1
|
das Neves GP, Mazzei JL, Tostes JBF, Nakamura MJ, Rocha HVA, Mourão PJP, Tanuri A, Ribeiro da Silva AJ, Siani AC. HIV latency-reversing activity of latex from Euphorbia umbellata (Pax) Bruyns and three diterpenes isolated from this species. Nat Prod Res 2024:1-8. [PMID: 38902957 DOI: 10.1080/14786419.2024.2364261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Two unusual phorbol esters, namely 20-deoxyphorbol-3,4,12-triacetate-13-phenylacetate (1) and phorbol-3,4,12,13-tetraacetate-20-phenylacetate (2) plus ingol-3,8,12-triacetate-7-phenylacetate (3) were isolated from the latex of Euphorbia umbellata and identified by HRESIMS and 2D NMR. Compound 1 is herein described for the first time. Assignment of the phenylacetyl group at C-7 in compound 3 was suggested by the HMBC and NOESY spectra obtained in pyridine-d5. In addition to the latex and its distinct terpenoid fractions, the isolated compounds were tested as latent reversal agents against HIV-1-infected J-Lat cells, with reference to phorbol-12-myristate-13-acetate and ingenol-B. Compound 2 reverted 75-80% the viral latency on the GFP-positive cells, resulting EC50 3.70 μg/mL (SI 6.7), while 1 induced 34-40% reactivation at the same concentration range (4-20 µg/mL). The ingol derivative 3 was ineffective. Phorbol esters were confirmed as effective constituents in the latex since the fraction containing them was 2.4-fold more active than the lyophilised latex at the lowest concentration assayed.
Collapse
Affiliation(s)
- Gabrielle P das Neves
- Department of Natural Products, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - José L Mazzei
- Department of Natural Products, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - João B F Tostes
- Department of Natural Products, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcos J Nakamura
- Department of Natural Products, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Helvécio V A Rocha
- Laboratory of Micro and Nanotecnology, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Pedro Junior P Mourão
- Laboratory of Molecular Virology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Antonio C Siani
- Department of Natural Products, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
De La Torre Tarazona E, Passaes C, Moreno S, Sáez-Cirión A, Alcamí J. High concentrations of Maraviroc do not alter immunological and metabolic parameters of CD4 T cells. Sci Rep 2024; 14:13980. [PMID: 38886484 PMCID: PMC11183235 DOI: 10.1038/s41598-024-64902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Maraviroc (MVC) is an antiretroviral drug capable of binding to CCR5 receptors and block HIV entry into target cells. Moreover, MVC can activate NF-kB pathway and induce viral transcription in HIV-infected cells, being proposed as a latency reversal agent (LRA) in HIV cure strategies. However, the evaluation of immunological and metabolic parameters induced by MVC concentrations capable of inducing HIV transcription have not been explored in depth. We cultured isolated CD4 T cells in the absence or presence of MVC, and evaluated the frequency of CD4 T cell subpopulations and activation markers levels by flow cytometry, and the oxidative and glycolytic metabolic rates of CD4 T cells using a Seahorse Analyzer. Our results indicate that a high concentration of MVC did not increase the levels of activation markers, as well as glycolytic or oxidative metabolic rates in CD4 T cells. Furthermore, MVC did not induce significant changes in the frequency and activation levels of memory cell subpopulations. Our data support a safety profile of MVC as a promising LRA candidate since it does not induce alterations of the immunological and metabolic parameters that could affect the functionality of these immune cells.
Collapse
Affiliation(s)
- Erick De La Torre Tarazona
- Infectious Diseases Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University Hospital Ramón y Cajal, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Caroline Passaes
- HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Viral Reservoirs and Immune Control Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Santiago Moreno
- Infectious Diseases Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University Hospital Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Alcalá University, Madrid, Spain
| | - Asier Sáez-Cirión
- HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Viral Reservoirs and Immune Control Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - José Alcamí
- AIDS Immunopathogenesis Unit, National Center of Microbiology, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Fisher MA, Chaudhry W, Campbell LA. Gesicles packaging dCas9-VPR ribonucleoprotein complexes can combine with vorinostat and promote HIV proviral transcription. Mol Ther Methods Clin Dev 2024; 32:101203. [PMID: 38390557 PMCID: PMC10881426 DOI: 10.1016/j.omtm.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
Despite the success of combination antiretroviral therapy (cART) in HIV treatment, a cure for HIV remains elusive. Scientists postulate that HIV latent reservoirs may be a vital target in curative strategies. Vorinostat is a latency-reversing agent that has demonstrated some effectiveness in reactivating latent HIV, but complementary therapies may be essential to enhance its efficacy. One such approach may utilize the CRISPR-Cas9 system, which has evolved to include transcriptional activators such as dCas9-VPR. In this study, we explored the effects of combining vorinostat coupled with gesicle-mediated delivery of dCas9-VPR in promoting the transcription of integrated HIV proviruses in HIV-NanoLuc CHME-5 microglia and J-Lat 10.6 lymphocytes. We confirmed that dCas9-VPR ribonucleoprotein complexes can be packaged into gesicles and application to cells successfully induced HIV transcription through interactions with the HIV LTR. Vorinostat also induced significant increases in proviral transcription but generated inhibition of cellular proliferation (microglia) or cell viability (lymphocytes) starting at 1,000 nM and higher concentrations. Experiments combining dCas9-VPR gesicles and vorinostat confirmed the enhanced transcriptional activation of the HIV provirus in microglia but not lymphocytes. Thus, a combination of dCas9-VPR gesicles with other latency-reversing agents may provide a complementary method to activate latent HIV in future studies utilizing patient-derived cells or small animal models.
Collapse
Affiliation(s)
- Michaela A Fisher
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| | - Waj Chaudhry
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| | - Lee A Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC, USA
| |
Collapse
|
4
|
Zhou C, Li T, Xia M, Wu Z, Zhong X, Li A, Rashid HK, Ma C, Zhou R, Duan H, Zhang X, Peng J, Li L. Bcl-2 Antagonist Obatoclax Reactivates Latent HIV-1 via the NF-κB Pathway and Induces Latent Reservoir Cell Apoptosis in Latently Infected Cells. ACS Infect Dis 2023; 9:2105-2118. [PMID: 37796279 DOI: 10.1021/acsinfecdis.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The implementation of combined antiretroviral therapy (cART) has rendered HIV-1 infection clinically manageable and efficiently improves the quality of life for patients with AIDS. However, the persistence of a latent HIV-1 reservoir is a major obstacle to achieving a cure for AIDS. A "shock and kill" strategy aims to reactivate latent HIV and then kill it by the immune system or cART drugs. To date, none of the LRA candidates has yet demonstrated effectiveness in achieving a promising functional cure. Interestingly, the phosphorylation and activation of antiapoptotic Bcl-2 protein induce resistance to apoptosis during HIV-1 infection and the reactivation of HIV-1 latency in central memory CD4+ T cells from HIV-1-positive patients. Therefore, a Bcl-2 antagonist might be an effective LRA candidate for HIV-1 cure. In this study, we reported that a pan-Bcl-2 antagonist obatoclax induces HIV-1 reactivation in latently infected cell lines in vitro and in PBMCs/CD4+ T cells of HIV-infected individuals ex vivo. Obatoclax promotes HIV-1 transcriptional initiation and elongation by regulating the NF-κB pathway. Obatoclax activates caspase 8 and does not induce the phosphorylation of the antiapoptotic protein Bcl-2 in latent HIV-1 infected cell lines. More importantly, it preferentially induces apoptosis in latently infected cells. In addition, obatoclax exhibited potent anti-HIV-1 activity on target cells. The abilities to reactivate latent HIV-1 reservoirs, inhibit HIV-1 infection, and induce HIV-1 latent cell apoptosis make obatoclax worth investigating for development as an ideal LRA for use in the "shock and kill" approach.
Collapse
Affiliation(s)
- Chenliang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ting Li
- Aviation Hygiene Management Division, China Southern Airlines Company Limited, Guangzhou 510406, P. R. China
| | - Muye Xia
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ziyao Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Xuelin Zhong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Axing Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Huba Khamis Rashid
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Chengnuo Ma
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ruijing Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Heng Duan
- Department of Pharmacy, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, P. R. China
| | - Xuanxuan Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, P. R. China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Lin Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
5
|
Li S, Wang X, Yang Y, Wu X, Zhang L. Discovering the Mechanisms of Oleodaphnone as a Potential HIV Latency-Reversing Agent by Transcriptome Profiling. Int J Mol Sci 2023; 24:ijms24087357. [PMID: 37108519 PMCID: PMC10138910 DOI: 10.3390/ijms24087357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Latent HIV is a key factor that makes AIDS difficult to cure. Highly effective and specific latent HIV activators can effectively activate latent HIV, and then combined with antiretroviral therapy to achieve a functional cure of AIDS. Here, four sesquiterpenes (1-4) including a new one (1), five flavonoids (5-9) including three biflavonoid structures, and two lignans (10 and 11) were obtained from the roots of Wikstroemia chamaedaphne. Their structures were elucidated through comprehensive spectroscopic analyses. The absolute configuration of 1 was determined by experimental electronic circular dichroism. NH2 cell model was used to test the activity of these 11 compounds in activating latent HIV. Oleodaphnone (2) showed the latent HIV activation effect as well as the positive drug prostratin, and the activation effect was time- and concentration-dependent. Based on transcriptome analysis, the underlying mechanism was that oleodaphnone regulated the TNF, C-type lectin receptor, NF-κB, IL-17, MAPK, NOD-like receptor, JAK-Stat, FoxO, and Toll-like receptor signaling pathways. This study provides the basis for the potential development of oleodaphnone as an effective HIV latency-reversing agent.
Collapse
Affiliation(s)
- Shifei Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xiuyi Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yuqin Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Liwei Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Tanaka N, Takahashi S, Yoshino Y, Nakatani M, Ahmed FA, Hossain GM, Chen CH, Lee KH, Kashiwada Y. Tigliane-Type Diterpene Esters from the Fruits of Shirakiopsis indica and Their Anti-HIV Activity. JOURNAL OF NATURAL PRODUCTS 2022; 85:2687-2693. [PMID: 36378070 DOI: 10.1021/acs.jnatprod.2c00752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Four new diterpene esters, shirakindicans A-D (1-4), along with eight related known diterpene esters (5-12), were isolated from the fruits of the Bangladeshi medicinal plant Shirakiopsis indica. The structures of 1-4 were elucidated by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Shirakindican A (1) was assigned as a tigliane-type diterpene ester possessing an unusual 6β-hydroxy-1,7-dien-3-one structure, while shirakindican B (2) exhibits a tiglia-1,5-dien-3,7-dione structure. The anti-HIV activities of the isolated diterpene esters were evaluated and showed significant activities for sapintoxins A (5) and D (11), with EC50 values of 0.0074 and 0.044 μM, respectively, and TI values of 1 100 and 5 290. Sapatoxin A (12) also exhibited anti-HIV activity with an EC50 value of 0.13 μM and a TI value of 161.
Collapse
Affiliation(s)
- Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Sakura Takahashi
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Yuki Yoshino
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Megumi Nakatani
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Fakhruddin Ali Ahmed
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Gazi Mosharof Hossain
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Chin-Ho Chen
- Medical Center, Duke University, Durham, North Carolina 27710, United States
| | - Kuo-Hsiung Lee
- Natural Products Laboratory, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
7
|
Zhan ZJ, Li S, Chu W, Yin S. Euphorbia diterpenoids: isolation, structure, bioactivity, biosynthesis, and synthesis (2013-2021). Nat Prod Rep 2022; 39:2132-2174. [PMID: 36111621 DOI: 10.1039/d2np00047d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: 2013 to 2021As the characteristic metabolites of Euphorbia plants, Euphorbia diterpenoids have always been a hot topic in related science communities due to their intriguing structures and broad bioactivities. In this review, we intent to provide an in-depth and extensive coverage of Euphorbia diterpenoids reported from 2013 to the end of 2021, including 997 new Euphorbia diterpenoids and 78 known ones with latest progress. Multiple aspects will be summarized, including their occurrences, chemical structures, bioactivities, and syntheses, in which the structure-activity relationship and biosynthesis of this class will be discussed for the first time.
Collapse
Affiliation(s)
- Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | - Wang Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| |
Collapse
|
8
|
Activators and Inhibitors of Protein Kinase C (PKC): Their Applications in Clinical Trials. Pharmaceutics 2021; 13:pharmaceutics13111748. [PMID: 34834162 PMCID: PMC8621927 DOI: 10.3390/pharmaceutics13111748] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinase, is classed into three subfamilies based on their structural and activation characteristics: conventional or classic PKC isozymes (cPKCs; α, βI, βII, and γ), novel or non-classic PKC isozymes (nPKCs; δ, ε, η, and θ), and atypical PKC isozymes (aPKCs; ζ, ι, and λ). PKC inhibitors and activators are used to understand PKC-mediated intracellular signaling pathways and for the diagnosis and treatment of various PKC-associated diseases, such as cancers, neurological diseases, cardiovascular diseases, and infections. Many clinical trials of PKC inhibitors in cancers showed no significant clinical benefits, meaning that there is a limitation to design a cancer therapeutic strategy targeting PKC alone. This review will focus on the activators and inhibitors of PKC and their applications in clinical trials.
Collapse
|
9
|
Tsai YC, Nell RA, Buckendorf JE, Kúsz N, Mwangi PW, Berkecz R, Rédei D, Vasas A, Spivak AM, Hohmann J. Bioactive Compounds from Euphorbia usambarica Pax. with HIV-1 Latency Reversal Activity. Pharmaceuticals (Basel) 2021; 14:ph14070653. [PMID: 34358079 PMCID: PMC8308672 DOI: 10.3390/ph14070653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Euphorbia usambarica is a traditional medicine used for gynecologic, endocrine, and urogenital illnesses in East Africa; however, its constituents and bioactivities have not been investigated. A variety of compounds isolated from Euphorbia species have been shown to have activity against latent HIV-1, the major source of HIV-1 persistence despite antiretroviral therapy. We performed bioactivity-guided isolation to identify 15 new diterpenoids (1–9, 14–17, 19, and 20) along with 16 known compounds from E. usambarica with HIV-1 latency reversal activity. Euphordraculoate C (1) exhibits a rare 6/6/3-fused ring system with a 2-methyl-2-cyclopentenone moiety. Usambariphanes A (2) and B (3) display an unusual lactone ring constructed between C-17 and C-2 in the jatrophane structure. 4β-Crotignoid K (14) revealed a 250-fold improvement in latency reversal activity compared to crotignoid K (13), identifying that configuration at the C-4 of tigliane diterpenoids is critical to HIV-1 latency reversal activity. The primary mechanism of the active diterpenoids 12–14 and 21 for the HIV-1 latency reversal activity was activation of PKC, while lignans 26 and 27 that did not increase CD69 expression, suggesting a non-PKC mechanism. Accordingly, natural constituents from E. usambarica have the potential to contribute to the development of HIV-1 eradication strategies.
Collapse
Affiliation(s)
- Yu-Chi Tsai
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
| | - Racheal A. Nell
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.A.N.); (J.E.B.)
| | - Jonathan E. Buckendorf
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.A.N.); (J.E.B.)
| | - Norbert Kúsz
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
| | - Peter Waweru Mwangi
- Department of Medical Physiology, School of Medicine, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Róbert Berkecz
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary;
| | - Dóra Rédei
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
| | - Andrea Vasas
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
| | - Adam M. Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (R.A.N.); (J.E.B.)
- Correspondence: (A.M.S.); (J.H.)
| | - Judit Hohmann
- Interdisciplinary Excellence Centre, Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary; (Y.-C.T.); (N.K.); (D.R.); (A.V.)
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: (A.M.S.); (J.H.)
| |
Collapse
|
10
|
Tostes JBF, Carvalho ALD, Ribeiro da Silva AJ, Mourão PJP, Rossi ÁD, Tanuri A, Siani AC. Phorbol Esters from the Latex of Euphorbia umbellata: Bioguided Isolation of Highly Potent HIV-1 Latency Interrupters in Virus Reservoir Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:1666-1670. [PMID: 33909429 DOI: 10.1021/acs.jnatprod.0c01092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three known compounds, 20-deoxyphorbol-5β-hydroxy-12-tiglate-13-isobutyrate (1), 20-deoxyphorbol-5β-hydroxy-12-tiglate-13-phenylacetate (2), and 4-deoxy-4β-phorbol-12-tiglate-13-phenylacetate (3), were reisolated from the latex of Euphorbia umbellata through a bioguided fractionation process to target HIV-1 latency reactivation. The in vitro bioassay using infected T-cell lymphoblasts (J-Lat 10.6), complemented with surface CD4 receptor downregulation assessment, led to isolation of the compounds as a highly active ternary mixture. Effective purification of the individual compounds was achieved by first subjecting a phorbol-enriched fraction (previously prepared from crude latex) to MPLC, followed by semipreparative HPLC and characterization by 1D and 2D NMR spectroscopy and (+)-HRESIMS. Compared with a positive control, the isolated compounds were effective in reactivating 68-75% of the virus latency in the range of 9.7-0.097 μM for compound 1, 8.85-0.088 μM for compound 2, and 9.1-0.091 μM for compound 3, with the latter maintaining steady effectiveness down to a 10-5 dilution. Accordingly, compound 3 may serve as a promising lead compound for the development of anti-HIV drugs based on latency reactivation therapy.
Collapse
Affiliation(s)
- João B F Tostes
- Institute of Drug Technology, Oswaldo Cruz Foundation, Rua Sizenando Nabuco 100, 21041-250, Rio de Janeiro, RJ, Brazil
| | - Andressa L D Carvalho
- Institute of Drug Technology, Oswaldo Cruz Foundation, Rua Sizenando Nabuco 100, 21041-250, Rio de Janeiro, RJ, Brazil
| | - Antonio J Ribeiro da Silva
- Natural Products Research Institute, Federal University of Rio de Janeiro, CCS, Bl. H, Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Pedro Junior P Mourão
- Laboratory of Molecular Virology, Institute of Biology, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Átila D Rossi
- Laboratory of Molecular Virology, Institute of Biology, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Amílcar Tanuri
- Laboratory of Molecular Virology, Institute of Biology, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Antonio C Siani
- Institute of Drug Technology, Oswaldo Cruz Foundation, Rua Sizenando Nabuco 100, 21041-250, Rio de Janeiro, RJ, Brazil
| |
Collapse
|