Granjon
- CNRS, Molecular and Supramolecular Chemistry and Biochemistry Institute ICBMS UMR 5246, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Claire Bardel
- Department of Biostatistics, Hospices Civils de Lyon, Lyon, France
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Alain Puisieux
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Béatrice Fervers
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Emmanuelle Vulliet
- CNRS, Institut des Sciences Analytiques, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Léa Payen
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon–Sud, Biochemistry, Pharmacotoxicology, and Molecular Biology Department, Université de Lyon, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Arnaud M. Vigneron
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Bock KW. Aryl hydrocarbon receptor (AHR), integrating energy metabolism and microbial or obesity-mediated inflammation. Biochem Pharmacol 2020; 184:114346. [PMID: 33227291 DOI: 10.1016/j.bcp.2020.114346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Aryl hydrocarbon receptor (AHR) has been characterized as multifunctional sensor, integrator and ligand-activated transcription factor of the bHLH/PAS family. Regulation of inflammatory diseases and energy metabolism are among the putative functions of AHR. Challenges in AHR research include marked species differences, and cell, tissue and context dependence of AHR functions. The commentary is focused on AHR's role in the integration between energy expenditure and microbial and non-infectious inflammation, the latter exemplified by obesity-mediated nonalcoholic fatty liver disease. One of the mechanisms controlling energy-consuming inflammation is represented by a signalsome that is involved in retinoic acid-triggered neutrophil differentiation and regulation of the NADPH oxidase complex (NOX). Established signalsome components are AHR, CD38, multiple protein kinases and adaptors. To prevent chronic inflammatory diseases, the complex interplay between a range of inflammatory responses and energy expenditure must be precisely regulated. Surviving an infection requires both pathogen clearance and tissue protection from inflammatory damage. Defenses are energy-consuming anabolic programs. Therefore, anti-inflammatory, catabolic tolerance programs by metabolic reprogramming of macrophages have evolved. Therapeutic options of AHR agonists to reduce chronic inflammatory diseases are discussed.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
12
|
Bock KW. Aryl hydrocarbon receptor (AHR)-mediated inflammation and resolution: Non-genomic and genomic signaling. Biochem Pharmacol 2020; 182:114220. [PMID: 32941865 DOI: 10.1016/j.bcp.2020.114220] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
Inflammation, an old medical problem, is being recognized as an active, well orchestrated biological process. When dysregulated, chronic inflammation may ensue, leading to tissue-dependent diseases. Depending upon the ligand and cellular context, aryl hydrocarbon receptor (AHR) may accelerate or attenuate inflammation and subsequent resolution. Three examples are discussed in which AHR modulates inflammation by a mixture of genomic and non-genomic signaling pathways: (i) AHR-agonistic bacterial virulence factors are leading to both microbial defense and resolution of inflammatory responses. (ii) TCDD-mediated persistent AHR activation initially leads to inflammation by non-genomic signaling, and may potentially lead to chronic inflammation. (iii) AHR may modulate anti-inflammatory actions in obesity-mediated non-alcoholic fatty liver disease (NAFLD): Hepatic lipotoxicity triggers generation of danger-associated molecular patterns (DAMPs) that facilitate the development of hepatitis. AHR is mainly involved in the resolution phase by induction of lipoxin A4 and Il-22. Moderate AHR activation by phytochemicals and microbial AHR ligands may facilitate resolution. In control of inflammation, AHR appears to integrate environmental conditions with coordinated cellular functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
13
|
Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem 2020; 476:247-259. [PMID: 32918185 DOI: 10.1007/s11010-020-03901-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Nuclear factor-E2-related factor 2 (Nrf2) is a key transcription factor known to be involved in maintaining cell redox balance and signal transduction and plays central role in reducing intracellular oxidative stress damage, delaying cell senescence and preventing age-related diseases. However, it has been shown that the level of Nrf2 decreases with age and that the silencing of the Nrf2 gene is associated with the induction of premature senescence. Therefore, a plethora of researchers have focused on elucidating the regulatory mechanism of Nrf2 in the prevention of cell senescence. This complex regulatory mechanism of Nrf2 in the cell senescence process involves coordinated regulation of multiple signaling molecules. After summarizing the function of Nrf2 and its relationship with cell senescence pathway, this review focuses on the recent advances and progress made in elucidating the regulatory mechanism of Nrf2 in the cell senescence process. Additionally, the information collected here may provide insights for further research on Nrf2, in particular, on its regulatory mechanism in the cell senescence process.
Collapse
Affiliation(s)
- Huan Yuan
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
| | - Yan Xu
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China.,Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
| | - Yi Luo
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China.,Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
| | - Nuo-Xin Wang
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China.,Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China
| | - Jian-Hui Xiao
- Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China. .,Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People's Republic of China. .,Zunyi Municiptal Key Laboratory of Medicinal Biotechnology, Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563003, People's Republic of China.
| |
Collapse
|
14
|
Maes M, Anderson G, Betancort Medina SR, Seo M, Ojala JO. Integrating Autism Spectrum Disorder Pathophysiology: Mitochondria, Vitamin A, CD38, Oxytocin, Serotonin and Melatonergic Alterations in the Placenta and Gut. Curr Pharm Des 2020; 25:4405-4420. [PMID: 31682209 DOI: 10.2174/1381612825666191102165459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND A diverse array of data has been associated with autism spectrum disorder (ASD), reflecting the complexity of its pathophysiology as well as its heterogeneity. Two important hubs have emerged, the placenta/prenatal period and the postnatal gut, with alterations in mitochondria functioning crucial in both. METHODS Factors acting to regulate mitochondria functioning in ASD across development are reviewed in this article. RESULTS Decreased vitamin A, and its retinoic acid metabolites, lead to a decrease in CD38 and associated changes that underpin a wide array of data on the biological underpinnings of ASD, including decreased oxytocin, with relevance both prenatally and in the gut. Decreased sirtuins, poly-ADP ribose polymerase-driven decreases in nicotinamide adenine dinucleotide (NAD+), hyperserotonemia, decreased monoamine oxidase, alterations in 14-3-3 proteins, microRNA alterations, dysregulated aryl hydrocarbon receptor activity, suboptimal mitochondria functioning, and decreases in the melatonergic pathways are intimately linked to this. Many of the above processes may be modulating, or mediated by, alterations in mitochondria functioning. Other bodies of data associated with ASD may also be incorporated within these basic processes, including how ASD risk factors such as maternal obesity and preeclampsia, as well as more general prenatal stressors, modulate the likelihood of offspring ASD. CONCLUSION Such a mitochondria-focussed integrated model of the pathophysiology of ASD has important preventative and treatment implications.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | | - Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Johanna O Ojala
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Egusquiza RJ, Blumberg B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology 2020; 161:bqaa024. [PMID: 32067051 PMCID: PMC7060764 DOI: 10.1210/endocr/bqaa024] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022]
Abstract
The incidence of obesity has reached an all-time high, and this increase is observed worldwide. There is a growing need to understand all the factors that contribute to obesity to effectively treat and prevent it and associated comorbidities. The obesogen hypothesis proposes that there are chemicals in our environment termed obesogens that can affect individual susceptibility to obesity and thus help explain the recent large increases in obesity. This review discusses current advances in our understanding of how obesogens act to affect health and obesity susceptibility. Newly discovered obesogens and potential obesogens are discussed, together with future directions for research that may help to reduce the impact of these pervasive chemicals.
Collapse
Affiliation(s)
- Riann Jenay Egusquiza
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California
- Department of Biomedical Engineering, University of California Irvine, Irvine, California
| |
Collapse
|
16
|
Gaál Z, Csernoch L. Impact of Sirtuin Enzymes on the Altered Metabolic Phenotype of Malignantly Transformed Cells. Front Oncol 2020; 10:45. [PMID: 32117717 PMCID: PMC7033489 DOI: 10.3389/fonc.2020.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Sirtuins compose a unique collection of histone deacetylase enzymes that have a wide variety of enzymatic activities and regulate diverse cell functions such as cellular metabolism, longevity and energy homeostasis, mitochondrial function, and biogenesis. Impaired sirtuin functions or alterations of their expression levels may result in several pathological conditions and contribute to the altered metabolic phenotype of malignantly transformed cells in a significant manner. In the twenty-first century, principles of personalized anticancer treatment need to involve not only the evaluation of changes of the genetic material, but also the mapping of epigenetic and metabolic alterations, to both of which the contribution of sirtuin enzymes is fundamental. Since sirtuins are central players in the maintenance of cellular energy and metabolic homeostasis, they are key elements in the development of metabolic transformation of cancer cells referred to as the Warburg effect. Although its most well-known features are enhanced glycolysis and excessive lactate production, Warburg effect has several aspects involving both carbohydrate, lipid, and amino acid metabolism, among which different tumor types have different preferences. Therefore, energy supply of cancer cells can be impaired by a growing number of antimetabolite agents, for which appropriate vectors are strongly needed. However, data are controversial about their tumor suppressor or oncogenic properties, the biological effects of sirtuin enzymes strongly depend on the tissue microenvironment (TME) in which they are expressed. Immune cells are regarded as key players of TME. Sirtuins regulate the survival, activation, metabolism, and mitochondrial function of these cells, therefore, they are not only single elements, but key regulators of the network that determines anticancer immunity. Altered metabolism of tumor cells induces changes in the gene expression pattern of cells in TME, due to altered concentrations of metabolite cofactors of epigenetic modifiers including sirtuins. In summary, epigenetic and metabolic alterations in malignant diseases are influenced by sirtuins in a significant manner, and should be treated in a personalized approach. Since they often develop in early stages of cancer, broad examination of these alterations is required at time of the diagnosis in order to provide a personalized combination of distinct therapeutic agents.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Institute-Clinic of Pediatrics, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Tryptophan Metabolism Activates Aryl Hydrocarbon Receptor-Mediated Pathway To Promote HIV-1 Infection and Reactivation. mBio 2019; 10:mBio.02591-19. [PMID: 31848275 PMCID: PMC6918076 DOI: 10.1128/mbio.02591-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple cellular metabolic pathways are altered by HIV-1 infection, with an impact on immune activation, inflammation, and acquisition of non-AIDS comorbid diseases. The dysfunction of tryptophan (Trp) metabolism has been observed clinically in association with accelerated HIV-1 pathogenesis, but the underlying mechanism remains unknown. In this study, we demonstrated that the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, is activated by Trp metabolites to promote HIV-1 infection and reactivation. AHR directly binds to the HIV-1 5' long terminal repeat (5'-LTR) at the molecular level to activate viral transcription and infection, and AHR activation by Trp metabolites increases its nuclear translocation and association with the HIV 5'-LTR; moreover, the binding of AHR with HIV-1 Tat facilitates the recruitment of positive transcription factors to viral promoters. These findings not only elucidate a previously unappreciated mechanism through which cellular Trp metabolites affect HIV pathogenesis but also suggest that a downstream target AHR may be a potential target for modulating HIV-1 infection.IMPORTANCE Cellular metabolic pathways that are altered by HIV-1 infection may accelerate disease progression. Dysfunction in tryptophan (Trp) metabolism has been observed clinically in association with accelerated HIV-1 pathogenesis, but the mechanism responsible was not known. This study demonstrates that Trp metabolites augment the activation of aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, to promote HIV-1 infection and transcription. These findings not only elucidate a previously unappreciated mechanism through which cellular Trp metabolites affect HIV pathogenesis but also suggest that a downstream target AHR may be a potential target for modulating HIV-1 infection.
Collapse
|
18
|
Functions of aryl hydrocarbon receptor (AHR) and CD38 in NAD metabolism and nonalcoholic steatohepatitis (NASH). Biochem Pharmacol 2019; 169:113620. [PMID: 31465774 DOI: 10.1016/j.bcp.2019.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
Abstract
Aryl hydrocarbon receptor (AHR), identified in studies of dioxin toxicity, has been characterized as ligand-activated transcription factor involved in diverse functions including microbial defense, cell proliferation, immunity and NAD metabolism. AHR targets of the latter function are PARPs/ARTs and CD38 that are regulating glucose and lipid metabolism via NAD-dependent sirtuins. Deregulation of these pathways may facilitate obesity and age-dependent pathologies. The present commentary is focused on AHR and CD38 signaling in liver. CD38 is functioning as ectoNADase and Ca2+ mobilizing enzyme in endoplasmic reticulum and endolysosomal membranes. Deregulation of TCDD-activated AHR and CD38 may facilitate hepatic steatosis and inflammation. However, these proteins are also involved in protection against inflammation and CD38-mediated age-related decreased NAD levels that may be responsible for neurodegeneration. Further knowledge about the complexity of these pathways is needed to avoid pathologies. Therapeutic modulation of AHR and CD38 remains a challenging task.
Collapse
|
19
|
Bock KW. Aryl hydrocarbon receptor (AHR): From selected human target genes and crosstalk with transcription factors to multiple AHR functions. Biochem Pharmacol 2019; 168:65-70. [PMID: 31228464 DOI: 10.1016/j.bcp.2019.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence including studies of AHR-deficient mice and TCDD toxicity suggests multiple physiologic AHR functions. Challenges to identify responsible mechanisms are due to marked species differences and dependence upon cell type and cellular context. Transient AHR modulation is often necessary for physiologic functions whereas TCDD-mediated sustained receptor activation has been demonstrated to be responsible for toxic outcomes. To stimulate studies on responsible action mechanisms the commentary is focused on human AHR target genes and crosstalk with transcription factors. Discussed AHR functions include chemical and microbial defense, organ development, modulation of immunity and inflammation, reproduction, and NAD+-dependent energy metabolism. Obviously, much more work is needed to elucidate action mechanisms. In particular, studies of pathways leading to NAD+-dependent energy metabolism may shed light on the puzzling species differences of TCDD-mediated lethality and provide options for treatment of obesity and age-related degenerative diseases.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|