1
|
Stemkens R, Lemson A, Koele SE, Svensson EM, Te Brake LHM, van Crevel R, Boeree MJ, Hoefsloot W, van Ingen J, Aarnoutse RE. A loading dose of clofazimine to rapidly achieve steady-state-like concentrations in patients with nontuberculous mycobacterial disease. J Antimicrob Chemother 2024:dkae309. [PMID: 39378281 DOI: 10.1093/jac/dkae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/20/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVES Clofazimine is a promising drug for the treatment of nontuberculous mycobacterial (NTM) diseases. Accumulation of clofazimine to reach steady-state plasma concentrations takes months. A loading dose may reduce the time to steady-state-like concentrations. We evaluated the pharmacokinetics (PK), safety and tolerability of a loading dose regimen in patients with NTM disease. METHODS Adult participants received a 4-week loading dose regimen of 300 mg clofazimine once daily, followed by a maintenance dose of 100 mg once daily (combined with other antimycobacterial drugs). Blood samples for PK analysis were collected on three occasions. A population PK model for clofazimine was developed and simulations were performed to assess the time to reach steady-state-like (target) concentrations for different dosing regimens. RESULTS Twelve participants were included. The geometric mean peak and trough clofazimine concentrations after the 4-week loading phase were 0.87 and 0.50 mg/L, respectively. Adverse events were common, but mostly mild and none led to discontinuation of clofazimine. Our loading dose regimen reduced the predicted median time to target concentrations by 1.5 months compared to no loading dose (3.8 versus 5.3 months). Further time benefit was predicted with a 6-week loading dose regimen (1.4 versus 5.3 months). CONCLUSION A 4-week loading dose regimen of 300 mg once daily reduced the time to target clofazimine concentrations and was safe and well-tolerated. Extending the loading phase to 6 weeks could further decrease the time to target concentrations. Using a loading dose of clofazimine is a feasible strategy to optimize treatment of NTM disease. CLINICAL TRIALS REGISTRATION NCT05294146.
Collapse
Affiliation(s)
- Ralf Stemkens
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arthur Lemson
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon E Koele
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Lindsey H M Te Brake
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Infectious Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin J Boeree
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Kimta N, Majdalawieh AF, Nasrallah GK, Puri S, Nepovimova E, Jomova K, Kuča K. Leprosy: Comprehensive insights into pathology, immunology, and cutting-edge treatment strategies, integrating nanoparticles and ethnomedicinal plants. Front Pharmacol 2024; 15:1361641. [PMID: 38818380 PMCID: PMC11137175 DOI: 10.3389/fphar.2024.1361641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Mycobacterium leprae is the causative agent responsible for the chronic disease known as leprosy. This condition is characterized by dermal involvement, often leading to peripheral nerve damage, sensory-motor loss, and related abnormalities. Both innate and acquired immunological responses play a role in the disease, and even in individuals with lepromatous leprosy, there can be a transient increase in T cell immunity during lepromatous reactions. Diagnosing of early-stage leprosy poses significant challenges. In this context, nanoparticles have emerged as a promising avenue for addressing various crucial issues related to leprosy. These include combatting drug resistance, mitigating adverse effects of conventional medications, and enhancing targeted drug delivery. This review serves as a comprehensive compilation, encompassing aspects of pathology, immunology, and adverse effects of multidrug delivery systems in the context of leprosy treatment. Furthermore, the review underscores the significance of ethnomedicinal plants, bioactive secondary metabolites, and nanotherapeutics in the management of leprosy. It emphasizes the potential to bridge the gap between existing literature and ongoing research efforts, with a profound scope for validating traditional claims, developing herbal medicines, and formulating nanoscale drug delivery systems that are safe, effective, and widely accepted.
Collapse
Affiliation(s)
- Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Amin F. Majdalawieh
- Department of Biology, Chemsitry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | | | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
3
|
de Araujo ACGDS, Hacker MDAVB, Pinheiro RO, Illarramendi X, Durães SMB, Nobre ML, Moraes MO, Sales AM, da Silva GMS. Development of a multivariate predictive model for dapsone adverse drug events in people with leprosy under standard WHO multidrug therapy. PLoS Negl Trop Dis 2024; 18:e0011901. [PMID: 38271456 PMCID: PMC10846698 DOI: 10.1371/journal.pntd.0011901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/06/2024] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The occurrence of adverse drug events (ADEs) during dapsone (DDS) treatment in patients with leprosy can constitute a significant barrier to the successful completion of the standardized therapeutic regimen for this disease. Well-known DDS-ADEs are hemolytic anemia, methemoglobinemia, hepatotoxicity, agranulocytosis, and hypersensitivity reactions. Identifying risk factors for ADEs before starting World Health Organization recommended standard multidrug therapy (WHO/MDT) can guide therapeutic planning for the patient. The objective of this study was to develop a predictive model for DDS-ADEs in patients with leprosy receiving standard WHO/MDT. METHODOLOGY This is a case-control study that involved the review of medical records of adult (≥18 years) patients registered at a Leprosy Reference Center in Rio de Janeiro, Brazil. The cohort included individuals that received standard WHO/MDT between January 2000 to December 2021. A prediction nomogram was developed by means of multivariable logistic regression (LR) using variables. The Hosmer-Lemeshow test was used to determine the model fit. Odds ratios (ORs) and their respective 95% confidence intervals (CIs) were estimated. The predictive ability of the LRM was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS A total of 329 medical records were assessed, comprising 120 cases and 209 controls. Based on the final LRM analysis, female sex (OR = 3.61; 95% CI: 2.03-6.59), multibacillary classification (OR = 2.5; 95% CI: 1.39-4.66), and higher education level (completed primary education) (OR = 1.97; 95% CI: 1.14-3.47) were considered factors to predict ADEs that caused standard WHO/MDT discontinuation. The prediction model developed had an AUC of 0.7208, that is 72% capable of predicting DDS-ADEs. CONCLUSION We propose a clinical model that could become a helpful tool for physicians in predicting ADEs in DDS-treated leprosy patients.
Collapse
Affiliation(s)
| | | | - Roberta Olmo Pinheiro
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Ximena Illarramendi
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Maurício Lisboa Nobre
- Giselda Trigueiro Hospital, Rio Grande do Norte Federal State Public Health department (SESAP-RN), Natal, RN, Brazil
| | - Milton Ozório Moraes
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Anna Maria Sales
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
4
|
da Silva Santos J, da Costa Alves F, José Dos Santos Júnior E, Soares Sobrinho JL, de La Roca Soares MF. Evolution of pediatric pharmaceutical forms for treatment of Hansen's disease (leprosy). Expert Opin Ther Pat 2023; 33:1-15. [PMID: 36755421 DOI: 10.1080/13543776.2023.2178301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Leprosy is a neglected, infectious, granulomatous and chronic disease caused by the pathological agent Mycobacterium leprae. The course of the disease is more aggressive in patients under 15 years of age, but the current treatment offered worldwide consists of solid forms, by the combination of antibiotics such as rifampicin, clofazimine and dapsone. This represents results in lack of adherence in pediatric patients and drug therapy failure, although numerous formulations and technologies have already been developed. AREA COVERED This study aims to analyze the technological evolution of the pharmaceutical treatment of leprosy, aimed at children. A review of patents around the world was conducted to look for technical and clinical aspects of formulations and devices. EXPERT OPINION Innovative formulations for pediatric patients were classified according to the routes of administration as oral, inhalable, injectable and transdermal. The formulations were organized as alternatives for pediatric therapy, taking into account the physicochemical aspects of drugs and the physiological aspects of pediatric patients. Among the difficulties for the patented formulations to reach the market, of special note is the low stability of the physicochemical characteristics of the drugs. Optimization of formulations would favor the pediatric treatment of leprosy, aiming at therapeutic success.
Collapse
Affiliation(s)
- Jocimar da Silva Santos
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Franciely da Costa Alves
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Efraim José Dos Santos Júnior
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - José Lamartine Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| | - Mônica Felts de La Roca Soares
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Department of Pharmacy, Universidade Federal de Pernambuco, Av. Prof. Arthur de Sá, S/N, Cidade Universitária, Recife PE, Brasil
| |
Collapse
|
5
|
George J, Tsuchishima M, Tsutsumi M. Epigallocatechin-3-gallate inhibits osteopontin expression and prevents experimentally induced hepatic fibrosis. Biomed Pharmacother 2022; 151:113111. [PMID: 35594711 DOI: 10.1016/j.biopha.2022.113111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Osteopontin (OPN) is a matricellular cytokine and a stress-induced profibrogenic molecule that promotes activation of stellate cells during the pathogenesis of hepatic fibrosis. We studied the protective effects of epigallocatechin-3-gallate (EGCG) to suppress oxidative stress, inhibit OPN expression, and prevent experimentally induced hepatic fibrosis. Liver injury was induced with intraperitoneal injections of N-nitrosodimethylamine (NDMA) in a dose of 1 mg/100 g body weight on 3 consecutive days of a week for 28 days. A group of rats received 0.2 mg EGCG/100 g body weight orally everyday during the study. The animals were sacrificed on day 28th from the beginning of exposure. Serum levels of AST, ALT, OPN, malondialdehyde, collagen type IV, and hyaluronic acid were measured. Immunohistochemistry and/or real-time PCR were performed for α-SMA, 4-HNE, OPN, collagen type I, and type III. Serial administrations of NDMA produced well developed fibrosis and early cirrhosis in rat liver. Treatment with EGCG significantly reduced serum/plasma levels of AST, ALT, OPN, malondialdehyde, collagen type IV, and hyaluronic acid and prevented deposition of collagen fibers in the hepatic tissue. Protein and/or mRNA levels demonstrated marked decrease in the expression of α-SMA, 4-HNE, OPN, collagen type I, and type III. Treatment with EGCG prevented excessive generation of reactive oxygen species, suppressed oxidative stress, significantly reduced serum and hepatic OPN levels, and markedly attenuated hepatic fibrosis. The results indicated that EGCG could be used as a potent therapeutic agent to prevent hepatic fibrogenesis and related adverse events.
Collapse
Affiliation(s)
- Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan.
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa 920-0293, Japan
| |
Collapse
|
6
|
Mason M, Gregory E, Foster K, Klatt M, Zoubek S, Eid A. Pharmacologic management of Mycobacterium chimaera Infections: A Primer for Clinicians. Open Forum Infect Dis 2022; 9:ofac287. [PMID: 35866101 PMCID: PMC9297092 DOI: 10.1093/ofid/ofac287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium chimaera, a member of the Mycobacterium avium complex, can cause infections in individuals after open heart surgery due to contaminated heater-cooler units. The diagnosis can be challenging, as the incubation period can be quite variable, and symptoms are nonspecific. In addition to aggressive surgical management, combination pharmacologic therapy is the cornerstone of therapy, which should consist of a macrolide, a rifamycin, ethambutol, and amikacin. Multiple second-line agents may be utilized in the setting of intolerances or toxicities. In vitro susceptibility of these agents is similar to activity against other species in the Mycobacterium avium complex. Drug–drug interactions are frequently encountered, as many individuals have chronic medical comorbidities and are prescribed medications that interact with the first-line agents used to treat M. chimaera. Recognition of these drug–drug interactions and appropriate management are essential for optimizing treatment outcomes.
Collapse
Affiliation(s)
- Matt Mason
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Eric Gregory
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Keith Foster
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Megan Klatt
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Sara Zoubek
- The University of Kansas Health System, Department of Pharmacy , Kansas City, KS , USA
| | - Albert Eid
- Kansas University Medical Center, Department of Infectious Diseases , Kansas City, KS , USA
| |
Collapse
|
7
|
Verbenko DA, Solomka VS, Kozlova IV, Kubanov AA. The genetic determinants of Mycobacterium leprae resistance to antimicrobial drugs. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The review is devoted to the appearance of resistance of a slowly developing disease leprosy to antimicrobial therapy (AMP), primarily recommended by the World Health Organization. The main danger of drug resistant leprosy is in the difficulty of identifying, since the causative agent of the disease is not cultivated on artificial media, and the methods for diagnosing drug resistance that are currently used take a long time. The drug resistance of the Mycobacterium leprae strain even to individual components of combination drug therapy result to the development of symptoms of the disease despite undergo anti-leprosy therapy, which in turn can cause the patient to become disabled. Currently, in the Russian Federation, there is no approved test for detecting Mycobacterium leprae DNA, and the determination of genetic determinants of resistance is carried out by sequencing genome regions determined by WHO recommendations: small gyrA, folP and rpoB genes loci. At the same time, modern studies in endemic regions reveal an increased level of Mycobacterium leprae strains resistant to individual components of combined drug therapy. The use of next generation sequencing (NGS) has made it possible to identify additional genetic determinants of leprosy resistance to the components of combination drug therapy. The current situation is relevant to antimicrobal drug resistance surveillance by using of quick identification systems for most frequent genetic resistance determinants of Mycobacterium leprae.
The literature search was carried out using keywords in the Scopus, PubMed and RSCI databases.
Collapse
|
8
|
Natarajan P, Priya, Chuskit D. Persulfate-activated charcoal mixture: an efficient oxidant for the synthesis of sulfonated benzo[ d][1,3]oxazines from N-(2-vinylphenyl)amides and thiols in aqueous solution. RSC Adv 2021; 11:15573-15580. [PMID: 35481158 PMCID: PMC9029395 DOI: 10.1039/d1ra02377b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
A series of 2,4-aryl-4-((arylsulfonyl)methyl)-4H-benzo[d][1,3]oxazines in good to excellent yields have directly been obtained from N-(2-vinylphenyl)amides and thiols by employing a mixture of K2S2O8-activated charcoal in aqueous acetonitrile solution at 50 °C. A plausible mechanism for the reaction is reported. It reveals that the reaction follows a radical pathway and the persulfate has been the oxygen source for formation of the sulfone group in the products. It is worth mentioning that this protocol utilizes an easily accessible K2S2O8-activated charcoal mixture and thiols, respectively, as an oxidant and sulfonylating precursors for the first time.
Collapse
Affiliation(s)
- Palani Natarajan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University Chandigarh - 160014 India
| | - Priya
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University Chandigarh - 160014 India
| | - Deachen Chuskit
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University Chandigarh - 160014 India
| |
Collapse
|
9
|
Metabolism of N-nitrosodimethylamine, methylation of macromolecules, and development of hepatic fibrosis in rodent models. J Mol Med (Berl) 2020; 98:1203-1213. [PMID: 32666246 DOI: 10.1007/s00109-020-01950-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis and cirrhosis are chronic diseases affecting liver and a major health problem throughout the world. The hallmark of fibrosis and cirrhosis is inordinate synthesis and deposition of fibril forming collagens in the extracellular matrix of the liver leading to nodule formation and loss of normal architecture. Hepatic stellate cells play a crucial role in the pathogenesis and progression of liver fibrosis through secretion of several potent fibrogenic factors that trigger hepatocytes, portal fibrocytes, and bone marrow-derived fibroblasts to synthesize and deposit several connective tissue proteins, especially collagens between hepatocytes and space of Disse. Regulation of various events involved in the activation and transformation of hepatic stellate cells seems to be an appropriate strategy for the arrest of hepatic fibrosis and liver cirrhosis. In order to unravel the molecular mechanisms involved in the pathogenesis and progression of hepatic fibrosis, to determine proper and potent targets to arrest fibrosis, and to discover powerful therapeutic agents, a quick and reproducible animal model of hepatic fibrosis and liver cirrhosis that display all decompensating features of human condition is required. This review thoroughly evaluates the biochemical, histological, and pathological features of N-nitrosodimethylamine-induced model of liver injury, hepatic fibrosis, and early cirrhosis in rodents.
Collapse
|