1
|
Prickaerts J, Kerckhoffs J, Possemis N, van Overveld W, Verbeek F, Grooters T, Sambeth A, Blokland A. Roflumilast and cognition enhancement: A translational perspective. Biomed Pharmacother 2024; 181:117707. [PMID: 39591666 DOI: 10.1016/j.biopha.2024.117707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Cognitive impairment affiliated with neurological disorders has a severe impact on daily life functioning and the quality of life of patients. This is associated with a significant and long-lasting health, social and financial burden, not only for the patients, but also for families and the wider society. However, treatment for cognitive impairment is only available for the indication Alzheimer's disease (AD) and its prodromal stage Mild Cognitive Impairment (MCI), although with major adverse effects, i.e. gastrointestinal effects (drugs) or hemorrhages (antibodies). Roflumilast (selective phosphodiesterase type 4 (PDE4) inhibitor) has been approved as an anti-inflammatory drug for the treatment of chronic obstructive pulmonary disease (COPD), although still 5 % of the patients experience nausea or even vomiting at the approved dose of 500 μg. Nonclinical studies demonstrated that roflumilast appears a promising drug the treat cognitive impairment in healthy rodents and a wide variety of animal models of CNS disorders. These effects are attributed to pro-neuroplasticity and anti-inflammatory effects, which appeared dose dependent. Roflumilast has also been tested in clinical studies and showed cognition enhancement at low dosing (100-250 µg) in healthy adults, healthy elderly, MCI and schizophrenia. Currently, clinical trials are underway for testing the pro-cognitive effects in early AD, post stroke cognitive impairment and Fragile X. Overall, the data showed that roflumilast has beneficial effects on cognitive performance. These cognition-enhancing effects are found at doses that were well-tolerated. Based on this favorable therapeutic window, the repurposing of roflumilast for treating cognitive impairments in CNS diseases may offer an affordable treatment option for patients.
Collapse
Affiliation(s)
| | - Jill Kerckhoffs
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands; Limburg Brain Injury Centre, Maastricht University, Maastricht, Netherlands
| | - Nina Possemis
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands
| | | | | | | | - Anke Sambeth
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Netherlands.
| |
Collapse
|
2
|
Rahman SM, Guo L, Minarovich C, Moon L, Guo A, Luebke AE. Human RAMP1 overexpressing mice are resistant to migraine therapies for motion sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563838. [PMID: 37961568 PMCID: PMC10634789 DOI: 10.1101/2023.10.24.563838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Both enhanced motion-induced nausea and increased static imbalance are observed symptoms in migraine and especially vestibular migraine (VM). Motion-induced nausea and static imbalance were investigated in a mouse model, nestin/hRAMP1, expressing elevated levels of human RAMP1 which enhances CGRP signaling in the nervous system, and compared to non-affected littermate controls. Behavioral surrogates such as the motion- induced thermoregulation and postural sway center of pressure (CoP) assays were used to assess motion sensitivity. Nausea readouts revealed that the nestin/hRAMP1 mouse exhibit an increased sensitivity to CGRP's effects at lower doses compared to unaffected controls. In addition, the nestin/hRAMP1 mice exhibit a higher dynamic range in postural sway than their wildtype counterparts, along with increased sway observed in nestin/hRAMP1 male mice that was not present in male unaffected controls. Results from migraine blocker experiments were challenging to interpret, but the data suggests that olcegepant is incapable of reversing CGRP-induced or endogenous alterations in the nestin/hRAMP1 mice, while rizatriptan was ineffective in both the nestin/hRAMP1 and control mice. The results indicate that overexpression of hRAMP1 leads to heightened endogenous CGRP signaling. Results also suggest that both olcegepant and rizatriptan are ineffective in reducing nausea and sway in this hypersensitive CGRP mouse model. This study suggests that the hypersensitive nestin/hRAMP1 mouse may serve as a model for difficult to treat cases of migraine that exhibit increased motion sensitivity.
Collapse
|
3
|
Douma EH, Stoop J, Lingl MVR, Smidt MP, van der Heide LP. Phosphodiesterase inhibition and Gucy2C activation enhance tyrosine hydroxylase Ser40 phosphorylation and improve 6-hydroxydopamine-induced motor deficits. Cell Biosci 2024; 14:132. [PMID: 39456033 PMCID: PMC11515495 DOI: 10.1186/s13578-024-01312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the nigrostriatal pathway, leading to dopamine deficiency and motor impairments. Current treatments, such as L-DOPA, provide symptomatic relief but result in off-target effects and diminished efficacy over time. This study explores an alternative approach by investigating the activation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Specifically, we explore the effects of phosphodiesterase (PDE) inhibition and guanylate cyclase-C (GUCY2C) activation on tyrosine hydroxylase Ser40 phosphorylation and their impact on motor behavior in a 6-hydroxydopamine (6-OHDA) Parkinson's disease model. RESULTS Our findings demonstrate that increasing cyclic nucleotide levels through PDE inhibition and GUCY2C activation significantly enhances tyrosine hydroxylase Ser40 phosphorylation. In a Pitx3-deficient mouse model, which mimics the loss of dopaminergic neurons seen in Parkinson's disease, Ser40 phosphorylation remained manipulable despite reduced tyrosine hydroxylase protein levels. Moreover, we observed no evidence of tyrosine hydroxylase degradation due to Ser40 phosphorylation, challenging previous reports. Furthermore, both PDE inhibition and GUCY2C activation resulted in improved motor behavior in the 6-OHDA Parkinson's disease mouse model, highlighting the potential therapeutic benefits of these approaches. CONCLUSIONS This study underscores the therapeutic potential of enhancing tyrosine hydroxylase Ser40 phosphorylation to improve motor function in Parkinson's disease. Both PDE inhibition and GUCY2C activation represent promising non-invasive strategies to modulate endogenous dopamine biosynthesis and address motor deficits. These findings suggest that targeting cyclic nucleotide pathways could lead to novel therapeutic approaches, either as standalone treatments or in combination with existing therapies like L-DOPA, aiming to provide more durable symptom relief and potentially mitigate neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Erik H Douma
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Parkinnova Therapeutics B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jesse Stoop
- Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Matthijs V R Lingl
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Room C3.104, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E. Phosphodiesterase-4 Inhibition in Parkinson's Disease: Molecular Insights and Therapeutic Potential. Cell Mol Neurobiol 2023; 43:2713-2741. [PMID: 37074485 PMCID: PMC11410141 DOI: 10.1007/s10571-023-01349-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Clinicians and researchers are exploring safer and novel treatment strategies for treating the ever-prevalent Parkinson's disease (PD) across the globe. Several therapeutic strategies are used clinically for PD, including dopamine replacement therapy, DA agonists, MAO-B blockers, COMT blockers, and anticholinergics. Surgical interventions such as pallidotomy, particularly deep brain stimulation (DBS), are also employed. However, they only provide temporal and symptomatic relief. Cyclic adenosine monophosphate (cAMP) is one of the secondary messengers involved in dopaminergic neurotransmission. Phosphodiesterase (PDE) regulates cAMP and cGMP intracellular levels. PDE enzymes are subdivided into families and subtypes which are expressed throughout the human body. PDE4 isoenzyme- PDE4B subtype is overexpressed in the substantia nigra of the brain. Various studies have implicated multiple cAMP-mediated signaling cascades in PD, and PDE4 is a common link that can emerge as a neuroprotective and/or disease-modifying target. Furthermore, a mechanistic understanding of the PDE4 subtypes has provided perceptivity into the molecular mechanisms underlying the adverse effects of phosphodiesterase-4 inhibitors (PDE4Is). The repositioning and development of efficacious PDE4Is for PD have gained much attention. This review critically assesses the existing literature on PDE4 and its expression. Specifically, this review provides insights into the interrelated neurological cAMP-mediated signaling cascades involving PDE4s and the potential role of PDE4Is in PD. In addition, we discuss existing challenges and possible strategies for overcoming them.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| |
Collapse
|
5
|
Irelan D, Boyd A, Fiedler E, Lochmaier P, McDonough W, Aragon IV, Rachek L, Abou Saleh L, Richter W. Acute PDE4 Inhibition Induces a Transient Increase in Blood Glucose in Mice. Int J Mol Sci 2023; 24:ijms24043260. [PMID: 36834669 PMCID: PMC9963939 DOI: 10.3390/ijms24043260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
cAMP-phosphodiesterase 4 (PDE4) inhibitors are currently approved for the treatment of inflammatory diseases. There is interest in expanding the therapeutic application of PDE4 inhibitors to metabolic disorders, as their chronic application induces weight loss in patients and animals and improves glucose handling in mouse models of obesity and diabetes. Unexpectedly, we have found that acute PDE4 inhibitor treatment induces a temporary increase, rather than a decrease, in blood glucose levels in mice. Blood glucose levels in postprandial mice increase rapidly upon drug injection, reaching a maximum after ~45 min, and returning to baseline within ~4 h. This transient blood glucose spike is replicated by several structurally distinct PDE4 inhibitors, suggesting that it is a class effect of PDE4 inhibitors. PDE4 inhibitor treatment does not reduce serum insulin levels, and the subsequent injection of insulin potently reduces PDE4 inhibitor-induced blood glucose levels, suggesting that the glycemic effects of PDE4 inhibition are independent of changes in insulin secretion and/or sensitivity. Conversely, PDE4 inhibitors induce a rapid reduction in skeletal muscle glycogen levels and potently inhibit the uptake of 2-deoxyglucose into muscle tissues. This suggests that reduced glucose uptake into muscle tissue is a significant contributor to the transient glycemic effects of PDE4 inhibitors in mice.
Collapse
Affiliation(s)
- Daniel Irelan
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Edward Fiedler
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Peter Lochmaier
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ileana V. Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lyudmila Rachek
- Department of Pharmacology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
6
|
Non-Selective PDE4 Inhibition Induces a Rapid and Transient Decrease of Serum Potassium in Mice. BIOLOGY 2022; 11:biology11111582. [PMID: 36358283 PMCID: PMC9687940 DOI: 10.3390/biology11111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Inhibitors of phosphodiesterase 4 (PDE4), a group of isoenzymes that hydrolyze and inactivate the second messenger cAMP, produce promising therapeutic benefits, including anti-inflammatory and memory-enhancing effects. Here, we report that, unexpectedly, PDE4 inhibitors also reduce serum potassium levels in mice. As both the total potassium content of the body, as well as the distribution of potassium between intra- and extracellular compartments, are critical for normal cellular functions, we further explored this observation. Several structurally distinct PDE4 inhibitors reduce serum potassium levels in mice, suggesting it is a class effect of these drugs. Serum potassium levels decrease within 15 min of drug injection, suggesting that PDE4 inhibition lowers serum potassium levels by promoting a transcellular shift of potassium from the blood into cells. This shift is a characteristically fast process, compared to a loss of total-body potassium via the kidneys or digestive tract (e.g., diarrhea). Indeed, stimulating cAMP synthesis with β-adrenoceptor agonists is known to rapidly shift potassium into cells, and PDE4 inhibitors appear to mimic this process by preventing PDE4-mediated cAMP degradation. Our findings reveal that the various acute physiologic effects of PDE4 inhibitors are paralleled and/or may be affected by reduced serum potassium levels. Abstract The analysis of blood samples from mice treated with the PDE4 inhibitor Roflumilast revealed an unexpected reduction in serum potassium levels, while sodium and chloride levels were unaffected. Treatment with several structurally distinct PAN-PDE4 inhibitors, including Roflumilast, Rolipram, RS25344, and YM976 dose-dependently reduced serum potassium levels, indicating the effect is a class-characteristic property. PDE4 inhibition also induces hypothermia and hypokinesia in mice. However, while general anesthesia abrogates these effects of PDE4 inhibitors, potassium levels decrease to similar extents in both awake as well as in fully anesthetized mice. This suggests that the hypokalemic effects of PDE4 inhibitors occur independently of hypothermia and hypokinesia. PDE4 inhibition reduces serum potassium within 15 min of treatment, consistent with a rapid transcellular shift of potassium. Catecholamines promote the uptake of potassium into the cell via increased cAMP signaling. PDE4 appears to modulate these adrenoceptor-mediated effects, as PDE4 inhibition has no additional effects on serum potassium in the presence of saturating doses of the β-adrenoceptor agonist Isoprenaline or the α2-blocker Yohimbine, and is partially blocked by pre-treatment with the β-blocker Propranolol. Together, these data suggest that PDE4 inhibitors reduce serum potassium levels by modulating the adrenergic regulation of cellular potassium uptake.
Collapse
|
7
|
Assessment of PDE4 Inhibitor-Induced Hypothermia as a Correlate of Nausea in Mice. BIOLOGY 2021; 10:biology10121355. [PMID: 34943270 PMCID: PMC8698290 DOI: 10.3390/biology10121355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023]
Abstract
Simple Summary Type 4 cAMP-phosphodiesterases (PDE4s) comprise a family of four isoenzymes, PDE4A to D, that hydrolyze and inactivate the second messenger cAMP. Non/PAN-selective PDE4 inhibitors, which inhibit all four PDE4 subtypes simultaneously, produce many promising therapeutic benefits, such as anti-inflammatory or cognition- and memory-enhancing effects. However, unwanted side effects, principally, nausea, diarrhea, and emesis, have long hampered their clinical and commercial success. Targeting individual PDE4 subtypes has been proposed for developing drugs with an improved safety profile, but which PDE4 subtype(s) is/are actually responsible for nausea and emesis remains ill-defined. Based on the observation that nausea is often accompanied by hypothermia in humans and other mammals, we used the measurement of core body temperatures of mice as a potential correlate of nausea induced by PDE4 inhibitors in humans. We find that selective inactivation of any of the four PDE4 subtypes did not change the body temperature of mice, suggesting that PAN-PDE4 inhibitor-induced hypothermia (and hence nausea in humans) requires the simultaneous inhibition of multiple PDE4 subtypes. This finding contrasts with prior reports that proposed PDE4D as the subtype mediating these side effects of PDE4 inhibitors and suggests that subtype-selective inhibitors that target any individual PDE4 subtype, including PDE4D, may not cause nausea. Abstract Treatment with PAN-PDE4 inhibitors has been shown to produce hypothermia in multiple species. Given the growing body of evidence that links nausea and emesis to disturbances in thermoregulation in mammals, we explored PDE4 inhibitor-induced hypothermia as a novel correlate of nausea in mice. Using knockout mice for each of the four PDE4 subtypes, we show that selective inactivation of individual PDE4 subtypes per se does not produce hypothermia, which must instead require the concurrent inactivation of multiple (at least two) PDE4 subtypes. These findings contrast with the role of PDE4s in shortening the duration of α2-adrenoceptor-dependent anesthesia, a behavioral surrogate previously used to assess the emetic potential of PDE4 inhibitors, which is exclusively affected by inactivation of PDE4D. These different outcomes are rooted in the distinct molecular mechanisms that drive these two paradigms; acting as a physiologic α2-adrenoceptor antagonist produces the effect of PDE4/PDE4D inactivation on the duration of α2-adrenoceptor-dependent anesthesia, but does not mediate the effect of PDE4 inhibitors on body temperature in mice. Taken together, our findings suggest that selective inhibition of any individual PDE4 subtype, including inhibition of PDE4D, may be free of nausea and emesis.
Collapse
|
8
|
Vilhena ER, Bonato JM, Schepers M, Kunieda JKC, Milani H, Vanmierlo T, Prickaerts J, de Oliveira RMW. Positive effects of roflumilast on behavior, neuroinflammation, and white matter injury in mice with global cerebral ischemia. Behav Pharmacol 2021; 32:459-471. [PMID: 34320520 DOI: 10.1097/fbp.0000000000000640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibition of phosphodiesterase 4 (PDE4) is a promising pharmacological strategy for the treatment of cerebral ischemic conditions. To increase the relevance and increase the translational value of preclinical studies, it is important to conduct experiments using different animal species and strains, different animal models, and to evaluate long-term functional outcomes after cerebral ischemia. In the present study, the effects of the selective PDE4 inhibitor roflumilast were evaluated in vivo and in vitro. Balb/c mice were subjected to bilateral common carotid artery occlusion (BCCAO) and tested during 21 days in multiple behavioral tasks to investigate the long-term effects of roflumilast on functional recovery. The effects of roflumilast were also investigated on hippocampal cell loss, white matter injury, and expression of neuroinflammatory markers. Roflumilast prevented cognitive and emotional deficits induced by BCCAO in mice. Roflumilast also prevented neurodegeneration and reduced the white matter damage in the brain of ischemic animals. Besides, roflumilast decreased Iba-1 (microglia marker) levels and increased Arginase-1 (Arg-1; microglia M2 phenotype marker) levels in the hippocampus of these mice. Likewise, roflumilast suppressed inducible nitric oxide synthase (microglia M1 phenotype marker) expression and increased Arg-1 levels in a primary mouse microglia culture. These findings support evidence that PDE4 inhibition by roflumilast might be beneficial in cerebral ischemic conditions. The neuroprotective effects of roflumilast appear to be mediated by a decrease in neuroinflammation.
Collapse
Affiliation(s)
- Emanuella R Vilhena
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Melissa Schepers
- Neuroimmune Connect and Repair Lab., Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Juliana K C Kunieda
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| | - Tim Vanmierlo
- Neuroimmune Connect and Repair Lab., Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia M W de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Paraná, Brazil
| |
Collapse
|
9
|
Abou Saleh L, Boyd A, Aragon IV, Koloteva A, Spadafora D, Mneimneh W, Barrington RA, Richter W. Ablation of PDE4B protects from Pseudomonas aeruginosa-induced acute lung injury in mice by ameliorating the cytostorm and associated hypothermia. FASEB J 2021; 35:e21797. [PMID: 34383981 DOI: 10.1096/fj.202100495r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa is a frequent cause of hospital-acquired lung infections characterized by hyperinflammation, antibiotic resistance, and high morbidity/mortality. Here, we show that the genetic ablation of one cAMP-phosphodiesterase 4 subtype, PDE4B, is sufficient to protect mice from acute lung injury induced by P aeruginosa infection as it reduces pulmonary and systemic levels of pro-inflammatory cytokines, as well as pulmonary vascular leakage and mortality. Surprisingly, despite dampening immune responses, bacterial clearance in the lungs of PDE4B-KO mice is significantly improved compared to WT controls. In wildtypes, P aeruginosa-infection produces high systemic levels of several cytokines, including TNF-α, IL-1β, and IL-6, that act as cryogens and render the animals hypothermic. This, in turn, diminishes their ability to clear the bacteria. Ablation of PDE4B curbs both the initial production of acute response cytokines, including TNF-α and IL-1β, as well as their downstream signaling, specifically the induction of the secondary-response cytokine IL-6. This synergistic action protects PDE4B-KO mice from the deleterious effects of the P aeruginosa-induced cytostorm, while concurrently improving bacterial clearance, rather than being immunosuppressive. These benefits of PDE4B ablation are in contrast to the effects resulting from treatment with PAN-PDE4 inhibitors, which have been shown to increase bacterial burden and dissemination. Thus, PDE4B represents a promising therapeutic target in settings of P aeruginosa lung infections.
Collapse
Affiliation(s)
- Lina Abou Saleh
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ileana V Aragon
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Domenico Spadafora
- Department of Microbiology & Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Wadad Mneimneh
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Robert A Barrington
- Department of Microbiology & Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
10
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
11
|
The cAMP-phosphodiesterase 4 (PDE4) controls β-adrenoceptor- and CFTR-dependent saliva secretion in mice. Biochem J 2021; 478:1891-1906. [PMID: 33944911 DOI: 10.1042/bcj20210212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Saliva, while often taken for granted, is indispensable for oral health and overall well-being, as inferred from the significant impairments suffered by patients with salivary gland dysfunction. Here, we show that treatment with several structurally distinct PAN-PDE4 inhibitors, but not a PDE3 inhibitor, induces saliva secretion in mice, indicating it is a class-effect of PDE4 inhibitors. In anesthetized mice, while neuronal regulations are suppressed, PDE4 inhibition potentiates a β-adrenoceptor-induced salivation, that is ablated by the β-blocker Propranolol and is absent from homozygous ΔF508-CFTR mice lacking functional CFTR. These data suggest that PDE4 acts within salivary glands to gate saliva secretion that is contingent upon the cAMP/PKA-dependent activation of CFTR. Indeed, PDE4 contributes the majority of total cAMP-hydrolytic capacity in submandibular-, sublingual-, and parotid glands, the three major salivary glands of the mouse. In awake mice, PDE4 inhibitor-induced salivation is reduced by CFTR deficiency or β-blockers, but also by the muscarinic blocker Atropine, suggesting an additional, central/neuronal mechanism of PDE4 inhibitor action. The PDE4 family comprises four subtypes, PDE4A-D. Ablation of PDE4D, but not PDE4A-C, produced a minor effect on saliva secretion, implying that while PDE4D may play a predominant role, PDE4 inhibitor-induced salivation results from the concurrent inactivation of multiple (at least two) PDE4 subtypes. Taken together, our data reveal a critical role for PDE4/PDE4D in controlling CFTR function in an in vivo model and in inducing salivation, hinting at a therapeutic potential of PDE4 inhibition for cystic fibrosis and conditions associated with xerostomia.
Collapse
|
12
|
Verbruggen L, Sprimont L, Bentea E, Janssen P, Gharib A, Deneyer L, De Pauw L, Lara O, Sato H, Nicaise C, Massie A. Chronic Sulfasalazine Treatment in Mice Induces System x c - - Independent Adverse Effects. Front Pharmacol 2021; 12:625699. [PMID: 34084129 PMCID: PMC8167035 DOI: 10.3389/fphar.2021.625699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Despite ample evidence for the therapeutic potential of inhibition of the cystine/glutamate antiporter system xc− in neurological disorders and in cancer, none of the proposed inhibitors is selective. In this context, a lot of research has been performed using the EMA- and FDA-approved drug sulfasalazine (SAS). Even though this molecule is already on the market for decades as an anti-inflammatory drug, serious side effects due to its use have been reported. Whereas for the treatment of the main indications, SAS needs to be cleaved in the intestine into the anti-inflammatory compound mesalazine, it needs to reach the systemic circulation in its intact form to allow inhibition of system xc−. The higher plasma levels of intact SAS (or its metabolites) might induce adverse effects, independent of its action on system xc−. Some of these effects have however been attributed to system xc− inhibition, calling into question the safety of targeting system xc−. In this study we chronically treated system xc− - deficient mice and their wildtype littermates with two different doses of SAS (160 mg/kg twice daily or 320 mg/kg once daily, i.p.) and studied some of the adverse effects that were previously reported. SAS had a negative impact on the survival rate, the body weight, the thermoregulation and/or stress reaction of mice of both genotypes, and thus independent of its inhibitory action on system xc−. While SAS decreased the total distance travelled in the open-field test the first time the mice encountered the test, it did not influence this parameter on the long-term and it did not induce other behavioral changes such as anxiety- or depressive-like behavior. Finally, no major histological abnormalities were observed in the spinal cord. To conclude, we were unable to identify any undesirable system xc−-dependent effect of chronic administration of SAS.
Collapse
Affiliation(s)
- Lise Verbruggen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsay Sprimont
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Eduard Bentea
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Azzedine Gharib
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Lauren Deneyer
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura De Pauw
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olaya Lara
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Niigata, Japan
| | - Charles Nicaise
- Laboratory Neurodegeneration and Regeneration, URPHyM-NARILIS, Université de Namur, Namur, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Aragon IV, Boyd A, Abou Saleh L, Rich J, McDonough W, Koloteva A, Richter W. Inhibition of cAMP-phosphodiesterase 4 (PDE4) potentiates the anesthetic effects of Isoflurane in mice. Biochem Pharmacol 2021; 186:114477. [PMID: 33609559 DOI: 10.1016/j.bcp.2021.114477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Despite major advances, there remains a need for novel anesthetic drugs or drug combinations with improved efficacy and safety profiles. Here, we show that inhibition of cAMP-phosphodiesterase 4 (PDE4), while not inducing anesthesia by itself, potently enhances the anesthetic effects of Isoflurane in mice. Treatment with several distinct PAN-PDE4 inhibitors, including Rolipram, Piclamilast, Roflumilast, and RS25344, significantly delayed the time-to-righting after Isoflurane anesthesia. Conversely, treatment with a PDE3 inhibitor, Cilostamide, or treatment with the potent, but non-brain-penetrant PDE4 inhibitor YM976, had no effect. These findings suggest that potentiation of Isoflurane hypnosis is a class effect of brain-penetrant PDE4 inhibitors, and that they act by synergizing with Isoflurane in inhibiting neuronal activity. The PDE4 family comprises four PDE4 subtypes, PDE4A to PDE4D. Genetic deletion of any of the four PDE4 subtypes in mice did not affect Isoflurane anesthesia per se. However, PDE4D knockout mice are largely protected from the effect of pharmacologic PDE4 inhibition, suggesting that PDE4D is the predominant, but not the sole PDE4 subtype involved in potentiating Isoflurane anesthesia. Pretreatment with Naloxone or Propranolol alleviated the potentiating effect of PDE4 inhibition, implicating opioid- and β-adrenoceptor signaling in mediating PDE4 inhibitor-induced augmentation of Isoflurane anesthesia. Conversely, stimulation or blockade of α1-adrenergic, α2-adrenergic or serotonergic signaling did not affect the potentiation of Isoflurane hypnosis by PDE4 inhibition. We further show that pretreatment with a PDE4 inhibitor boosts the delivery of bacteria into the lungs of mice after intranasal infection under Isoflurane, thus providing a first example that PDE4 inhibitor-induced potentiation of Isoflurane anesthesia can critically impact animal models and must be considered as a factor in experimental design. Our findings suggest that PDE4/PDE4D inhibition may serve as a tool to delineate the exact molecular mechanisms of Isoflurane anesthesia, which remain poorly understood, and may potentially be exploited to reduce the clinical doses of Isoflurane required to maintain hypnosis.
Collapse
Affiliation(s)
- Ileana V Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Justin Rich
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA.
| |
Collapse
|