1
|
Tian Y, Wang N, Liu H, Qiu T, Chen C, Liu X, Zhu Y. Extraction of curcuminoids from Curcuma longa L. by fatty acid-based ionic liquid aqueous solution: Experimental and mechanism study. Food Chem 2025; 464:141605. [PMID: 39413600 DOI: 10.1016/j.foodchem.2024.141605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Curcuminoids originated from the plant Curcuma longa L. show high medical values. Herein, ionic liquids (ILs) were synthesized using fatty acids and alcohol amines to extract curcuminoids. Through single-factor experiments and response surface methodology (RSM) optimization, the extraction amount of curcuminoids by [TEA][FA-C7] aqueous solution reached 34.89 mg/g at a liquid-solid ratio of 16.36 mg/g and an extraction temperature of 36 °C, surpassing that of methanol. The extraction capacity of [TEA][FA-C7] to curcuminoids was 299.33 mg/g. Furthermore, the separation of extracts and recovery of fatty acids were studied. Quantum chemical calculations and molecular dynamics simulations were performed to investigate the extraction mechanism profoundly. This study not only proposed a novel green solvent for the extraction of curcuminoids from the plant Curcuma longa L. but also provided the possibility of applying fatty acid-based ILs to extract natural medicine efficiently.
Collapse
Affiliation(s)
- Yun Tian
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Road, Xindu District of Chengdu, 610500, PR China
| | - Na Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Road, Xindu District of Chengdu, 610500, PR China.
| | - Huanyu Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Road, Xindu District of Chengdu, 610500, PR China
| | - Tongxin Qiu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Road, Xindu District of Chengdu, 610500, PR China
| | - Chuan Chen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Road, Xindu District of Chengdu, 610500, PR China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Road, Xindu District of Chengdu, 610500, PR China
| | - Yuanqiang Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, No. 8 Xindu Road, Xindu District of Chengdu, 610500, PR China
| |
Collapse
|
2
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Plant‐Derived Phytochemicals and Their Nanoformulations for Inducing Programed Cell Death in Cancer. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 01/05/2025]
Abstract
AbstractPhytochemicals are a diverse class of compounds found in various plant‐based foods and beverages that have displayed the capacity to exert powerful anticancer effects through the induction of programed cell death (PCD) in malignancies. PCD is a sophisticated process that maintains in upholding tissue homeostasis and eliminating injured or neoplastic cells. Phytochemicals have shown the potential to induce PCD in malignant cells through various mechanisms, including modulation of cell signaling pathways, regulation of reactive oxygen species (ROS), and interaction with critical targets in cells such as DNA. Moreover, recent studies have suggested that nanomaterials loaded with phytochemicals may enhance cell death in tumors, which can also stimulate antitumor immunity. In this review, a comprehensive overview of the current understanding of the anticancer effects of phytochemicals and their potential as a promising approach to cancer therapy, is provided. The impacts of phytochemicals such as resveratrol, curcumin, apigenin, quercetin, and some approved plant‐derived drugs, such as taxanes on the regulation of some types of PCD, including apoptosis, pyroptosis, anoikis, autophagic cell death, ferroptosis, and necroptosis, are discussed. The underlying mechanisms and the potential of nanomaterials loaded with phytochemicals to enhance PCD in tumors are also explained.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Xiaoyang Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Long Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| | - Haifan Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Yuxing Zhang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| |
Collapse
|
3
|
Inchingolo F, Inchingolo AD, Latini G, Trilli I, Ferrante L, Nardelli P, Malcangi G, Inchingolo AM, Mancini A, Palermo A, Dipalma G. The Role of Curcumin in Oral Health and Diseases: A Systematic Review. Antioxidants (Basel) 2024; 13:660. [PMID: 38929099 PMCID: PMC11200638 DOI: 10.3390/antiox13060660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Curcumin (Curcumin) belongs to the polyphenol family. It is extracted by drying the root of a plant of Asian origin, belonging to the Zingiberaceae family. The best-known species is Curcumincuma Longa. Curcumin has been recognized as having great therapeutic powers since ancient times. Studies on curcumin have since confirmed its powerful antioxidant properties, preventing both the formation of free radicals and their neutralization, having anti-inflammatory, antibacterial, immunological, and neuroprotective properties, as well as being a regulator of the intestinal microbiota with beneficial effects on the clinical manifestations of metabolic syndrome. Our study aimed to highlight how all these therapeutic aspects could benefit oral health, both preventing and improving the course of pathological processes. The effect of mouthwashes, and curcumin-based gels on the regulation of bacterial plaque and in the control of gingivitis, was largely comparable to that of using 0.20% chlorhexidine, with fewer side effects. Being a highly hydrophobic substance, it has a high permeability to cross the cell membrane. Bioavailability increases when combined with liposoluble substances (e.g., olive oil) and piperine, which improves absorption. Curcumin also has a negligible degree of toxicity, making it an excellent alternative to the use of gold standard products for oral disinfection.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.D.I.); or (G.L.); or (I.T.); or (L.F.); (P.N.); or (A.M.I.); or (A.M.); or (G.D.)
| |
Collapse
|
4
|
Lekhak N, Bhattarai HK. Phytochemicals in Cancer Chemoprevention: Preclinical and Clinical Studies. Cancer Control 2024; 31:10732748241302902. [PMID: 39629692 PMCID: PMC11615997 DOI: 10.1177/10732748241302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells. Some phytochemicals, namely antioxidants, can scavenge and quench reactive oxygen species (ROS) to prevent lipid peroxidation and DNA damage. They also trigger apoptosis by stopping the cell cycle at checkpoints to initiate the DNA damage response. Numerous in vitro and in vivo studies suggest that phytochemicals hinder cancer onset and progression by modifying major cell signaling pathways such as JAK/STAT, PI3K/Akt, Wnt, NF-kB, TGF-β, and MAPK. It is a well-known fact that the occurrence of cancer is in itself a very intricate process involving multiple mechanisms concurrently. Cancer prevention using phytochemicals is also an equally complex process that requires investigation and understanding of a myriad of processes going on in the cells and tissues. While many in vitro and preclinical studies have established that phytochemicals may be potential chemopreventive agents of cancer, their role in clinical randomized control trials needs to be established. This paper aims to shed light on the dynamics of chemoprevention using phytochemicals.
Collapse
Affiliation(s)
- Nitish Lekhak
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
5
|
Guo Y, Guo Y, Guo Z, Liu B, Xu J. Effect of Fragment 1 on the Binding of Epigallocatechin Gallate to the PD-L1 Dimer Explored by Molecular Dynamics. Molecules 2023; 28:7881. [PMID: 38067610 PMCID: PMC10708077 DOI: 10.3390/molecules28237881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Blocking the interaction between programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) by directly targeting the PD-L1 dimer has emerged as a hot topic in the field of cancer immunotherapy. Epigallocatechin gallate (EGCG), a natural product, has been demonstrated binding to the PD-L1 dimer in our previous study, but has a weaker binding capacity, moreover, EGCG is located at the end of the binding pocket of the PD-L1 dimer. The inhibitor fragment 1 (FRA) lies at the other end. So, we proposed that the introduction of FRA might be able to improve the binding ability. To illuminate this issue, molecular dynamics (MD) simulation was performed in the present study. Binding free energy calculations show that the binding affinity is significantly increased by 17 kcal/mol upon the introduction of FRA. It may be due to the energy contributions of emerging key residues ATyr56, AMet115, BTyr123, AIle54 and the enhanced contributions of initial key residues ATyr123 and BVal68. Binding mode and non-bonded interaction results indicate that FRA_EGCG (EGCG in combination with FRA) binds to the C-, F- and G-sheet of the PD-L1 dimer. Importantly, the introduction of FRA mainly strengthened the nonpolar interactions. The free energy landscape and secondary structure results further show that FRA_EGCG can interact with the PD-L1 dimer more stably. These data demonstrated here provide the theoretical basis for screening two or more natural products with additive inhibitory effect on this pathway and therefore exerting more effective anticancer immunity.
Collapse
Affiliation(s)
- Yan Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Yilin Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Zichao Guo
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| | - Boping Liu
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510630, China
| | - Jianguo Xu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (Y.G.); (Y.G.); (Z.G.)
| |
Collapse
|
6
|
Zhang Y, Li Z, Huang Y, Xu Y, Zou B. Nanotechnology and curcumin: a novel and promising approach in digestive cancer therapy. Nanomedicine (Lond) 2023; 18:2081-2099. [PMID: 38078442 DOI: 10.2217/nnm-2023-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
This study reviews the application of nanotechnology and curcumin, a polyphenol extracted from turmeric, in treating digestive cancers, one of the most common types of malignancies worldwide. Despite curcumin's potential for inhibiting tumor growth, its clinical application is hindered by issues such as poor solubility and bioavailability. Nanomedicine, with its unique ability to enhance drug delivery and reduce toxicity, offers a solution to these limitations. The paper focuses on the development of nanoformulations of curcumin, such as nanoparticles and liposomes, that improve its bioavailability and efficacy in treating digestive cancers, including liver and colorectal cancers. The study serves as a valuable reference for future research and development in this promising therapeutic approach.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zheng Li
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yong Xu
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Bingwen Zou
- Division of Thoracic Oncology, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
7
|
Ellis SLS, Dada S, Nohara LL, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Morova T, Williams DE, Cheng P, Lack NA, Andersen RJ, Jefferies WA. Curcuphenol possesses an unusual histone deacetylase enhancing activity that counters immune escape in metastatic tumours. Front Pharmacol 2023; 14:1119620. [PMID: 37637416 PMCID: PMC10449465 DOI: 10.3389/fphar.2023.1119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.
Collapse
Affiliation(s)
- Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - David E. Williams
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A. Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Medoro A, Davinelli S, Colletti A, Di Micoli V, Grandi E, Fogacci F, Scapagnini G, Cicero AFG. Nutraceuticals as Modulators of Immune Function: A Review of Potential Therapeutic Effects. Prev Nutr Food Sci 2023; 28:89-107. [PMID: 37416796 PMCID: PMC10321448 DOI: 10.3746/pnf.2023.28.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 07/08/2023] Open
Abstract
Dietary supplementation with nutraceuticals can promote optimal immune system activation, modulating different pathways that enhance immune defenses. Therefore, the immunity-boosting effects of nutraceuticals encompass not only immunomodulatory but also antioxidant, antitumor, antiviral, antibacterial, and antifungal properties, with therapeutic effects against diverse pathological conditions. However, the complexity of the pathways that regulate the immune system, numerous mechanisms of action, and heterogeneity of the immunodeficiencies, and subjects treated make their application in the clinical field difficult. Some nutraceuticals appear to safely improve immune system function, particularly by preventing viral and bacterial infections in specific groups, such as children, the elderly, and athletes, as well as in frail patients, such as those affected by autoimmune diseases, chronic diseases, or cancer. Several nutraceuticals, such as vitamins, mineral salts, polyunsaturated omega-3 fatty acids, many types of phytocompounds, and probiotic strains, have the most consolidated evidence in humans. In most cases, further large and long-term randomized clinical trials are needed to confirm the available preliminary positive data.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
| | - Alessandro Colletti
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Science and Drug Technology, University of Turin, Turin 10125, Italy
| | - Valentina Di Micoli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Elisa Grandi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Federica Fogacci
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
| | - Arrigo F. G. Cicero
- Italian Nutraceutical Society (SINut), Bologna 40138, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria Policlinico S. Orsola-Malpighi, Bologna 40138, Italy
| |
Collapse
|
9
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
10
|
Mohapatra S, Cafiero J, Kashfi K, Mehta P, Banerjee P. Why Don't the Mutant Cells That Evade DNA Repair Cause Cancer More Frequently? Importance of the Innate Immune System in the Tumor Microenvironment. Int J Mol Sci 2023; 24:5026. [PMID: 36902456 PMCID: PMC10002487 DOI: 10.3390/ijms24055026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
The standard of care for most malignant solid tumors still involves tumor resection followed by chemo- and radiation therapy, hoping to eliminate the residual tumor cells. This strategy has been successful in extending the life of many cancer patients. Still, for primary glioblastoma (GBM), it has not controlled recurrence or increased the life expectancies of patients. Amid such disappointment, attempts to design therapies using the cells in the tumor microenvironment (TME) have gained ground. Such "immunotherapies" have so far overwhelmingly used genetic modifications of Tc cells (Car-T cell therapy) or blocking of proteins (PD-1 or PD-L1) that inhibit Tc-cell-mediated cancer cell elimination. Despite such advances, GBM has remained a "Kiss of Death" for most patients. Although the use of innate immune cells, such as the microglia, macrophages, and natural killer (NK) cells, has been considered in designing therapies for cancers, such attempts have not reached the clinic yet. We have reported a series of preclinical studies highlighting strategies to "re-educate" GBM-associated microglia and macrophages (TAMs) so that they assume a tumoricidal status. Such cells then secrete chemokines to recruit activated, GBM-eliminating NK cells and cause the rescue of 50-60% GBM mice in a syngeneic model of GBM. This review discusses a more fundamental question that most biochemists harbor: "since we are generating mutant cells in our body all the time, why don't we get cancer more often?" The review visits publications addressing this question and discusses some published strategies for re-educating the TAMs to take on the "sentry" role they initially maintained in the absence of cancer.
Collapse
Affiliation(s)
- Shubhasmita Mohapatra
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Jared Cafiero
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Parag Mehta
- Aveta Biomics, Inc., 110 Great Road, Suite 302, Bedford, MA 01730, USA
| | - Probal Banerjee
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
11
|
Bernitsa S, Dayan R, Stephanou A, Tzvetanova ID, Patrikios IS. Natural biomolecules and derivatives as anticancer immunomodulatory agents. Front Immunol 2023; 13:1070367. [PMID: 36700235 PMCID: PMC9868674 DOI: 10.3389/fimmu.2022.1070367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Despite advancements in chemotherapy, the issue of resistance and non-responsiveness to many chemotherapeutic drugs that are currently in clinical use still remains. Recently, cancer immunotherapy has gathered attention as a novel treatment against select cancers. Immunomodulation is also emerging as an effective strategy to improve efficacy. Natural phytochemicals, with known anticancer properties, been reported to mediate their effects by modulating both traditional cancer pathways and immunity. The mechanism of phytochemical mediated-immunomodulatory activity may be attributed to the remodeling of the tumor immunosuppressive microenvironment and the sensitization of the immune system. This allows for improved recognition and targeting of cancer cells by the immune system and synergy with chemotherapeutics. In this review, we will discuss several well-known plant-derived biomolecules and examine their potential as immunomodulators, and therefore, as novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
| | - Rotem Dayan
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | | | | | | |
Collapse
|
12
|
Nanoparticles for Therapy and Diagnostic Imaging Techniques in Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Sivasankarapillai VS, Madaswamy SL, Dhanusuraman R. Role of nanotechnology in facing SARS-CoV-2 pandemic: Solving crux of the matter with a hopeful arrow in the quiver. SENSORS INTERNATIONAL 2021; 2:100096. [PMID: 34766054 PMCID: PMC8069635 DOI: 10.1016/j.sintl.2021.100096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus species with a zoonotic origin and responsible for the coronavirus disease 2019(COVID-19). This novel virus has an extremely high infectious rate, which occurs through the contact of contaminated surfaces and also by cough, sneeze, hand-to-mouth-to-eye contact with an affected person. The progression of infection, which goes beyond complications of pneumonia to affecting other physiological functions which cause gastrointestinal, Renal, and neurological complication makes this a life threatening condition. Intense efforts are going across the scientific community in elucidating various aspects of this virus, such as understanding the pathophysiology of the disease, molecular biology, and cellular pathways of viral replication. We hope that nanotechnology and material science can provide a significant contribution to tackle this problem through both diagnostic and therapeutic strategies. But the area is still in the budding phase, which needs urgent and significant attention. This review provides a brief idea regarding the various nanotechnological approaches reported for managing COVID-19 infection. The nanomaterials recently said to have good antiviral activities like Carbon nanotubes (CNTs) and quantum dots (QDs) were also discussed since they are also in the emerging stage of attaining research interest regarding antiviral applications.
Collapse
Affiliation(s)
- Vishnu Sankar Sivasankarapillai
- Nano Electrochemistry Lab(NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609-609, India
| | - Suba Lakshmi Madaswamy
- Nano Electrochemistry Lab(NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609-609, India
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Lab(NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609-609, India
| |
Collapse
|
14
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
15
|
Baidoo JNE, Mukherjee S, Kashfi K, Banerjee P. A New Perspective on Cancer Therapy: Changing the Treaded Path? Int J Mol Sci 2021; 22:ijms22189836. [PMID: 34575998 PMCID: PMC8466953 DOI: 10.3390/ijms22189836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
During the last decade, we have persistently addressed the question, “how can the innate immune system be used as a therapeutic tool to eliminate cancer?” A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent. Intriguingly, the maximum blood concentration of CC in mice never exceeds nanomolar levels. Thus, our results submit that even low, transient levels of curcumin in vivo are enough to cause repolarization of the TAM and recruitment NK cells as well as Tc cells to eliminate the tumor. We have observed this phenomenon in two cancer models, glioblastoma and cervical cancer. Therefore, this approach may yield a general strategy to fight cancer. Our mechanistic studies have so far implicated induction of STAT-1 in this M2→M1 switch, but further studies are needed to understand the involvement of other factors such as the lipid metabolites resolvins in the CC-evoked anticancer pathways.
Collapse
Affiliation(s)
- Juliet N. E. Baidoo
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA; (J.N.E.B.); or
- Doctoral Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Sumit Mukherjee
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA; (J.N.E.B.); or
- Doctoral Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Probal Banerjee
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA; (J.N.E.B.); or
- Doctoral Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence: or ; Tel.: +1-(718)-982-3938; Fax: +1-(718)-982-3953
| |
Collapse
|
16
|
Fu YS, Chen TH, Weng L, Huang L, Lai D, Weng CF. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother 2021; 141:111888. [PMID: 34237598 DOI: 10.1016/j.biopha.2021.111888] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ting-Hsu Chen
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Lebin Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Liyue Huang
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Department of Transfusion, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Ching-Feng Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
17
|
Zheng Y, Yang X, Tan J, Tian R, Shen P, Cai W, Liao H. Curcumin suppresses the stemness of non-small cell lung cancer cells via promoting the nuclear-cytoplasm translocation of TAZ. ENVIRONMENTAL TOXICOLOGY 2021; 36:1135-1142. [PMID: 33539684 DOI: 10.1002/tox.23112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/11/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Curcumin has been shown to suppress the progression of lung cancer, however, the underlying mechanisms are largely unknown. Here, we aimed to investigate the effects of curcumin on the stemness of non-small cell lung cancer (NSCLC) cells. We found that curcumin reduced the sphere formation ability at the concentrations without affecting the cell viability of NSCLC cells and normal pulmonary epithelial cells, which is evident by the decrease of sphere size and number. In addition, curcumin decreased ALDH activity and the expression of stemness markers (CD133, EpCAM, Oct4). RNA sequencing analysis revealed that the Hippo pathway was mostly enriched in cells with curcumin treatment. Indeed, the expression of cancer stem cell markers was significantly decreased by curcumin treatment by analyzing the RNA sequencing data. Gene set enrichment analysis (GSEA) showed that curcumin negatively regulated the cancer stem cell function and positively modulated cancer stem cell differentiation ability. Furthermore, curcumin enhanced the cisplatin sensitivity of NSCLC cells. Mechanistically, it was found that curcumin promoted the nuclear-cytoplasm translocation of TAZ, but not YAP, the critical effectors of Hippo pathway. In addition, curcumin destabilzed TAZ protein stability and promoted TAZ protein degradation in lung cancer cells, which is dependent on the proteasome degradation system, not by autophagy lysosome degradation system. Overexpression of TAZ rescued the inhibition of curcumin on the stemness of lung cancer cells. Thus, our results suggest that curcumin can attenuate the stemness of lung cancer cells through promoting TAZ protein degradation and thus activating Hippo pathway.
Collapse
Affiliation(s)
- Yuzhen Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xingping Yang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Tan
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renjiang Tian
- Department of Thoracic Surgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Piao Shen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Weijie Cai
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Ashrafizadeh M, Zarrabi A, Hashemi F, Moghadam ER, Hashemi F, Entezari M, Hushmandi K, Mohammadinejad R, Najafi M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci 2020; 256:117984. [PMID: 32593707 DOI: 10.1016/j.lfs.2020.117984] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dealing with cancer is of importance due to enhanced incidence rate of this life-threatening disorder. Chemotherapy is an ideal candidate in overcoming and eradication of cancer. To date, various chemotherapeutic agents have been applied in cancer therapy and paclitaxel (PTX) is one of them. PTX is a key member of taxane family with potential anti-tumor activity against different cancers. Notably, PTX has demonstrated excellent proficiency in elimination of cancer in clinical trials. This chemotherapeutic agent is isolated from Taxus brevifolia, and is a tricyclic diterpenoid. However, resistance of cancer cells into PTX chemotherapy has endangered its efficacy. Besides, administration of PTX is associated with a number of side effects such as neurotoxicity, hepatotoxicity, cardiotoxicity and so on, demanding novel strategies in obviating PTX issues. Curcumin is a pharmacological compound with diverse therapeutic effects including anti-tumor, anti-oxidant, anti-inflammatory, anti-diabetic and so on. In the current review, we demonstrate that curcumin, a naturally occurring nutraceutical compound is able to enhance anti-tumor activity of PTX against different cancers. Besides, curcumin administration reduces adverse effects of PTX due to its excellent pharmacological activities. These topics are discussed with an emphasis on molecular pathways to provide direction for further studies in revealing other signaling networks.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzia, Istanbul 34956, Turkey
| | - Farid Hashemi
- DVM, Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Kuang G, Zhang Q, He S, Liu Y. Curcumin-loaded PEGylated mesoporous silica nanoparticles for effective photodynamic therapy. RSC Adv 2020; 10:24624-24630. [PMID: 35516169 PMCID: PMC9055143 DOI: 10.1039/d0ra04778c] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Curcumin (Cur) can be used as a photosensitizer in the photodynamic therapy (PDT) of cancer, but its low bioavailability limits further clinical application. A mesoporous silica-based drug delivery system (PEGylated mesoporous silica nanoparticles, MSN-PEG@Cur) was designed to solve the problem. The successful preparation of MSN-PEG@Cur was characterized by several physico-chemistry techniques. The endocytosis, ROS generation and in vitro anti-cancer efficacy of MSN-PEG@Cur were evaluated in detail step by step. The results indicated that MSN-PEG@Cur could be effectively endocytosed into cells and release Cur, which can promptly generate ROS upon irradiation, achieving effective PDT in cancer treatment. This MSNs-based drug delivery system provides an alternative strategy for Cur loading and PDT of cancer.
Collapse
Affiliation(s)
- Gaizhen Kuang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University Zhengzhou 450008 P. R. China
| | - Qingfei Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457 Singapore
| | - Ying Liu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University Zhengzhou 450008 P. R. China
| |
Collapse
|
20
|
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|