1
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Lan Y, Qiu X, Xu Y. Expression, Purification and Characterization of Recombinant Disintegrin from Gloydius Brevicaudus Venom in Escherichia Coli. Protein J 2024; 43:603-612. [PMID: 38734856 DOI: 10.1007/s10930-024-10198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 05/13/2024]
Abstract
Disintegrins, a family of snake venom protein, which are capable of modulating the activity of integrins that play a fundamental role in the regulation of many physiological and pathological processes. The main purpose of this study is to obtain the recombinant disintegrin (r-DI) and evaluate its biological activity. In this study, we explored a high-level expression prokaryotic system and purification strategy for r-DI. Then, r-DI was treated to assay effects on cell growth, migration, and invasion. The affinity for the interactions of r-DI with integrin was determined using Surface plasmon resonance (SPR) analyses. The r-DI can be expressed in Escherichia coli and purified by one-step chromatography. The r-DI can inhibit B16F10 cells proliferation, migration, and invasion. Also, we found that r-DI could interact with the integrin αIIbβ3 (GPIIb/IIIa). The r-DI can be expressed, purified, characterized through functional assays, and can also maintain strong biological activities. Thus, this study showed potential therapeutic effects of r-DI for further functional and structural studies.
Collapse
Affiliation(s)
- Yinxiang Lan
- Department of Pharmacy, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, FuJian Medical University, Fuzhou, Fujian, China
| | - Xiuliang Qiu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yunlu Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
- Center of Translational Hematology of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Galicka A, Szoka Ł, Radziejewska I, Marcinkiewicz C. Effect of Dimeric Disintegrins Isolated from Vipera lebetina obtusa Venom on Glioblastoma Cellular Responses. Cancers (Basel) 2023; 15:4805. [PMID: 37835499 PMCID: PMC10572073 DOI: 10.3390/cancers15194805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Integrins play a fundamental role in the migration and invasiveness of glioblastoma (GBM) cells, making them suitable targets for innovative cancer therapy. The aim of this study was to evaluate the effect of the RGD homodimeric disintegrin VLO4, isolated from Vipera lebetina obtusa venom, on the adhesion, spreading, migration, and survival of LBC3, LN18, and LN229 cell lines. This disintegrin, as a potent antagonist for α5β1 integrin, showed pro-adhesive properties for these cell lines, the highest for LN229 and the lowest for LBC3. Glioblastoma cells displayed significant differences in the spreading on the immobilized VLO4 and the natural α5β1 integrin ligand, fibronectin. Solubilized VLO4 showed different cytotoxicity and pro-apoptotic properties among tested cell lines, with the highest against LN18 and none against LN229. Moreover, VLO4 revealed an inhibitory effect on the migration of LBC3 and LN18 cell lines, in contrast to LN229 cells, which were not sensitive to this disintegrin. However, LN229 migration was impaired by VLO5, a disintegrin antagonistic to integrin α9β1, used in combination with VLO4. A possible mechanism of action of VLO4 may be related to the downregulation of α5β1 integrin subunit expression, as revealed by Western blot. VLO4 also inhibited cell proliferation and induced caspase-dependent apoptosis in LBC3 and LN18 cell lines. These results indicate that targeting α5β1 integrin by related VLO4 compounds may be useful in the development of integrin-targeted therapy for glioblastoma.
Collapse
Affiliation(s)
- Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Łukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Cezary Marcinkiewicz
- Department of Bioengineering, Temple University CoE, Philadelphia, PA 19406, USA
| |
Collapse
|
4
|
Limam I, Abdelkarim M, El Ayeb M, Crepin M, Marrakchi N, Di Benedetto M. Disintegrin-like Protein Strategy to Inhibit Aggressive Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:12219. [PMID: 37569595 PMCID: PMC10418936 DOI: 10.3390/ijms241512219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Venoms are a rich source of bioactive compounds, and among them is leberagin-C (Leb-C), a disintegrin-like protein derived from the venom of Macrovipera lebetina transmediterrannea snakes. Leb-C has shown promising inhibitory effects on platelet aggregation. Previous studies have demonstrated that this SECD protein specifically targets α5β1, αvβ3, and αvβ6 integrins through a mimic mechanism of RGD disintegrins. In our current study, we focused on exploring the potential effects of Leb-C on metastatic breast cancer. Our findings revealed that Leb-C disrupted the adhesion, migration, and invasion capabilities of MDA-MB-231 breast cancer cells and its highly metastatic D3H2LN sub-population. Additionally, we observed significant suppression of adhesion, migration, and invasion of human umbilical vein endothelial cells (HUVECs). Furthermore, Leb-C demonstrated a strong inhibitory effect on fibroblast-growth-factor-2-induced proliferation of HUVEC. We conducted in vivo experiments using nude mice and found that treatment with 2 µM of Leb-C resulted in a remarkable 73% reduction in D3H2LN xenograft tumor size. Additionally, quantification of intratumor microvessels revealed a 50% reduction in tumor angiogenesis in xenograft after 21 days of twice-weekly treatment with 2 µM of Leb-C. Collectively, these findings suggest the potential utility of this disintegrin-like protein for inhibiting aggressive and resistant metastatic breast cancer.
Collapse
Affiliation(s)
- Inès Limam
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Mohamed Abdelkarim
- INSERM Unité 553, Laboratoire d’Hémostase, Endothélium et Angiogenèse, Hôpital Saint-Louis, 75010 Paris, France; (M.A.)
- LR99ES10, Faculty of Medicine of Tunis, Tunis El Manar University, 1 Rue Djebal Lakhdar, Tunis 1006, Tunisia
| | - Mohamed El Ayeb
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Michel Crepin
- INSERM Unité 553, Laboratoire d’Hémostase, Endothélium et Angiogenèse, Hôpital Saint-Louis, 75010 Paris, France; (M.A.)
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur of Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Mélanie Di Benedetto
- IUT of Saint-Denis, Department HSE, Université Paris 13, UMRS941 SMBH, 1 Rue de Chablis, 93000 Bobigny, France
| |
Collapse
|
5
|
Chen W, Yu H, Sun C, Dong M, Zhao N, Wang Y, Yu K, Zhang J, Xu N, Liu W. γ-Bungarotoxin impairs the vascular endothelial barrier function by inhibiting integrin α5. Toxicol Lett 2023; 383:177-191. [PMID: 37392970 DOI: 10.1016/j.toxlet.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
γ-bungarotoxin (γ-BGT) is an RGD motif-containing protein, derived from the venom of Bungarus multicinctus, leading to acute death in mice. These RGD motif-containing proteins from snake venom belonging to the disintegrin family can interfere with vascular endothelial homeostasis by directly binding cell surface integrins. Targeting integrins that generate vascular endothelial dysfunction may contribute to γ-BGT poisoning, however, the underlying mechanisms have not been investigated in detail. In this study, the results showed that γ-BGT played a role in -promoting the permeability of the vascular endothelial barrier. Depending on its selective binding to integrin α5 in vascular endothelium (VE), γ-BGT initiated downstream events, including focal adhesion kinase dephosphorylation and cytoskeleton remodeling, resulting in the intercellular junction interruption. Those alternations facilitated paracellular permeability of VE and barrier dysfunction. Proteomics profiling identified that as a downstream effector of the integrin α5 / FAK signaling pathway cyclin D1 partially mediated the cellular structural changes and barrier dysfunction. Furthermore, VE-released plasminogen activator urokinase and platelet-derived growth factor D could serve as potential diagnostic biomarkers for γ-BGT-induced vascular endothelial dysfunction. Our results indicate the mechanisms through which γ-BGT as a novel disintegrin directly interacts with the VE, with consequences for barrier dysfunction.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, Jilin, PR China
| | - Haotian Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, PR China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, PR China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, PR China
| | - Na Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, PR China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, PR China
| | - Kaikai Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, PR China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, PR China
| | - Na Xu
- Jilin Medical University, Jilin 132013, Jilin, PR China.
| | - Wensen Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji 133002, Jilin, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, PR China.
| |
Collapse
|
6
|
David V, Wermelinger LS, Frattani FS, Lima AGF, Santos YFS, Mourão PADS, Almeida FCL, Kurtenbach E, Zingali RB. rJararacin, a recombinant disintegrin from Bothrops jararaca venom: Exploring its effects on hemostasis and thrombosis. Arch Biochem Biophys 2023; 738:109557. [PMID: 36878339 DOI: 10.1016/j.abb.2023.109557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Integrins are a family of heterodimeric transmembrane receptors which link the extracellular matrix to the cell cytoskeleton. These receptors play a role in many cellular processes: adhesion, proliferation, migration, apoptosis, and platelet aggregation, thus modulating a wide range of scenarios in health and disease. Therefore, integrins have been the target of new antithrombotic drugs. Disintegrins from snake venoms are recognized by the ability to modulate the activity of integrins, such as integrin αIIbβ3, a fundamental platelet glycoprotein, and αvβ3 expressed on tumor cells. For this reason, disintegrins are unique and potential tools for examining integrin-matrix interaction and the development of novel antithrombotic agents. The present study aims to obtain the recombinant form of jararacin and evaluate the secondary structure and its effects on hemostasis and thrombosis. rJararacin was expressed in the Pichia pastoris (P. pastoris) expression system and purified the recombinant protein with a yield of 40 mg/L of culture. The molecular mass (7722 Da) and internal sequence were confirmed by mass spectrometry. Structure and folding analysis were obtained by Circular Dichroism and 1H Nuclear Magnetic Resonance spectra. Disintegrin structure reveals properly folded with the presence of β-sheet structure. rJararacin significantly demonstrated inhibition of the adhesion of B16F10 cells and platelets to the fibronectin matrix under static conditions. rJararacin inhibited platelet aggregation induced by ADP (IC50 95 nM), collagen (IC50 57 nM), and thrombin (IC50 22 nM) in a dose-dependent manner. This disintegrin also inhibited 81% and 94% of the adhesion of platelets to fibrinogen and collagen under continuous flow, respectively. In addition, rjararacin efficaciously prevents platelet aggregation in vitro and ex vivo with rat platelets and thrombus occlusion at an effective dose (5 mg/kg). The data here provides evidence that rjararacin possesses the potential as an αIIbβ3 antagonist, capable of preventing arterial thrombosis.
Collapse
Affiliation(s)
- Victor David
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Luciana Serrão Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Flávia Serra Frattani
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Antonio Gilclêr Ferreira Lima
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Yasmyn Fernandes Silva Santos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Paulo Antônio de Souza Mourão
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Fabio Ceneviva Lacerda Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| |
Collapse
|
7
|
Bialves TS, Bastos Junior CLQ, Cordeiro MF, Boyle RT. Snake venom, a potential treatment for melanoma. A systematic review. Int J Biol Macromol 2023; 231:123367. [PMID: 36690229 DOI: 10.1016/j.ijbiomac.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma. The present study aimed to carry out a systematic review identifying snake venom proteins and peptides described in the literature with antitumor, antimetastatic, or antiangiogenic effects on melanoma and determine the mechanisms of action that lead to these anti-tumor effects. Snake venoms contain proteins and peptides which are antiaggregant, antimetastatic, and antiangiogenic. The in vivo results are encouraging, considering the reduction of metastases and tumor size after treatment. In addition to these results, it was reported that these venom compounds could act in combination with chemotherapeutics (Acurhagin-C; Macrovipecetin), sensitizing and preparing tumor cells for treatment. There is a consensus that snake venom is a promising strategy for the improvement of antimelanoma therapies, but it has been little explored in the current context, combined with inhibitors, immunotherapy or tumor microenvironment, for example. We suggest Lebein as a candidate for combination therapy with BRAF inhibitors.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Claudio L Q Bastos Junior
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina - UNOESC, Rua Roberto Trompovski 224, Joaçaba, Santa Catarina, CEP 89600-000, Brazil.
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| |
Collapse
|
8
|
Zhu J, Li X, Gao W, Jing J. Integrin Targeting Enhances the Antimelanoma Effect of Annexin V in Mice. Int J Mol Sci 2023; 24:ijms24043859. [PMID: 36835282 PMCID: PMC9959236 DOI: 10.3390/ijms24043859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Malignant melanoma, an increasingly common form of skin cancer, is a major threat to public health, especially when the disease progresses past skin lesions to the stage of advanced metastasis. Targeted drug development is an effective strategy for the treatment of malignant melanoma. In this work, a new antimelanoma tumor peptide, the lebestatin-annexin V (designated LbtA5) fusion protein, was developed and synthesized by recombinant DNA techniques. As a control, annexin V (designated ANV) was also synthesized by the same method. The fusion protein combines annexin V, which specifically recognizes and binds phosphatidylserine, with the disintegrin lebestatin (lbt), a polypeptide that specifically recognizes and binds integrin α1β1. LbtA5 was successfully prepared with good stability and high purity while retaining the dual biological activity of ANV and lbt. MTT assays demonstrated that both ANV and LbtA5 could reduce the viability of melanoma B16F10 cells, but the activity of the fusion protein LbtA5 was superior to that of ANV. The tumor volume growth was slowed in a mouse xenograft model treated with ANV and LbtA5, and the inhibitory effect of high concentrations of LbtA5 was significantly better than that of the same dose of ANV and was comparable to that of DTIC, a drug used clinically for melanoma treatment. The hematoxylin and eosin (H&E) staining test showed that ANV and LbtA5 had antitumor effects, but LbtA5 showed a stronger ability to induce melanoma necrosis in mice. Immunohistochemical experiments further showed that ANV and LbtA5 may inhibit tumor growth by inhibiting angiogenesis in tumor tissue. Fluorescence labeling experiments showed that the fusion of ANV with lbt enhanced the targeting of LbtA5 to mouse melanoma tumor tissue, and the amount of target protein in tumor tissue was significantly increased. In conclusion, effective coupling of the integrin α1β1-specific recognition molecule lbt confers stronger biological antimelanoma effects of ANV, which may be achieved by the dual effects of effective inhibition of B16F10 melanoma cell viability and inhibition of tumor tissue angiogenesis. The present study describes a new potential strategy for the application of the promising recombinant fusion protein LbtA5 in the treatment of various cancers, including malignant melanoma.
Collapse
Affiliation(s)
- Jingyi Zhu
- Beijing Key Lab of Biotechnology and Genetic Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiangning Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wenling Gao
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Jing
- Beijing Key Lab of Biotechnology and Genetic Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Correspondence: ; Tel.: +86-010-58802065
| |
Collapse
|
9
|
Platonov O, Nikulina V, Kucheryavyi Y, Gryshchuk V, Stohniy Y, Chernyshenko V, Slominskyi O, Rebriev A, Savchenko K, Garmanchuk L. Purification and characterization of platelet aggregation inhibitor from the venom of Bitis arietans. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disintegrins are the antagonists of integrin receptors that can be found mostly in snakes’ venom. They can inhibit platelet aggregation, thus preventing the formation of blood clots. By blocking the integrin receptors of cancer cells, disintegrins can inhibit proliferation and metastasis. Thus, the search for new sources of disintegrins and development of methods of their purification is an important task of modern biotechnology. This work was dedicated to the purification and characterization of inhibiting polypeptides from Bitis arietans venom. Crude venom of B. arietans was fractionated using ion-exchange chromatography on Q Sepharose followed by size-exclusion chromatography on Superdex 75 using FPLC method. Analysis of molecular weight of protein components was performed using SDS-PAGE and MALDI-TOF analysis on Voyager-DE. Aggregation of platelet-rich plasma (PRP) in the presence of platelet aggregation inhibitor was investigated using aggregometry on the AR2110. MTT test was used for measuring HeLa cells proliferation and survival in vitro. Two-step chromatography allowed us to obtain fraction that contained polypeptides possessing the dose-dependent inhibitory action on adenosine diphosphate (ADP)-induced platelet aggregation in PRP. SDS-PAGE showed that obtained fraction contained two polypeptides with molecular weight 9.0 and 13.67 kDa according to MALDI-TOF analysis. Purified polypeptides inhibited ADP-induced platelet aggregation with IC50 0.09 mg/ml. However, 0.005 mg/ml of fraction suppressed viability of HeLa cells according to MTT test on 20%. Discovered biological effects of fractions allowed us to conclude the possible use of these polypeptides as anti-aggregatory or anti-proliferative agents. Keywords: antithrombotic action, disintegrins, glycoprotein IIb/IIIa, platelets, snake venom
Collapse
|
10
|
How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon 2022; 221:106982. [DOI: 10.1016/j.toxicon.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
|
11
|
Majc B, Novak M, Lah TT, Križaj I. Bioactive peptides from venoms against glioma progression. Front Oncol 2022; 12:965882. [PMID: 36119523 PMCID: PMC9476555 DOI: 10.3389/fonc.2022.965882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Venoms are complex mixtures of different molecules and ions. Among them, bioactive peptides have been found to affect cancer hallmarks, such as cell proliferation, cell invasion, cell migration, and can also modulate the immune response of normal and cancer-bearing organisms. In this article, we review the mechanisms of action on these cancer cell features, focusing on bioactive peptides being developed as potential therapeutics for one of the most aggressive and deadly brain tumors, glioblastoma (GB). Novel therapeutic approaches applying bioactive peptides may contribute to multiple targeting of GB and particularly of GB stem cells. Bioactive peptides selectively target cancer cells without harming normal cells. Various molecular targets related to the effects of bioactive peptides on GB have been proposed, including ion channels, integrins, membrane phospholipids and even immunomodulatory treatment of GB. In addition to therapy, some bioactive peptides, such as disintegrins, can also be used for diagnostics or are used as labels for cytotoxic drugs to specifically target cancer cells. Given the limitations described in the last section, successful application in cancer therapy is rather low, as only 3.4% of such peptides have been included in clinical trials and have passed successfully phases I to III. Combined approaches of added bioactive peptides to standard cancer therapies need to be explored using advanced GB in vitro models such as organoids. On the other hand, new methods are also being developed to improve translation from research to practice and provide new hope for GB patients and their families.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- *Correspondence: Bernarda Majc, ; Igor Križaj,
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor Križaj
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- *Correspondence: Bernarda Majc, ; Igor Križaj,
| |
Collapse
|
12
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
13
|
Roque-Borda CA, Gualque MWDL, da Fonseca FH, Pavan FR, Santos-Filho NA. Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides. Pharmaceutics 2022; 14:891. [PMID: 35631477 PMCID: PMC9146920 DOI: 10.3390/pharmaceutics14050891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Some diseases of uncontrolled proliferation such as cancer, as well as infectious diseases, are the main cause of death in the world, and their causative agents have rapidly developed resistance to the various existing treatments, making them even more dangerous. Thereby, the discovery of new therapeutic agents is a challenge promoted by the World Health Organization (WHO). Biomacromolecules, isolated or synthesized from a natural template, have therapeutic properties which have not yet been fully studied, and represent an unexplored potential in the search for new drugs. These substances, starting from conglomerates of proteins and other substances such as animal venoms, or from minor substances such as bioactive peptides, help fight diseases or counteract harmful effects. The high effectiveness of these biomacromolecules makes them promising substances for obtaining new drugs; however, their low bioavailability or stability in biological systems is a challenge to be overcome in the coming years with the help of nanotechnology. The objective of this review article is to describe the relationship between the structure and function of biomacromolecules of animal origin that have applications already described using nanotechnology and targeted delivery.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Marcos William de Lima Gualque
- Proteomics Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fauller Henrique da Fonseca
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (C.A.R.-B.); (F.R.P.)
| | - Norival Alves Santos-Filho
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| |
Collapse
|
14
|
Vasconcelos AA, Estrada JC, David V, Wermelinger LS, Almeida FCL, Zingali RB. Structure-Function Relationship of the Disintegrin Family: Sequence Signature and Integrin Interaction. Front Mol Biosci 2021; 8:783301. [PMID: 34926583 PMCID: PMC8678471 DOI: 10.3389/fmolb.2021.783301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Disintegrins are small cysteine-rich proteins found in a variety of snake venom. These proteins selectively modulate integrin function, heterodimeric receptors involved in cell-cell and cell-matrix interaction that are widely studied as therapeutic targets. Snake venom disintegrins emerged from the snake venom metalloproteinase and are classified according to the sequence size and number of disulfide bonds. Evolutive structure and function diversification of disintegrin family involves a stepwise decrease in the polypeptide chain, loss of cysteine residues, and selectivity. Since the structure elucidation of echistatin, the description of the structural properties of disintegrins has allowed the investigation of the mechanisms involved in integrin-cell-extracellular matrix interaction. This review provides an analysis of the structures of all family groups enabling the description of an expanded classification of the disintegrin family in seven groups. Each group presents a particular disulfide pattern and sequence signatures, facilitating the identification of new disintegrins. The classification was based on the disintegrin-like domain of the human metalloproteinase (ADAM-10). We also present the sequence and structural signatures important for disintegrin-integrin interaction, unveiling the relationship between the structure and function of these proteins.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge C Estrada
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2021; 206:1-13. [PMID: 34896407 DOI: 10.1016/j.toxicon.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The potential biotechnological and biomedical applications of the animal venom components are widely recognized. Indeed, many components have been used either as drugs or as templates/prototypes for the development of innovative pharmaceutical drugs, among which many are still used for the treatment of human diseases. A specific South American rattlesnake, named Crotalus durissus terrificus, shows a venom composition relatively simpler compared to any viper or other snake species belonging to the Crotalus genus, although presenting a set of toxins with high potential for the treatment of several still unmet human therapeutic needs, as reviewed in this work. In addition to the main toxin named crotoxin, which is under clinical trials studies for antitumoral therapy and which has also anti-inflammatory and immunosuppressive activities, other toxins from the C. d. terrificus venom are also being studied, aiming for a wide variety of therapeutic applications, including as antinociceptive, anti-inflammatory, antimicrobial, antifungal, antitumoral or antiparasitic agent, or as modulator of animal metabolism, fibrin sealant (fibrin glue), gene carrier or theranostic agent. Among these rattlesnake toxins, the most relevant, considering the potential clinical applications, are crotamine, crotalphine and gyroxin. In this narrative revision, we propose to organize and present briefly the updates in the accumulated knowledge on potential therapeutic applications of toxins collectively found exclusively in the venom of this specific South American rattlesnake, with the objective of contributing to increase the chances of success in the discovery of drugs based on toxins.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| | - Joana D Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Camila M Yonamine
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
16
|
Ferreira BA, De Moura FBR, Tomiosso TC, Corrêa NCR, Goulart LR, Barcelos LS, Clissa PB, Araújo FDA. Jararhagin-C, a disintegrin-like protein, improves wound healing in mice through stimulation of M2-like macrophage, angiogenesis and collagen deposition. Int Immunopharmacol 2021; 101:108224. [PMID: 34655846 DOI: 10.1016/j.intimp.2021.108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Jararhagin-C (Jar-C) is a disintegrin-like protein, isolated from the venom of B. jararaca, with affinity for α2β1 integrin and the ability to incite processes such as angiogenesis and collagen deposition in vivo. Thus, we raised the hypothesis that this protein could be used as a therapeutic strategy for stimulating the healing of excisional wounds in mice. Four wounds were made on the back of Swiss mice, treated with daily intradermal injections of PBS (control group) or Jar-C (200 ng). Ten animals from each experimental group were euthanized and the tissue from the wounds and skin around them were collected for further biochemical, histological and molecular analysis. Wounds treated with Jar-C showed a faster closure rate, accompanied by a reduction in neutrophil infiltrate (MPO), pro-inflammatory cytokine levels (TNF, CXCL1 and CCL2) and an accumulation of macrophages in the analyzed tissues. It was also observed a greater expression of genes associated with the phenotype of alternatively activated macrophages (M2). Concomitantly, the administration of Jar-C holds an angiogenic potential, increasing the density of blood vessels and the synthesis of pro-angiogenic cytokines (VEGF and FGF). We also observed an increase in collagen deposition, accompanied by higher levels of the pro-fibrogenic cytokine TGF-β1. Our data suggests Jar-C stimulates wound healing through stimulation of M2-like macrophage, angiogenesis and collagen deposition. Jar-C may be explored as a therapeutic strategy for wound healing, including the treatment of chronic wounds, where processes such as inflammation, angiogenesis and the deposition / remodeling of the matrix constituents are unregulated.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Institute of Biotechnology, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil; Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Francyelle Borges Rosa De Moura
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil; Department of Medical Microbiology and Immunology, University of California-Davis, Davis, USA
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Fernanda de Assis Araújo
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
17
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
18
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|