1
|
Chen H, Li B, Zhao X, Yang C, Zhou S, Ma W. Cell-free analysis reveals the role of RG/RGG motifs in DDX3X phase separation and their potential link to cancer pathogenesis. Int J Biol Macromol 2024; 279:135251. [PMID: 39222785 DOI: 10.1016/j.ijbiomac.2024.135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The DEAD-box RNA helicase DDX3X is a multifunctional protein involved in RNA metabolism and stress responses. In this study, we investigated the role of RG/RGG motifs in the dynamic process of liquid-liquid phase separation (LLPS) of DDX3X using cell-free assays and explored their potential link to cancer development through bioinformatic analysis. Our results demonstrate that the number, location, and composition of RG/RGG motifs significantly influence the ability of DDX3X to undergo phase separation and form self-aggregates. Mutational analysis revealed that the spacing between RG/RGG motifs and the number of glycine residues within each motif are critical factors in determining the extent of phase separation. Furthermore, we found that DDX3X is co-expressed with the stress granule protein G3BP1 in several cancer types and can undergo co-phase separation with G3BP1 in a cell-free system, suggesting a potential functional interaction between these proteins in phase-separated structures. DDX3X and G3BP1 may interact through their RG/RGG domains and subsequently exert important cellular functions under stress situation. Collectively, our findings provide novel insights into the role of RG/RGG motifs in modulating DDX3X phase separation and their potential contribution to cancer pathogenesis.
Collapse
Affiliation(s)
- Hongran Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Boyang Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyue Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Caini Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Qilu Institute of Technology, Shandong, China.
| |
Collapse
|
2
|
Zhang X, Han L, Hou J, Yang H, Xu H, Li G, Shu Q, Zhu D, Zheng Y, Gao C. Stress granule-localized USP8 potentiates cGAS-mediated type I interferonopathies through deubiquitination of DDX3X. Cell Rep 2024; 43:114248. [PMID: 38795350 DOI: 10.1016/j.celrep.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/27/2024] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) undergoes liquid-liquid phase separation (LLPS) to trigger downstream signaling upon double-stranded DNA (dsDNA) stimulation, and the condensed cGAS colocalizes with stress granules (SGs). However, the molecular mechanism underlying the modulation of cGAS activation by SGs remains elusive. In this study, we show that USP8 is localized to SGs upon dsDNA stimulation and potentiates cGAS-stimulator of interferon genes (STING) signaling. A USP8 inhibitor ameliorates pathological inflammation in Trex1-/- mice. Systemic lupus erythematosus (SLE) databases indicate a positive correlation between USP8 expression and SLE. Mechanistic study shows that the SG protein DDX3X promotes cGAS phase separation and activation in a manner dependent on its intrinsic LLPS. USP8 cleaves K27-linked ubiquitin chains from the intrinsically disordered region (IDR) of DDX3X to enhance its condensation. In conclusion, we demonstrate that USP8 catalyzes the deubiquitination of DDX3X to facilitate cGAS condensation and activation and that inhibiting USP8 is a promising strategy for alleviating cGAS-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Xuejing Zhang
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Lulu Han
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jinxiu Hou
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Huiyu Yang
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Haiyan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Deyu Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
4
|
Zhang H, Mañán-Mejías PM, Miles HN, Putnam AA, MacGillivray LR, Ricke WA. DDX3X and Stress Granules: Emerging Players in Cancer and Drug Resistance. Cancers (Basel) 2024; 16:1131. [PMID: 38539466 PMCID: PMC10968774 DOI: 10.3390/cancers16061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
The DEAD (Asp-Glu-Ala-Asp)-box helicase 3 X-linked (DDX3X) protein participates in many aspects of mRNA metabolism and stress granule (SG) formation. DDX3X has also been associated with signal transduction and cell cycle regulation that are important in maintaining cellular homeostasis. Malfunctions of DDX3X have been implicated in multiple cancers, including brain cancer, leukemia, prostate cancer, and head and neck cancer. Recently, literature has reported SG-associated cancer drug resistance, which correlates with a negative disease prognosis. Based on the connections between DDX3X, SG formation, and cancer pathology, targeting DDX3X may be a promising direction for cancer therapeutics development. In this review, we describe the biological functions of DDX3X in terms of mRNA metabolism, signal transduction, and cell cycle regulation. Furthermore, we summarize the contributions of DDX3X in SG formation and cellular stress adaptation. Finally, we discuss the relationships of DDX3X, SG, and cancer drug resistance, and discuss the current research progress of several DDX3X inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Han Zhang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paula M. Mañán-Mejías
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah N. Miles
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrea A. Putnam
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - William A. Ricke
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
5
|
Cummings TH, Magagnoli J, Sikirzhytskaya A, Tyagin I, Safro I, Wyatt MD, Shtutman M, Sutton SS. Exposure to angiotensin-converting enzyme inhibitors that cross the blood-brain barrier and the risk of dementia among patients with human immunodeficiency virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.16.24301275. [PMID: 38293017 PMCID: PMC10827249 DOI: 10.1101/2024.01.16.24301275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
More than one million people in the United States and over 38 million people worldwide are living with human immunodeficiency virus (HIV) infection. Antiretroviral therapy (ART) greatly improves the health of people living with HIV (PLWH); however, the increased life longevity of PLWH has revealed consequences of HIV-associated comorbidities. HIV can enter the brain and cause inflammation even in individuals with well-controlled HIV infection. The quality of life for PLWH can be compromised by cognitive deficits and memory loss, termed HIV-associated neurological disorders (HAND). HIV-associated dementia is a related but distinct diagnosis. Common causes of dementia in PLWH are similar to the general population and can affect cognition. There is an urgent need to identify treatments for the aging PWLH population. We previously developed AI-based biomedical literature mining systems to uncover a potential novel connection between HAND the renin-angiotensin system (RAAS), which is a pharmacological target for hypertension. RAAS-targeting anti-hypertensives are gaining attention for their protective benefits in several neurocognitive disorders. To our knowledge, the effect of RAAS-targeting drugs on the cognition of PLWH development of dementia has not previously been analyzed. We hypothesized that exposure to angiotensin-converting enzyme inhibitors (ACEi) that cross the blood brain barrier (BBB) reduces the risk/occurrence of dementia in PLWH. We report a retrospective cohort study of electronic health records (EHRs) to examine the proposed hypothesis using data from the United States Department of Veterans Affairs, in which a primary outcome of dementia was measured in controlled cohorts of patients exposed to BBB-penetrant ACEi versus those unexposed to BBB-penetrant ACEi. The results reveal a statistically significant reduction in dementia diagnosis for PLWH exposed to BBB-penetrant ACEi. These results suggest there is a potential protective effect of BBB ACE inhibitor exposure against dementia in PLWH that warrants further investigation.
Collapse
Affiliation(s)
- Tammy H Cummings
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, South Carolina
- College of Pharmacy, University of South Carolina, Department of Clinical Pharmacy & Outcomes Sciences
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, South Carolina
- College of Pharmacy, University of South Carolina, Department of Clinical Pharmacy & Outcomes Sciences
| | | | - Ilya Tyagin
- Department of Computer and Information Sciences, University of Delaware
| | - Ilya Safro
- Department of Computer and Information Sciences, University of Delaware
| | - Michael D Wyatt
- College of Pharmacy, University of South Carolina, Department of Drug Discovery & Biomedical Sciences
| | - Michael Shtutman
- College of Pharmacy, University of South Carolina, Department of Drug Discovery & Biomedical Sciences
| | - S Scott Sutton
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, South Carolina
- College of Pharmacy, University of South Carolina, Department of Clinical Pharmacy & Outcomes Sciences
| |
Collapse
|
6
|
Wang Q, Kohls W, Wills M, Li F, Pang Q, Geng X, Ding Y. A novel stroke rehabilitation strategy and underlying stress granule regulations through inhibition of NLRP3 inflammasome activation. CNS Neurosci Ther 2024; 30:e14405. [PMID: 37580991 PMCID: PMC10805392 DOI: 10.1111/cns.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 08/16/2023] Open
Abstract
OBJECTIVE Dynamic changes in ischemic pathology after stroke suggested a "critical window" of enhanced neuroplasticity immediately after stroke onset. Although physical exercise has long been considered a promising strategy of stroke rehabilitation, very early physical exercise may exacerbate brain injury. Since remote ischemic conditioning (RIC) promotes neuroprotection and neuroplasticity, the present study combined RIC with sequential exercise to establish a new rehabilitation strategy for a better rehabilitative outcome. METHODS A total of 120 adult male Sprague-Dawley rats were used and divided into five groups: (1) sham, (2) stroke, (3) stroke with exercise, (4) stroke with RIC, and (5) stroke with RIC followed by exercise. Brain damage was evaluated by infarct volume, neurological deficit, cell death, and lactate dehydrogenase (LDH) activity. Long-term functional outcomes were determined by grid walk tests, rotarod tests, beam balance tests, forelimb placing tests, and the Morris water maze. Neuroplasticity was evaluated through measurements of both mRNA and protein levels of synaptogenesis (synaptophysin [SYN], post-synaptic density protein-95 [PSD-95], and brain-derived neurotrophic factor [BDNF]) and angiogenesis (vascular endothelial growth factor [VEGF], angiopoietin-1 [Ang-1], and angiopoietin-2 [Ang-2]). Inflammasome activation was measured by concentrations of interleukin-18 (IL-18) and IL-1β detected by enzyme-linked immunosorbent assay (ELISA) kits, mRNA expressions of NLR pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), IL-18 and IL-1β, and protein quantities of NLRP3, ASC, cleaved-caspase-1, gasdermin D-N (GSDMD-N), and IL-18 and IL-1β. Stress granules (SGs), including GTPase-activating protein-binding protein 1 (G3BP1), T cell-restricted intracellular antigen-1 (TIA1), and DEAD-box RNA helicase 3X (DDX3X) were evaluated at mRNA and protein levels. The interactions between DDX3X with NLRP3 or G3BP1 were determined by immunofluorescence and co-immunoprecipitation. RESULTS Early RIC decreased infarct volumes, neurological deficits, cell death, and LDH activity at post-stroke Day 3 (p < 0.05). All treatment groups showed significant improvement in functional outcomes, including sensory, motor, and cognitive functions. RIC and exercise, as compared to RIC or physical exercise alone, had improved functional outcomes after stroke (p < 0.05), as well as synaptogenesis and angiogenesis (p < 0.05). RIC significantly reduced mRNA and protein expressions of NLRP3 (p < 0.05). SGs formation peaked at 0 h after ischemia, then progressively decreased until 24 h postreperfusion, which was reversed by RIC (p < 0.05). The assembly of SGs consumed DDX3X and then inhibited NLRP3 inflammasome activation. CONCLUSIONS RIC followed by exercise induced a better rehabilitation in ischemic rats, while early RIC alleviated ischemia-reperfusion injury via stress-granule-mediated inhibition of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Qingzhu Wang
- China‐America Institute of NeuroscienceBeijing Luhe Hospital, Capital Medical UniversityBeijingChina
| | - Wesley Kohls
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Melissa Wills
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| | - Fengwu Li
- China‐America Institute of NeuroscienceBeijing Luhe Hospital, Capital Medical UniversityBeijingChina
| | - Qi Pang
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
- Department of Neurosurgery, Shandong Provincial HospitalShandong UniversityJinanChina
| | - Xiaokun Geng
- China‐America Institute of NeuroscienceBeijing Luhe Hospital, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
- Department of Neurology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
| | - Yuchuan Ding
- Department of NeurosurgeryWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
7
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
8
|
Luo T, Yang S, Zhao T, Zhu H, Chen C, Shi X, Chen D, Wang K, Jiang K, Xu D, Cheng M, Li J, Li W, Xu W, Zhou L, Jiang M, Xu B. Hepatocyte DDX3X protects against drug-induced acute liver injury via controlling stress granule formation and oxidative stress. Cell Death Dis 2023; 14:400. [PMID: 37407573 DOI: 10.1038/s41419-023-05913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure (ALF). Continuous and prolonged hepatic cellular oxidative stress and liver inflammatory stimuli are key signatures of DILI. DEAD-box helicase 3, X-linked (DDX3X) is a central regulator in pro-survival stress granule (SG) assembly in response to stress signals. However, the role of DDX3X in DILI remains unknown. Herein, we characterized the hepatocyte-specific role of DDX3X in DILI. Human liver tissues of DILI patients and control subjects were used to evaluate DDX3X expression. APAP, CCl4 and TAA models of DILI were established and compared between hepatocyte-specific DDX3X knockout (DDX3XΔhep) and wild-type control (DDX3Xfl/fl) mice. Hepatic expression of DDX3X was significantly decreased in the pathogenesis of DILI compared with controls in human and mice. Compared to DDX3Xfl/fl mice, DDX3XΔhep mice developed significant liver injury in multiple DILI models. DDX3X deficiency aggravates APAP induced oxidative stress and hepatocyte death by affecting the pro-survival stress granule (SG) assembly. Moreover, DDX3X deficiency induces inflammatory responses and causes pronounced macrophage infiltration. The use of targeted DDX3X drug maybe promising for the treatment of DILI in human.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, 710069, China
| | - Suzhen Yang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Tianming Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210008, Jiangsu, China
| | - Hanlong Zhu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Chunyan Chen
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Xiaoxiao Shi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, the Air-Force Military Medical University, Shaanxi, Xi'an, 710032, China
| | - Kai Wang
- Department of Gastroenterology, 949th Hospital of Chinese People's Liberation Army, Xinjiang, Altay, 836500, China
| | - Kang Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China
| | - Dan Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Ming Cheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Juan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Wenting Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China
| | - Weijun Xu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China.
| | - Lin Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China.
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210002, China.
| | - Bing Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing, 210008, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, 710069, China.
| |
Collapse
|
9
|
Martin JL, Dawson SJ, Gale JE. An emerging role for stress granules in neurodegenerative disease and hearing loss. Hear Res 2022; 426:108634. [PMID: 36384053 DOI: 10.1016/j.heares.2022.108634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022]
Abstract
Stress granules (SGs) are membrane-less cytosolic assemblies that form in response to stress (e.g., heat, oxidative stress, hypoxia, viral infection and UV). Composed of mRNA, RNA binding proteins and signalling proteins, SGs minimise stress-related damage and promote cell survival. Recent research has shown that the stress granule response is vital to the cochlea's response to stress. However, emerging evidence suggests stress granule dysfunction plays a key role in the pathophysiology of multiple neurodegenerative diseases, several of which present with hearing loss as a symptom. Hearing loss has been identified as the largest potentially modifiable risk factor for dementia. The underlying reason for the link between hearing loss and dementia remains to be established. However, several possible mechanisms have been proposed including a common pathological mechanism. Here we will review the role of SGs in the pathophysiology of neurodegenerative diseases and explore possible links and emerging evidence that they may play an important role in maintenance of hearing and may be a common mechanism underlying age-related hearing loss and dementia.
Collapse
Affiliation(s)
- Jack L Martin
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London WC1X 8EE, UK.
| |
Collapse
|
10
|
Patel A, Mitrea D, Namasivayam V, Murcko MA, Wagner M, Klein IA. Principles and functions of condensate modifying drugs. Front Mol Biosci 2022; 9:1007744. [PMID: 36483537 PMCID: PMC9725174 DOI: 10.3389/fmolb.2022.1007744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/25/2022] [Indexed: 01/10/2024] Open
Abstract
Biomolecular condensates are compartmentalized communities of biomolecules, which unlike traditional organelles, are not enclosed by membranes. Condensates play roles in diverse cellular processes, are dysfunctional in many disease states, and are often enriched in classically "undruggable" targets. In this review, we provide an overview for how drugs can modulate condensate structure and function by phenotypically classifying them as dissolvers (dissolve condensates), inducers (induce condensates), localizers (alter localization of the specific condensate community members) or morphers (alter the physiochemical properties). We discuss the growing list of bioactive molecules that function as condensate modifiers (c-mods), including small molecules, oligonucleotides, and peptides. We propose that understanding mechanisms of condensate perturbation of known c-mods will accelerate the discovery of a new class of therapies for difficult-to-treat diseases.
Collapse
Affiliation(s)
| | - Diana Mitrea
- Dewpoint Therapeutics, Boston, MA, United States
| | | | | | | | | |
Collapse
|
11
|
Ryan CS, Schröder M. The human DEAD-box helicase DDX3X as a regulator of mRNA translation. Front Cell Dev Biol 2022; 10:1033684. [PMID: 36393867 PMCID: PMC9642913 DOI: 10.3389/fcell.2022.1033684] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 08/27/2023] Open
Abstract
The human DEAD-box protein DDX3X is an RNA remodelling enzyme that has been implicated in various aspects of RNA metabolism. In addition, like many DEAD-box proteins, it has non-conventional functions that are independent of its enzymatic activity, e.g., DDX3X acts as an adaptor molecule in innate immune signalling pathways. DDX3X has been linked to several human diseases. For example, somatic mutations in DDX3X were identified in various human cancers, and de novo germline mutations cause a neurodevelopmental condition now termed 'DDX3X syndrome'. DDX3X is also an important host factor in many different viral infections, where it can have pro-or anti-viral effects depending on the specific virus. The regulation of translation initiation for specific mRNA transcripts is likely a central cellular function of DDX3X, yet many questions regarding its exact targets and mechanisms of action remain unanswered. In this review, we explore the current knowledge about DDX3X's physiological RNA targets and summarise its interactions with the translation machinery. A role for DDX3X in translational reprogramming during cellular stress is emerging, where it may be involved in the regulation of stress granule formation and in mediating non-canonical translation initiation. Finally, we also discuss the role of DDX3X-mediated translation regulation during viral infections. Dysregulation of DDX3X's function in mRNA translation likely contributes to its involvement in disease pathophysiology. Thus, a better understanding of its exact mechanisms for regulating translation of specific mRNA targets is important, so that we can potentially develop therapeutic strategies for overcoming the negative effects of its dysregulation.
Collapse
|
12
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
De Colibus L, Stunnenberg M, Geijtenbeek TB. DDX3X structural analysis: Implications in the pharmacology and innate immunity. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:100-109. [PMID: 35647523 PMCID: PMC9133689 DOI: 10.1016/j.crimmu.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The human DEAD-Box Helicase 3 X-Linked (DDX3X) is an ATP-dependent RNA helicase involved in virtually every step of RNA metabolism, ranging from transcription regulation in the nucleus to translation initiation and stress granule (SG) formation, and plays crucial roles in innate immunity, as well as tumorigenesis and viral infections. This review discusses latest advances in DDX3X biology and structure-function relationship, including the implications of the recent DDX3X crystal structure in complex with double stranded RNA for RNA metabolism, DDX3X involvement in the cross-talk between innate immune responses and cell stress adaptation, and the roles of DDX3X in controlling cell fate. The human DDX3X, an ATP-dependent RNA helicase, plays a central role in a variety of cellular processes involving RNA. DDX3X is implicated in antiviral signalling pathways. DDX3X interacts with full-length NLRP3 and its NACHT domain. The recent crystal structure of DDX3X in complex with dsRNA offers a model for understanding its binding to the HIV-1 TAR hairpin sequence.
Collapse
|
14
|
Castelli LM, Benson BC, Huang WP, Lin YH, Hautbergue GM. RNA Helicases in Microsatellite Repeat Expansion Disorders and Neurodegeneration. Front Genet 2022; 13:886563. [PMID: 35646086 PMCID: PMC9133428 DOI: 10.3389/fgene.2022.886563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Short repeated sequences of 3-6 nucleotides are causing a growing number of over 50 microsatellite expansion disorders, which mainly present with neurodegenerative features. Although considered rare diseases in relation to the relatively low number of cases, these primarily adult-onset conditions, often debilitating and fatal in absence of a cure, collectively pose a large burden on healthcare systems in an ageing world population. The pathological mechanisms driving disease onset are complex implicating several non-exclusive mechanisms of neuronal injury linked to RNA and protein toxic gain- and loss- of functions. Adding to the complexity of pathogenesis, microsatellite repeat expansions are polymorphic and found in coding as well as in non-coding regions of genes. They form secondary and tertiary structures involving G-quadruplexes and atypical helices in repeated GC-rich sequences. Unwinding of these structures by RNA helicases plays multiple roles in the expression of genes including repeat-associated non-AUG (RAN) translation of polymeric-repeat proteins with aggregating and cytotoxic properties. Here, we will briefly review the pathogenic mechanisms mediated by microsatellite repeat expansions prior to focus on the RNA helicases eIF4A, DDX3X and DHX36 which act as modifiers of RAN translation in C9ORF72-linked amyotrophic lateral sclerosis/frontotemporal dementia (C9ORF72-ALS/FTD) and Fragile X-associated tremor/ataxia syndrome (FXTAS). We will further review the RNA helicases DDX5/17, DHX9, Dicer and UPF1 which play additional roles in the dysregulation of RNA metabolism in repeat expansion disorders. In addition, we will contrast these with the roles of other RNA helicases such as DDX19/20, senataxin and others which have been associated with neurodegeneration independently of microsatellite repeat expansions. Finally, we will discuss the challenges and potential opportunities that are associated with the targeting of RNA helicases for the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bridget C Benson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom.,Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.,Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
15
|
The RNA helicase Ded1 regulates translation and granule formation during multiple phases of cellular stress responses. Mol Cell Biol 2021; 42:e0024421. [PMID: 34723653 DOI: 10.1128/mcb.00244-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ded1 is a conserved RNA helicase that promotes translation initiation in steady-state conditions. Ded1 has also been shown to regulate translation during cellular stress and affect the dynamics of stress granules (SGs), accumulations of RNA and protein linked to translation repression. To better understand its role in stress responses, we examined Ded1 function in two different models: DED1 overexpression and oxidative stress. DED1 overexpression inhibits growth and promotes the formation of SGs. A ded1 mutant lacking the low-complexity C-terminal region (ded1-ΔCT), which mediates Ded1 oligomerization and interaction with the translation factor eIF4G1, suppressed these phenotypes, consistent with other stresses. During oxidative stress, a ded1-ΔCT mutant was defective in growth and in SG formation compared to wild-type cells, although SGs were increased rather than decreased in these conditions. Unlike stress induced by direct TOR inhibition, the phenotypes in both models were only partially dependent on eIF4G1 interaction, suggesting an additional contribution from Ded1 oligomerization. Furthermore, examination of the growth defects and translational changes during oxidative stress suggested that Ded1 plays a role during recovery from stress. Integrating these disparate results, we propose that Ded1 controls multiple aspects of translation and RNP dynamics in both initial stress responses and during recovery.
Collapse
|
16
|
Asadi MR, Rahmanpour D, Moslehian MS, Sabaie H, Hassani M, Ghafouri-Fard S, Taheri M, Rezazadeh M. Stress Granules Involved in Formation, Progression and Metastasis of Cancer: A Scoping Review. Front Cell Dev Biol 2021; 9:745394. [PMID: 34604242 PMCID: PMC8485071 DOI: 10.3389/fcell.2021.745394] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The assembly of stress granules (SGs) is a well-known cellular strategy for reducing stress-related damage and promoting cell survival. SGs have become important players in human health, in addition to their fundamental role in the stress response. The critical role of SGs in cancer cells in formation, progression, and metastasis makes sense. Recent researchers have found that several SG components play a role in tumorigenesis and cancer metastasis via tumor-associated signaling pathways and other mechanisms. Gene-ontology analysis revealed the role of these protein components in the structure of SGs. Involvement in the translation process, regulation of mRNA stability, and action in both the cytoplasm and nucleus are among the main features of SG proteins. The present scoping review aimed to consider all studies on the effect of SGs on cancer formation, proliferation, and metastasis and performed based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted before July 2021. Publications were screened, and quantitative and qualitative analysis was performed on the extracted data. Go analysis was performed on seventy-one SGs protein components. Remarkably G3BP1, TIA1, TIAR, and YB1 have the largest share among the proteins considered in the studies. Altogether, this scoping review tries to demonstrate and provide a comprehensive summary of the role of SGs in the formation, progression, and metastasis of cancer by reviewing all studies.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dara Rahmanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassani
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
18
|
RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Microorganisms 2021; 9:microorganisms9061206. [PMID: 34204859 PMCID: PMC8227550 DOI: 10.3390/microorganisms9061206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
DDX3 is a cellular ATP-dependent RNA helicase involved in different aspects of RNA metabolism ranging from transcription to translation and therefore, DDX3 participates in the regulation of key cellular processes including cell cycle progression, apoptosis, cancer and the antiviral immune response leading to type-I interferon production. DDX3 has also been described as an essential cellular factor for the replication of different viruses, including important human threats such HIV-1 or HCV, and different small molecules targeting DDX3 activity have been developed. Indeed, increasing evidence suggests that DDX3 can be considered not only a promising but also a viable target for anticancer and antiviral treatments. In this review, we summarize distinct functional aspects of DDX3 focusing on its participation as a double-edged sword in the host immune response and in the replication cycle of different viruses.
Collapse
|
19
|
Tweedie A, Nissan T. Hiding in Plain Sight: Formation and Function of Stress Granules During Microbial Infection of Mammalian Cells. Front Mol Biosci 2021; 8:647884. [PMID: 33996904 PMCID: PMC8116797 DOI: 10.3389/fmolb.2021.647884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/01/2021] [Indexed: 01/21/2023] Open
Abstract
Stress granule (SG) formation is a host cell response to stress-induced translational repression. SGs assemble with RNA-binding proteins and translationally silent mRNA. SGs have been demonstrated to be both inhibitory to viruses, as well as being subverted for viral roles. In contrast, the function of SGs during non-viral microbial infections remains largely unexplored. A handful of microbial infections have been shown to result in host SG assembly. Nevertheless, a large body of evidence suggests SG formation in hosts is a widespread response to microbial infection. Diverse stresses caused by microbes and their products can activate the integrated stress response in order to inhibit translation initiation through phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). This translational response in other contexts results in SG assembly, suggesting that SG assembly can be a general phenomenon during microbial infection. This review explores evidence for host SG formation in response to bacterial, fungal, and protozoan infection and potential functions of SGs in the host and for adaptations of the pathogen.
Collapse
Affiliation(s)
- Alistair Tweedie
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Tracy Nissan
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
20
|
Garcia-Cabau C, Salvatella X. Regulation of biomolecular condensate dynamics by signaling. Curr Opin Cell Biol 2021; 69:111-119. [PMID: 33578289 DOI: 10.1016/j.ceb.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Biomolecular condensates are mesoscopic biomolecular assemblies devoid of long range order that contribute to important cellular functions. They form reversibly, are stabilized by numerous but relatively weak intermolecular interactions, and their formation can be regulated by various cellular signals including changes in local concentration, post-translational modifications, energy-consuming processes, and biomolecular interactions. Condensates formed by liquid-liquid phase separation are initially liquid but are metastable relative to hydrogels or irreversible solids that have been associated with protein aggregation diseases and are stabilized by stronger, more permanent interactions. As a consequence of this, a series of cellular mechanisms are available to regulate not only biomolecular condensation but also the physical properties of the condensates.
Collapse
Affiliation(s)
- Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|