1
|
Ma T, Ji P, Wu FL, Li CC, Dong JQ, Yang HC, Wei YM, Hua YL. Research on the mechanism of Guanyu Zhixie Granule in intervening gastric ulcers in rats based on network pharmacology and multi-omics. Front Vet Sci 2024; 11:1390473. [PMID: 38835897 PMCID: PMC11149358 DOI: 10.3389/fvets.2024.1390473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Objective Guanyu Zhixie Granule (GYZXG) is a traditional Chinese medicine compound with definite efficacy in intervening in gastric ulcers (GUs). However, the effect mechanisms on GU are still unclear. This study aimed to explore its mechanism against GU based on amalgamated strategies. Methods The comprehensive chemical characterization of the active compounds of GYZXG was conducted using UHPLC-Q/TOF-MS. Based on these results, key targets and action mechanisms were predicted through network pharmacology. GU was then induced in rats using anhydrous ethanol (1 mL/200 g). The intervention effects of GYZXG on GU were evaluated by measuring the inhibition rate of GU, conducting HE staining, and assessing the levels of IL-6, TNF-α, IL-10, IL-4, Pepsin (PP), and epidermal growth factor (EGF). Real-time quantitative PCR (RT-qPCR) was used to verify the mRNA levels of key targets and pathways. Metabolomics, combined with 16S rRNA sequencing, was used to investigate and confirm the action mechanism of GYZXG on GU. The correlation analysis between differential gut microbiota and differential metabolites was conducted using the spearman method. Results For the first time, the results showed that nine active ingredients and sixteen targets were confirmed to intervene in GU when using GYZXG. Compared with the model group, GYZXG was found to increase the ulcer inhibition rate in the GYZXG-M group (p < 0.05), reduce the levels of IL-6, TNF-α, PP in gastric tissue, and increase the levels of IL-10, IL-4, and EGF. GYZXG could intervene in GU by regulating serum metabolites such as Glycocholic acid, Epinephrine, Ascorbic acid, and Linoleic acid, and by influencing bile secretion, the HIF-1 signaling pathway, and adipocyte catabolism. Additionally, GYZXG could intervene in GU by altering the gut microbiota diversity and modulating the relative abundance of Bacteroidetes, Bacteroides, Verrucomicrobia, Akkermansia, and Ruminococcus. The differential gut microbiota was strongly associated with serum differential metabolites. KEGG enrichment analysis indicated a significant role of the HIF-1 signaling pathway in GYZXG's intervention on GU. The changes in metabolites within metabolic pathways and the alterations in RELA, HIF1A, and EGF mRNA levels in RT-qPCR experiments provide further confirmation of this result. Conclusion GYZXG can intervene in GU induced by anhydrous ethanol in rats by regulating gut microbiota and metabolic disorders, providing a theoretical basis for its use in GU intervention.
Collapse
Affiliation(s)
- Ting Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jia-Qi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hao-Chi Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Hutka B, Várallyay A, László SB, Tóth AS, Scheich B, Paku S, Vörös I, Pós Z, Varga ZV, Norman DD, Balogh A, Benyó Z, Tigyi G, Gyires K, Zádori ZS. A dual role of lysophosphatidic acid type 2 receptor (LPAR2) in nonsteroidal anti-inflammatory drug-induced mouse enteropathy. Acta Pharmacol Sin 2024; 45:339-353. [PMID: 37816857 PMCID: PMC10789874 DOI: 10.1038/s41401-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid mediator that has been found to ameliorate nonsteroidal anti-inflammatory drug (NSAID)-induced gastric injury by acting on lysophosphatidic acid type 2 receptor (LPAR2). In this study, we investigated whether LPAR2 signaling was implicated in the development of NSAID-induced small intestinal injury (enteropathy), another major complication of NSAID use. Wild-type (WT) and Lpar2 deficient (Lpar2-/-) mice were treated with a single, large dose (20 or 30 mg/kg, i.g.) of indomethacin (IND). The mice were euthanized at 6 or 24 h after IND treatment. We showed that IND-induced mucosal enteropathy and neutrophil recruitment occurred much earlier (at 6 h after IND treatment) in Lpar2-/- mice compared to WT mice, but the tissue levels of inflammatory mediators (IL-1β, TNF-α, inducible COX-2, CAMP) remained at much lower levels. Administration of a selective LPAR2 agonist DBIBB (1, 10 mg/kg, i.g., twice at 24 h and 30 min before IND treatment) dose-dependently reduced mucosal injury and neutrophil activation in enteropathy, but it also enhanced IND-induced elevation of several proinflammatory chemokines and cytokines. By assessing caspase-3 activation, we found significantly increased intestinal apoptosis in IND-treated Lpar2-/- mice, but it was attenuated after DBIBB administration, especially in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Finally, we showed that IND treatment reduced the plasma activity and expression of autotaxin (ATX), the main LPA-producing enzyme, and also reduced the intestinal expression of Lpar2 mRNA, which preceded the development of mucosal damage. We conclude that LPAR2 has a dual role in NSAID enteropathy, as it contributes to the maintenance of mucosal integrity after NSAID exposure, but also orchestrates the inflammatory responses associated with ulceration. Our study suggests that IND-induced inhibition of the ATX-LPAR2 axis is an early event in the pathogenesis of enteropathy.
Collapse
Affiliation(s)
- Barbara Hutka
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - Anett Várallyay
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szilvia B László
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András S Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
- MTA-SE System Pharmacology Research Group, Budapest, Hungary
| | - Zoltán Pós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Vitória Minzoni de Souza Iacia M, Eduarda Ferraz Mendes M, Cristiny de Oliveira Vieira K, Cristine Marques Ruiz G, José Leopoldo Constantino C, da Silva Martin C, Eloizo Job A, Alborghetti Nai G, Kretli Winkelstroter Eller L. Evaluation of curcumin nanoemulsion effect to prevent intestinal damage. Int J Pharm 2024; 650:123683. [PMID: 38092264 DOI: 10.1016/j.ijpharm.2023.123683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Curcumin has gained great prominence for the prevention and treatment of inflammatory bowel disease. However, studies have reported the low bioavailability of orally administered curcumin. This work aimed to evaluate the characteristics, stability and effects of a curcumin-carrying nanoemulsion in preventing intestinal damage induced by indomethacin. Nanoemulsions containing curcumin were prepared by spontaneous emulsification method and it was characterized by dynamic light scattering (DLS), zeta potential and the morphology was evaluated by scanning electron microscopy (SEM). Its stability was tested under different conditions of pH, temperature at 0, 7, 14, 21 and 28 days. In animal experimentation, 36 male mice of the Mus musculus lineage (C57BL/6) were used. The intestinal inflammation was evaluated based on macroscopic, histopathological and metagenomic analysis. It was found a stable nanoemulsion with a size of 409.8 nm, polydispersion index (PDI) of 0.132 and zeta potential of -18.8 mV. However, these lost charge in pH2, showing instability in acidic media (p < 0.05). In animal experiments, the nanoemulsion did not significantly improve intestinal inflammation. However, the group treated with curcumin nanoemulsion showed a higher relative abundance of the genus Lactobacillus (p < 0.05). In conclusion, the curcumin nanoemulsion was relevant in the modulation of the intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | - Gilia Cristine Marques Ruiz
- Department of Physics, Faculty of Science and Technology, Universidade Estadual Paulista, FCT/UNESP, Presidente Prudente, SP, Brazil
| | - Carlos José Leopoldo Constantino
- Department of Physics, Faculty of Science and Technology, Universidade Estadual Paulista, FCT/UNESP, Presidente Prudente, SP, Brazil
| | - Cibely da Silva Martin
- Department of Physics, Faculty of Science and Technology, Universidade Estadual Paulista, FCT/UNESP, Presidente Prudente, SP, Brazil
| | - Aldo Eloizo Job
- Department of Physics, Faculty of Science and Technology, Universidade Estadual Paulista, FCT/UNESP, Presidente Prudente, SP, Brazil
| | - Gisele Alborghetti Nai
- Master's in Health Sciences - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brazil; Program of Animal Science - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, Brazil
| | - Lizziane Kretli Winkelstroter Eller
- Faculty of Health Sciences - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brazil; Master's in Health Sciences - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brazil; Program of Animal Science - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, Brazil.
| |
Collapse
|
4
|
Kruszewska H, Zawistowska-Rojek A, Tyski S. Do NSAIDs and Other Pain Relief Drugs Can Inhibit the Growth of Lactobacillaceae? Pol J Microbiol 2023; 72:507-513. [PMID: 37816501 PMCID: PMC10725164 DOI: 10.33073/pjm-2023-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) commonly used in clinical practice may cause gastrointestinal injuries and influence the gut microbiota. This study investigated the effects of various NSAIDs and some analgesics on the viability of Lactobacillaceae strains (including probiotic strains) in vitro. It was found that diclofenac, ibuprofen, ketoprofen, dexketoprofen, flurbiprofen, and acetylsalicylic acid inhibited the growth of lactobacilli at a concentration of 0.05-3.2 mg/ml. These MICs of NSAIDs are well above therapeutic plasma concentrations achieved in humans, indicating that the tested drugs should not inhibit the growth of lactobacilli in the human digestive tract.
Collapse
Affiliation(s)
- Hanna Kruszewska
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| | - Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
5
|
Mohamed DI, Abo Nahas HH, Elshaer AM, El-Waseef DAEDA, El-Kharashi OA, Mohamed SMY, Sabry YG, Almaimani RA, Almasmoum HA, Altamimi AS, Ibrahim IAA, Alshawwa SZ, Jaremko M, Emwas AH, Saied EM. Unveiling the interplay between NSAID-induced dysbiosis and autoimmune liver disease in children: insights into the hidden gateway to autism spectrum disorders. Evidence from ex vivo, in vivo, and clinical studies. Front Cell Neurosci 2023; 17:1268126. [PMID: 38026692 PMCID: PMC10644687 DOI: 10.3389/fncel.2023.1268126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorders (ASD) represent a diverse group of neuropsychiatric conditions, and recent evidence has suggested a connection between ASD and microbial dysbiosis. Immune and gastrointestinal dysfunction are associated with dysbiosis, and there are indications that modulating the microbiota could improve ASD-related behaviors. Additionally, recent findings highlighted the significant impact of microbiota on the development of autoimmune liver diseases, and the occurrence of autoimmune liver disease in children with ASD is noteworthy. In the present study, we conducted both an in vivo study and a clinical study to explore the relationship between indomethacin-induced dysbiosis, autoimmune hepatitis (AIH), and the development of ASD. Our results revealed that indomethacin administration induced intestinal dysbiosis and bacterial translocation, confirmed by microbiological analysis showing positive bacterial translocation in blood cultures. Furthermore, indomethacin administration led to disturbed intestinal permeability, evidenced by the activation of the NLRP3 inflammasomes pathway and elevation of downstream biomarkers (TLR4, IL18, caspase 1). The histological analysis supported these findings, showing widened intestinal tight junctions, decreased mucosal thickness, inflammatory cell infiltrates, and collagen deposition. Additionally, the disturbance of intestinal permeability was associated with immune activation in liver tissue and the development of AIH, as indicated by altered liver function, elevated ASMA and ANA in serum, and histological markers of autoimmune hepatitis. These results indicate that NSAID-induced intestinal dysbiosis and AIH are robust triggers for ASD existence. These findings were further confirmed by conducting a clinical study that involved children with ASD, autoimmune hepatitis (AIH), and a history of NSAID intake. Children exposed to NSAIDs in early life and complicated by dysbiosis and AIH exhibited elevated serum levels of NLRP3, IL18, liver enzymes, ASMA, ANA, JAK1, and IL6. Further, the correlation analysis demonstrated a positive relationship between the measured parameters and the severity of ASD. Our findings suggest a potential link between NSAIDs, dysbiosis-induced AIH, and the development of ASD. The identified markers hold promise as indicators for early diagnosis and prognosis of ASD. This research highlights the importance of maintaining healthy gut microbiota and supports the necessity for further investigation into the role of dysbiosis and AIH in the etiology of ASD.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Asmaa M. Elshaer
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Soha M. Y. Mohamed
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yasmine Gamal Sabry
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A. Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulmalik S. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Advanced Nanofabrication Imaging and Characterization Center, King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Ramírez-Tejero JA, Durán-González E, Martínez-Lara A, Lucena Del Amo L, Sepúlveda I, Huancas-Díaz A, Carvajal M, Cotán D. Microbiota and Mitochondrial Sex-Dependent Imbalance in Fibromyalgia: A Pilot Descriptive Study. Neurol Int 2023; 15:868-880. [PMID: 37489361 PMCID: PMC10366818 DOI: 10.3390/neurolint15030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/26/2023] Open
Abstract
Fibromyalgia is a widespread chronic condition characterized by pain and fatigue. Among the long list of physiological disturbances linked to this syndrome, mitochondrial imbalance and oxidative stress stand out. Recently, the crosstalk between mitochondria and intestinal microbiota has caught the attention of biomedical researchers, who have found connections between this axis and several inflammatory and pain-related conditions. Hence, this pilot descriptive study focused on characterizing the mitochondrial mass/mitophagy ratio and total antioxidant capacity in PBMCs, as well as some microbiota components in feces, from a Peruvian cohort of 19 females and 7 males with FM. Through Western blotting, electrochemical oxidation, ELISA, and real-time qPCR, we determined VDAC1 and MALPLC3B protein levels; total antioxidant capacity; secretory immunoglobulin A (sIgA) levels; and Firmicutes/Bacteroidetes, Bacteroides/Prevotella, and Roseburia/Eubacterium ratios; as well as Ruminococcus spp., Pseudomonas spp., and Akkermansia muciniphila levels, respectively. We found statistically significant differences in Ruminococcus spp. and Pseudomonas spp. levels between females and males, as well as a marked polarization in mitochondrial mass in both groups. Taken together, our results point to a mitochondrial imbalance in FM patients, as well as a sex-dependent difference in intestinal microbiota composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Carvajal
- Instituto de Medicina Funcional e Integral de Perú, Lima 15073, Peru
| | - David Cotán
- Pronacera Therapeutics S.L., 41015 Sevilla, Spain
| |
Collapse
|
7
|
Feng L, Bao T, Bai L, Mu X, Ta N, Bao M, Li Y, Zhang J, Fu M, Chen Y. Mongolian medicine formulae Ruda-6 alleviates indomethacin-induced gastric ulcer by regulating gut microbiome and serum metabolomics in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116545. [PMID: 37196816 DOI: 10.1016/j.jep.2023.116545] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ruda-6 (RD-6), a typical traditional Mongolian medicine formulae consisting of 6 herbs, has been traditionally used in treating gastric disorders. Even though it has been shown to protect against gastric ulcers (GU) in animal models, the gut microbiome and serum metabololite-related mechanisms that prevent GU are not well understood. AIM OF THE STUDY This study was conducted to evaluate the gastroprotective mechanism of RD-6 associated with the alteration of the gut microbiome and serum metabolic profiles in GU rats. MATERIALS AND METHODS RD-6 (0.27, 1.35 and 2.7 g/kg) or ranitidine (40 mg/kg) were orally administered in rats for three weeks before the induction of gastric ulcer using indomethacin (30 mg/kg, single oral dose). The gastric ulcer index, ulcer area, H&E staining, and the levels of TNF-α, iNOS, MPO and MDA were quantified to evaluate the ulcer inhibitory effects of RD-6. Then, 16S rRNA gene sequencing combined with LC-MS metabolic profiling was performed to investigate the effect of RD-6 on the gut microbiota and serum metabolites in rats. Moreover, a spearman analysis was used to calculate the correlation coefficient between the different microbiota and the metabolites. RESULTS RD-6 inhibited the gastric lesion damage caused by indomethacin in rats, decreased the ulcer index by 50.29% (p < 0.05), reduced the levels of TNF-α, iNOS, MDA and MPO in gastric tissue. Additionally, RD-6 reshaped the diversity and microbial composition, and reversed the reduced bacteria including [Eubacterium]_xylanophilum group, Sellimonas, Desulfovibrio, and UCG-009, and the increased bacteria Aquamicrobium caused by indomethacin induction. Furthermore, RD-6 regulated the levels of metabolites including amino acids and organic acids, and these affected metabolites were involved in taurine and hypotaurine metabolism and tryptophan metabolism. Spearman analysis revealed that the perturbed gut microbiota were closely related to the changes in differential serum metabolites. CONCLUSION In view of the 16S rRNA gene sequencing and LC-MS metabolic results, the present study suggests the mechanism of RD-6 ameliorating GU via modulating intestinal microbiota and their metabolites.
Collapse
Affiliation(s)
- Lan Feng
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Terigele Bao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Laxinamujila Bai
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Xiyele Mu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Na Ta
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Minglan Bao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Junqing Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Minghai Fu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Yongsheng Chen
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao, China.
| |
Collapse
|
8
|
Zhou B, Chen K, Gong H, Zhao L, Xing X, Su H, Zhang Y. Analysis of gut microbiota in rats with bile duct obstruction after biliary drainage. Microb Pathog 2023; 180:106149. [PMID: 37169314 DOI: 10.1016/j.micpath.2023.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The abundance of specific gut microorganisms is strongly associated with the concentrations of microbially modified bile acids. This study aimed to investigate the composition of intestinal microbiota in rats subjected to bile duct ligation or biliary drainage. Extrahepatic bile duct ligation was conducted to induce bile duct obstruction in rats. The bile was drained via a percutaneous biliary drainage catheter to cause bile deficiency. The total DNA extracted from fecal samples was sequenced with 16S DNA sequencing. Taxonomic classifications were conducted using the Mothur algorithm and SILVA138 database and were presented along with the abundance presented using a heatmap. The inter- and intra-group differences in the intestinal microbiome composition were analyzed by ANOSIM test. The biomarker microorganisms were screened using the Linear discriminant analysis Effect size method. The possible functional pathways were predicted using the Tax4Fun package. A total of 3277 operational taxonomic units (OTUs) were examined, with 2410 in the Kongbai group, 2236 in the Gengzu group, and 1763 in the Yinliu group. The composition of microorganisms at the levels of phylum, class, order, family, and genus was altered in rats with bile duct obstruction. This composition was then restored by biliary drainage. The top 10 predominant microorganisms were identified that led to the inter-group differences. Functional annotation revealed that the potential functions of the microorganisms with significant differences were enriched in metabolism, cellular processes, and genetic and environmental information processing. The intestinal microbial community was significantly changed in rats with bile duct obstruction. The changes in the abundance of intestinal microbiota Prevotellaceae and Enterobacteriaceae were statistically significant after biliary drainage treatment.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Kai Chen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China.
| | - Haiyan Gong
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Liyuan Zhao
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Xinfeng Xing
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Hongde Su
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Yu Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| |
Collapse
|
9
|
Zhou YJ, Ying GX, Dong SL, Xiang B, Jin QF. Gut microbial profile of treatment-naive patients with primary biliary cholangitis. Front Immunol 2023; 14:1126117. [PMID: 37223092 PMCID: PMC10200865 DOI: 10.3389/fimmu.2023.1126117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
Background and aims The pathogenesis of primary biliary cholangitis (PBC) is associated with alterations of gut microbiota. We compared the gut microbiota of PBC patients and healthy controls from Zhejiang Province and assessed the use of these data for the diagnosis of PBC. Methods First, 16S rRNA gene sequencing was used to characterize the gut microbiota of treatment-naive PBC patients (n=25) and matched healthy controls (n=25). Then, the value of gut microbiota composition for the diagnosis of PBC and assessment of PBC severity was determined. Results The gut microbiota of PBC patients had lower diversity based on three different metrics of alpha-diversity (ace, Chao1, and observed features) and fewer overall genera (all p<0.01). PBC patients had significant enrichment of four genera and significant depletion of eight genera. We identified six amplicon sequence variants (Serratia, Oscillospirales, Ruminococcaceae, Faecalibacterium, Sutterellaceae, and Coprococcus) as optimal biomarkers to distinguish PBC patients from controls based on receiver operating characteristic analysis (area under the curve [AUC] = 0.824). PBC patients who were anti-gp210-positive had lower levels of Oscillospiraceae than those who were anti-gp210-negative. KEGG functional annotation suggested the major changes in the gut microbiota of PBC patients were related to lipid metabolism and biosynthesis of secondary metabolites. Conclusion We characterized the gut microbiota of treatment-naive PBC patients and healthy controls from Zhejiang Province. The PBC patients had significant alterations in their gut microbiota, suggesting that gut microbiota composition could be useful as a non-invasive tool for the diagnosis of PBC.
Collapse
Affiliation(s)
- Yi-jun Zhou
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gao-xiang Ying
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shi-lei Dong
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Bo Xiang
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiao-fei Jin
- Department of Hepatology, Affiliated Hangzhou Xixi Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhang Q, Deng C, Peng M, Li C, Teng Y, Guo S, Wu T, Yi D, Hou Y. Integration of transcriptomic and proteomic analyses reveals protective mechanisms of N-acetylcysteine in indomethacin-stimulated enterocytes. J Nutr Biochem 2023; 112:109231. [PMID: 36435287 DOI: 10.1016/j.jnutbio.2022.109231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/07/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022]
Abstract
Intestinal health is critical for the growth and development of humans and animals. Our previous study has demonstrated that indomethacin (IDMT) could induce intestinal injury in piglets, and N-acetylcysteine (NAC) supplementation contributed to alleviating intestinal injury induced by various stimuli. In this study, we investigated the mechanism of IDMT-induced cell death in IPEC-1 cell lines and explored the role of NAC by using transcriptomic and proteomic analyses. Results showed that cell viability was substantially reduced with the increasing concentrations of IDMT, whereas NAC significantly increased the survival rate of IPEC-1 cells regardless of its addition method. Transcriptomics and proteomics data indicated that terms, such as cell cycle, energy metabolism, and cell proliferation, were significantly enriched by Gene ontology and pathway analyses. Flow cytometer analysis showed that IDMT induced cell cycle arrest at G0/G1 phase. The expression of cell cycle regulatory proteins (CDK1, CCNA2, and CDC45) was decreased by IDMT stimulation. Importantly, NAC treatment repaired IDMT-induced mitochondrial dysfunction by increasing ATP production, decreasing oxygen consumption rate in non-mitochondrial O2 consumption, and increasing the red/green fluorescence ratio. IDMT stimulation significantly increased caspase-3 expression, which was partially reversed by NAC treatment. These results suggest that IDMT-induced cell death may be attributable to disturbance of the cell cycle processes, mitochondria dysfunction and apoptosis, and NAC could confer a protective effect by restoring the mitochondrial function and inhibiting the apoptosis pathway. This study provides a theoretical basis for the pathogenesis of IDMT-induced intestinal injury and guides the clinic application of NAC.
Collapse
Affiliation(s)
- Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Cuifang Deng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Meng Peng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chengcheng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yi Teng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
11
|
Singh R, Rossini V, Stockdale SR, Saiz-Gonzalo G, Hanrahan N, D’ Souza T, Clooney A, Draper LA, Hill C, Nally K, Shanahan F, Andersson-Engels S, Melgar S. An IBD-associated pathobiont synergises with NSAID to promote colitis which is blocked by NLRP3 inflammasome and Caspase-8 inhibitors. Gut Microbes 2023; 15:2163838. [PMID: 36656595 PMCID: PMC9858430 DOI: 10.1080/19490976.2022.2163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Conflicting evidence exists on the association between consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and symptomatic worsening of inflammatory bowel disease (IBD). We hypothesized that the heterogeneous prevalence of pathobionts [e.g., adherent-invasive Escherichia coli (AIEC)], might explain this inconsistent NSAIDs/IBD correlation. Using IL10-/- mice, we found that NSAID aggravated colitis in AIEC-colonized animals. This was accompanied by activation of the NLRP3 inflammasome, Caspase-8, apoptosis, and pyroptosis, features not seen in mice exposed to AIEC or NSAID alone, revealing an AIEC/NSAID synergistic effect. Inhibition of NLRP3 or Caspase-8 activity ameliorated colitis, with reduction in NLRP3 inflammasome activation, cell death markers, activated T-cells and macrophages, improved histology, and increased abundance of Clostridium cluster XIVa species. Our findings provide new insights into how NSAIDs and an opportunistic gut-pathobiont can synergize to worsen IBD symptoms. Targeting the NLRP3 inflammasome or Caspase-8 could be a potential therapeutic strategy in IBD patients with gut inflammation, which is worsened by NSAIDs.
Collapse
Affiliation(s)
- Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gonzalo Saiz-Gonzalo
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tanya D’ Souza
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Irish Photonics Integration Centre, Tyndall National Institute, Cork, Ireland,Department of Physics, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland,CONTACT Silvia Melgar APC Microbiome Ireland, University College Cork, Biosciences Building, 4th Floor, Cork, Ireland
| |
Collapse
|
12
|
Zádori ZS, Király K, Al-Khrasani M, Gyires K. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain. Pharmacol Ther 2023; 241:108327. [PMID: 36473615 DOI: 10.1016/j.pharmthera.2022.108327] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
The composition of intestinal microbiota is influenced by a number of factors, including medications, which may have a substantial impact on host physiology. Nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics are among those widely used medications that have been shown to alter microbiota composition in both animals and humans. Although much effort has been devoted to identify microbiota signatures associated with these medications, much less is known about the underlying mechanisms. Mucosal inflammation, changes in intestinal motility, luminal pH and bile acid metabolism, or direct drug-induced inhibitory effect on bacterial growth are all potential contributors to NSAID- and opioid-induced dysbiosis, however, only a few studies have addressed directly these issues. In addition, there is a notable overlap between the microbiota signatures of these drugs and certain diseases in which they are used, such as spondyloarthritis (SpA), rheumatoid arthritis (RA) and neuropathic pain associated with type 2 diabetes (T2D). The aims of the present review are threefold. First, we aim to provide a comprehensive up-to-date summary on the bacterial alterations caused by NSAIDs and opioids. Second, we critically review the available data on the possible underlying mechanisms of dysbiosis. Third, we review the current knowledge on gut dysbiosis associated with SpA, RA and neuropathic pain in T2D, and highlight the similarities between them and those caused by NSAIDs and opioids. We posit that drug-induced dysbiosis may contribute to the persistence of these diseases, and may potentially limit the therapeutic effect of these medications by long-term use. In this context, we will review the available literature data on the effect of probiotic supplementation and fecal microbiota transplantation on the therapeutic efficacy of NSAIDs and opioids in these diseases.
Collapse
Affiliation(s)
- Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Bacalia KMA, Tveter KM, Palmer H, Douyere J, Martinez S, Sui K, Roopchand DE. Cannabidiol Decreases Intestinal Inflammation in the Ovariectomized Murine Model of Postmenopause. Biomedicines 2022; 11:74. [PMID: 36672582 PMCID: PMC9855871 DOI: 10.3390/biomedicines11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Cannabidiol (CBD) (25 mg/kg peroral) treatment was shown to improve metabolic outcomes in ovariectomized (OVX) mice deficient in 17β-estradiol (E2). Herein, CBD effects on intestinal and hepatic bile acids (BAs) and inflammation were investigated. Following RNA sequencing of colon tissues from vehicle (VEH)- or CBD-treated sham surgery (SS) or OVX mice (n = 4 per group), differentially expressed genes (DEGs) were sorted in ShinyGO. Inflammatory response and bile secretion pathways were further analyzed. Colon content and hepatic BAs were quantified by LC-MS (n = 8-10 samples/group). Gut organoids were treated with CBD (100, 250, 500 µM) with or without TNFα and lipopolysaccharide (LPS) followed by mRNA extraction and qPCR to assess CBD-induced changes to inflammatory markers. The expression of 78 out of 114 inflammatory response pathway genes were reduced in CBD-treated OVX mice relative to vehicle (VEH)-treated OVX mice. In contrast, 63 of 111 inflammatory response pathway genes were increased in CBD-treated sham surgery (SS) mice compared to VEH-treated SS group and 71 of 121 genes were increased due to ovariectomy. CBD did not alter BA profiles in colon content or liver. CBD repressed Tnf and Nos2 expression in intestinal organoids in a dose-dependent manner. In conclusion, CBD suppressed colonic inflammatory gene expression in E2-deficient mice but was pro-inflammatory in E2-sufficient mice suggesting CBD activity in the intestine is E2-dependent.
Collapse
Affiliation(s)
- Karen Mae A. Bacalia
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
- Graduate Program, Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Kevin M. Tveter
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hayley Palmer
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jeffrey Douyere
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Savannah Martinez
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ke Sui
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| | - Diana E. Roopchand
- Department of Food Science, NJ Institute of Food Nutrition and Health New Brunswick, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
14
|
Baptista L, Pollard D, Di Bella A. Evaluation of Resting Serum Bile Acid Concentrations in Dogs with Sepsis. Vet Sci 2022; 9:627. [PMID: 36423076 PMCID: PMC9695002 DOI: 10.3390/vetsci9110627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 07/30/2023] Open
Abstract
Recent studies in the human literature suggest that serum bile acid concentrations could be an early predictor of short-term survival in critically ill patients. However, there is no available information in the veterinary literature regarding serum bile acid concentrations in dogs with sepsis. We aimed to evaluate if resting serum bile acid concentrations differ between septic and non-septic dogs. This was a retrospective observational study, of medical records at a single referral center over a twelve-year period. Twenty-six client-owned dogs diagnosed with sepsis were identified. Twenty-one dogs presenting with a non-hepatobiliary systemic disease and twenty-nine dogs admitted for an elective orthopedic procedure, considered otherwise healthy, were selected as control groups. Resting serum bile acid concentrations were significantly higher in the septic compared to the non-septic groups (ill control and orthopedic control groups). However, when assessing bile acid concentrations between groups individually, no difference was identified between the septic and the orthopedic control group. These results should be interpreted cautiously.
Collapse
Affiliation(s)
- Lara Baptista
- Paragon Veterinary Referrals, Red Hall Cres, Wakefield WF1 2DF, UK
| | - Danica Pollard
- Independent Researcher, The Rodhams, Christchurch PE14 9NU, UK
| | - Andrea Di Bella
- Southern Counties Veterinary Specialists, Forest Corner Farm, Ringwood BH24 3JW, UK
| |
Collapse
|
15
|
Gulnaz A, Chang JE, Maeng HJ, Shin KH, Lee KR, Chae YJ. A mechanism-based understanding of altered drug pharmacokinetics by gut microbiota. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Li K, Cheng X, Jin R, Han T, Li J. The influence of different proton pump inhibitors and potassium-competitive acid blockers on indomethacin-induced small intestinal injury. J Gastroenterol Hepatol 2022; 37:1935-1945. [PMID: 35938741 DOI: 10.1111/jgh.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM The influence of gastric acid inhibitors (GAIs) on nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy is controversial. Herein, the influences of different GAIs on NSAID-induced intestinal injury and the underlying mechanisms are clarified. METHODS Indomethacin (IND; 10 mg/kg/day) was administered to mice to induce small intestinal injury. Disease activity was examined macroscopically and histologically. The permeability of small intestine was evaluated by measuring plasma lipopolysaccharide levels. 16S rDNA sequencing was performed to determine the composition of intestinal flora. RESULTS Among the four GAIs, ilaprazole (IPZ) significantly attenuated IND-induced small intestinal injury and maintained the integrity of the mucosal barrier. Omeprazole (OPZ) and vonoprazan (VPZ) ameliorated ulceration without significant differences, while rabeprazole (RPZ) failed to protect against the injury. To explore the potential mechanism, we investigated changes in the gut microbiota mediated by GAIs. After 5-day administration, GAIs significantly altered the composition of the gut microbiota. The IND group had a significant decrease in alpha diversity compared with the control group, and this decrease was reversed by OPZ and IPZ treatment, respectively. After IPZ treatment, the community membership was more assembled in the control group than the IND group. Further, we found that Lactobacillus was significantly increased in the groups of OPZ, IPZ, and VPZ, while Bacteroides was significantly increased in the RPZ group. CONCLUSION Our results indicated that GAIs have different influences on the mucosal barrier, possibly by altering the composition of intestinal microbiota, and the impacts mediated by various GAIs in the IND-induced intestinal damage model seem different.
Collapse
Affiliation(s)
- Kemin Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyun Cheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Jin
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Taotao Han
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Sui K, Tveter KM, Bawagan FG, Buckendahl P, Martinez SA, Jaffri ZH, MacDonell AT, Wu Y, Duran RM, Shapses SA, Roopchand DE. Cannabidiol-Treated Ovariectomized Mice Show Improved Glucose, Energy, and Bone Metabolism With a Bloom in Lactobacillus. Front Pharmacol 2022; 13:900667. [PMID: 35800441 PMCID: PMC9255917 DOI: 10.3389/fphar.2022.900667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Loss of ovarian 17β-estradiol (E2) in postmenopause is associated with gut dysbiosis, inflammation, and increased risk of cardiometabolic disease and osteoporosis. The risk-benefit profile of hormone replacement therapy is not favorable in postmenopausal women therefore better treatment options are needed. Cannabidiol (CBD), a non-psychotropic phytocannabinoid extracted from hemp, has shown pharmacological activities suggesting it has therapeutic value for postmenopause, which can be modeled in ovariectomized (OVX) mice. We evaluated the efficacy of cannabidiol (25 mg/kg) administered perorally to OVX and sham surgery mice for 18 weeks. Compared to VEH-treated OVX mice, CBD-treated OVX mice had improved oral glucose tolerance, increased energy expenditure, improved whole body areal bone mineral density (aBMD) and bone mineral content as well as increased femoral bone volume fraction, trabecular thickness, and volumetric bone mineral density. Compared to VEH-treated OVX mice, CBD-treated OVX mice had increased relative abundance of fecal Lactobacillus species and several gene expression changes in the intestine and femur consistent with reduced inflammation and less bone resorption. These data provide preclinical evidence supporting further investigation of CBD as a therapeutic for postmenopause-related disorders.
Collapse
Affiliation(s)
- Ke Sui
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Kevin M. Tveter
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Fiona G. Bawagan
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Patricia Buckendahl
- Molecular Imaging Center, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Savannah A. Martinez
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Zehra H. Jaffri
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Avery T. MacDonell
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yue Wu
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Rocio M. Duran
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Sue A. Shapses
- Department of Nutritional Sciences, NJ Institute for Food Nutrition and Health, Rutgers, The State University of New Jersey, and the Department of Medicine, Rutgers-RWJ Medical School, New Brunswick, NJ, United States
| | - Diana E. Roopchand
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
18
|
Cell-free probiotic supernatant (CFS) treatment alleviates indomethacin-induced enterocolopathy in BALB/c mice by down-modulating inflammatory response and oxidative stress: potential alternative targeted treatment. Inflammopharmacology 2022; 30:1685-1703. [PMID: 35505268 DOI: 10.1007/s10787-022-00996-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
Abstract
Probiotics and their metabolites appear to be a promising approach that targets both the intestinal inflammation and dysbiosis in bowel diseases. In this context, the emergence of the probiotic cell-free supernatant (CFS) has attracted more attention as a safe and targeted alternative therapy with reduced side effects. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) can cause significant intestinal alterations and inflammation, leading to experimental enterocolopathy resembling Crohn disease. Therefore, we investigated the effect of CFS supplementation on the inflammation and the mucosal intestinal alterations induced by NSAIDs, indomethacin. In the current study, a murine model of intestinal inflammation was generated by the oral gavage (o.g) of indomethacin (10 mg/kg) to BALB/C mice. A group of mice treated with indomethacin was concomitantly treated orally by CFS for 5 days. The Body Health Condition index was monitored, and histological scores were evaluated. Moreover, oxidative and pro-inflammatory markers were assessed. Interestingly, we observed that CFS treatment attenuated the severity of the intestinal inflammation in our enterocolopathy model and resulted in the improvement of the clinical symptoms and the histopathological features. Notably, nitric oxide, tumor necrosis factor alpha, malondialdehyde, and myeloperoxidase levels were down-modulated by CFS supplementation. Concomitantly, an attenuation of NF-κB p65, iNOS, COX2 expression in the ileum and the colon was reported. Collectively, our data suggest that CFS treatment has a beneficial effect in experimental enterocolopathy model and could constitute a good therapeutic candidate for alleviating inflammatory responses and to maintain mucosal homeostasis during chronic and severe conditions of intestinal inflammation.
Collapse
|
19
|
Zhang M, Xia F, Xia S, Zhou W, Zhang Y, Han X, Zhao K, Feng L, Dong R, Tian D, Yu Y, Liao J. NSAID-Associated Small Intestinal Injury: An Overview From Animal Model Development to Pathogenesis, Treatment, and Prevention. Front Pharmacol 2022; 13:818877. [PMID: 35222032 PMCID: PMC8864225 DOI: 10.3389/fphar.2022.818877] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
With the wide application of non-steroidal anti-inflammatory drugs (NSAIDs), their gastrointestinal side effects are an urgent health burden. There are currently sound preventive measures for upper gastrointestinal injury, however, there is a lack of effective defense against lower gastrointestinal damage. According to a large number of previous animal experiments, a variety of NSAIDs have been demonstrated to induce small intestinal mucosal injury in vivo. This article reviews the descriptive data on the administration dose, administration method, mucosal injury site, and morphological characteristics of inflammatory sites of various NSAIDs. The cells, cytokines, receptors and ligands, pathways, enzyme inhibition, bacteria, enterohepatic circulation, oxidative stress, and other potential pathogenic factors involved in NSAID-associated enteropathy are also reviewed. We point out the limitations of drug modeling at this stage and are also pleased to discover the application prospects of chemically modified NSAIDs, dietary therapy, and many natural products against intestinal mucosal injury.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xia
- Department of Hepatic Surgery Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangdong Zhou
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Feng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruonan Dong
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Chen L, Li R, Wang Z, Zhang Z, Wang J, Qiao Y, Huang Y, Liu W. Lactate-utilizing bacteria ameliorates DSS-induced colitis in mice. Life Sci 2022; 288:120179. [PMID: 34838850 DOI: 10.1016/j.lfs.2021.120179] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD) stem from alterations in the intestinal immune system and microbial dysbiosis, but the precise interactions between bacteria and IBD remain obscure. The commensal microbiota have a profound impact on human health and diseases. Here, we developed a selective culture medium for lactate-utilizing bacteria (LUB) that function as candidate probiotics to ameliorate IBD using a mouse model. Firstly, LUB, including Megasphaera, were enriched from human faeces using a selective medium with lactate. LUB efficiently attenuated the pathology of colitis induced by dextran sulphate sodium (DSS). Next, LUB administration counteracted the dysbiosis associated with the intestinal inflammatory process, and elevated the proportion of Escherichia-Shigella in intestines. Moreover, E. coli isolated from healthy faeces downstream recapitulated lactate-utilizing bacterial community to ameliorate the severity of DSS-induced acute colitis. In conclusion, our finding revealed that LUB were sufficient to exert inflammatory protection against colitis in mice, highlighting a novel therapeutic strategy to use LUB as potentially curable probiotics for therapeutic manipulation for IBD.
Collapse
Affiliation(s)
- Lirong Chen
- Department of Medical Laboratory Science, Shanxi Medical University Fenyang College, Shanxi 032200, China.
| | - Rong Li
- College of Basic Medicine, Chengde Medical University, Hebei 067000, China
| | - Ziguang Wang
- First Clinical Medical College, Mudanjiang Medical College; Department of Laboratory Medicine, The Second Affiliated Hospital of Mudanjiang Medical College, Heilongjiang 157000, China
| | - Zhiwei Zhang
- Department of Gastroenterology, Shanxi Fenyang Hospital, Shanxi 032200, China
| | - Jie Wang
- Jingle County People's Hospital, Shanxi 035100, China
| | - Yuebing Qiao
- College of Basic Medicine, Chengde Medical University, Hebei 067000, China
| | - Yongcun Huang
- First Clinical Medical College, Mudanjiang Medical College; Department of Laboratory Medicine, The Second Affiliated Hospital of Mudanjiang Medical College, Heilongjiang 157000, China
| | - Wei Liu
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui 230036, China; Department of Medical Laboratory Science, Shanxi Medical University Fenyang College, Shanxi 032200, China.
| |
Collapse
|
21
|
Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, Gu Y, Wang B, Hou J, Liu Y, Cao H. Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Front Cell Infect Microbiol 2021; 11:679396. [PMID: 34295835 PMCID: PMC8290187 DOI: 10.3389/fcimb.2021.679396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
As a class of the commonly used drugs in clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) can cause a series of adverse events including gastrointestinal injuries. Besides upper gastrointestinal injuries, NSAID enteropathy also attracts attention with the introduction of capsule endoscopy and double balloon enteroscopy. However, the pathogenesis of NSAID enteropathy remains to be entirely clarified. Growing evidence from basic and clinical studies presents that gut microbiota is a critical factor in NSAID enteropathy progress. We have reviewed the recent data about the interplay between gut microbiota dysbiosis and NSAID enteropathy. The chronic medication of NSAIDs could change the composition of the intestinal bacteria and aggravate bile acids cytotoxicity. Meanwhile, NSAIDs impair the intestinal barrier by inhibiting cyclooxygenase and destroying mitochondria. Subsequently, intestinal bacteria translocate into the mucosa, and then lipopolysaccharide released from gut microbiota combines to Toll-like receptor 4 and induce excessive production of nitric oxide and pro-inflammatory cytokines. Intestinal injuries present in the condition of intestinal inflammation and oxidative stress. In this paper, we also have reviewed the possible strategies of regulating gut microbiota for the management of NSAID enteropathy, including antibiotics, probiotics, prebiotics, mucosal protective agents, and fecal microbiota transplant, and we emphasized the adverse effects of proton pump inhibitors on NSAID enteropathy. Therefore, this review will provide new insights into a better understanding of gut microbiota in NSAID enteropathy.
Collapse
Affiliation(s)
- Xianglu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qiang Tang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Hailong Cao, ; Jingli Hou, ; Yangping Liu,
| |
Collapse
|