1
|
Liang Y, Zhang H, Dai S, Cong Y, Wu W. Inhibiting Staphylococcus aureus Virulence Factors: Advances in Traditional Chinese Medicines and Active Compounds. Curr Microbiol 2025; 82:247. [PMID: 40244366 DOI: 10.1007/s00284-025-04236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Staphylococcus aureus is one of the most prevalent antibiotic-resistant bacteria, characterized by high morbidity and mortality. The pathogenicity of S. aureus relies on the production of multiple virulence factors. In recent years, antivirulence strategies have shown promise in developing antiinfective drugs by targeting the inhibition of bacterial virulence factors rather than directly killing pathogens. In Asia, some traditional Chinese medicines have a long history of antiinfective application and have demonstrated therapeutic efficacy. However, their antiinfective mechanism has not been fully elucidated. Recent studies have revealed that numerous extracts of TCM, as well as pure compounds from TCM, significantly inhibited the expression of virulence factors of S. aureus, which might be one of their antiinfective mechanisms with potential for the development of novel antiinfective agents. In this review, we summarized the major virulence factors of S. aureus and recent advances in TCM-derived antivirulence agents, including TCM formulae, single herbs, and isolated bioactive compounds, which showed antivirulence capability against S. aureus. Investigating the antivirulence mechanism of TCM not only enhances our understanding of TCM's antiinfective mechanisms but also facilitates the isolation of active compounds with therapeutic potential against S. aureus infection.
Collapse
Affiliation(s)
- Yuqi Liang
- Zhuhai College of Science and Technology, Zhuhai, 519041, China
| | - Huiyong Zhang
- The Forth Affiliated Hospital of China Medical University, Shenyang, 110084, China
| | - Sisi Dai
- Zhuhai College of Science and Technology, Zhuhai, 519041, China
| | - Yanguang Cong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
- Dongguan Key Laboratory for Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
| | - Wei Wu
- Zhuhai College of Science and Technology, Zhuhai, 519041, China.
| |
Collapse
|
2
|
Wang Y, Wang L, Guo D, Liu X, Xu Y, Wang R, Sun Y, Liu Q, Guan J, Liu D, Wang B, Zhao Y, Yan M. Targeting ClpP: Unlocking a novel therapeutic approach of isochlorogenic acid A for methicillin-resistant Staphylococcus aureus-infected osteomyelitis. Microbiol Res 2025; 292:128042. [PMID: 39756139 DOI: 10.1016/j.micres.2024.128042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
A medical predicament has led to extensive drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), and the complexity of treatment has increased exponentially with the induction of osteomyelitis. In view of the severe situation and the potential of bacterial antivirulence strategies, this study focused on the key virulence factor caseinolytic protease (ClpP) of S. aureus to identify new strategies against MRSA-induced osteomyelitis. As the main protein "quality control" system of S. aureus, ClpP is indispensable for coordinating drug resistance, regulating adhesion, and acting on numerous virulence targets. Through fluorescence resonance energy transfer (FRET), we successfully identified isochlorogenic acid A (I-A), a polyphenol derivative, as an efficient inhibitor of ClpP, with an IC50 value of 24.89 μg/mL. Further analysis revealed that I-A can effectively inhibit the expression of virulence factors of MRSA and significantly reduce its adhesion to fibrinogen. Molecular docking revealed the potential binding sites of ClpP and I-A, namely, ILE-81, LYS-109, GLU-156, ARG-157, and GLY-184. At the cellular level, I-A can alleviate the death and increased secretion of inflammatory factors caused by MRSA USA300 in MC3T3-E1 cells. Moreover, it downregulates the activity of ClpP and reduces the response of bacteria to environmental stress. In vivo experiments have confirmed that I-A shows significant efficacy in both rat osteomyelitis models and Galleria mellonella infection models. This study provides new insights into the field of treatment strategies targeting virulence and provides a solid foundation for further exploration of the potential of I-A in combating drug-resistant S. aureus.
Collapse
Affiliation(s)
- Yueying Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Clinical Medical College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dongbin Guo
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinyao Liu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yueshan Xu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Rong Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yun Sun
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Quan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Clinical Medical College, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yicheng Zhao
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong 519000, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China.
| | - Ming Yan
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
3
|
Wen Y, Wu D, Zhang L, Ma S, Lv C. Sesamin targets ClpP which attenuates virulence of S. aureus and protects mice from fatal pneumonia induced by MRSA. J Appl Microbiol 2025; 136:lxaf003. [PMID: 39805732 DOI: 10.1093/jambio/lxaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
AIMS The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA). METHODS AND RESULTS Through fluorescence resonance energy transfer screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/ml. Sesamin suppressed the expression of virulence factors of MRSA such as α-hemolysin (Hla) and Panton-Valentine leucocidin by protein immunoblotting. Thermal shift assay and cellular thermal shift assay showed that sesamin could bind to ClpP and enhance the thermal stability of ClpP. Furthermore, the binding affinity between sesamin and ClpP was determined by surface plasmon resonance with a KD value of 7.18 × 10-6 M. Molecular docking, dynamics simulations and point mutation analysis confirmed the stability of the sesamin-ClpP complex with a -10.184 kcal/mol total binding energy and identified PHE-174 in ClpP as a key binding site. In mice pneumonia model, sesamin combined vancomycin treatment markedly reduced the pathogenicity of MRSA-infected mice, offering protection against fatal lung infections. CONCLUSIONS Overall, these findings validate sesamin as a promising compound that targets ClpP, reducing virulence factor expression, that holds potential as a hit compound against MRSA infections.
Collapse
Affiliation(s)
- Yu Wen
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| | - Duogeng Wu
- Clinical Medical College, Changchun University of Chinese Medicine, 1035 Boshuo Road, Jingyue District, Changchun 130117, China
| | - Luxin Zhang
- Clinical Medical College, Changchun University of Chinese Medicine, 1035 Boshuo Road, Jingyue District, Changchun 130117, China
| | - Shuxia Ma
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| | - Chao Lv
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| |
Collapse
|
4
|
Zhang T, Wang P, Zhou H, Wei B, Zhao Y, Li J, Zhang M, Wu W, Lan L, Gan J, Yang CG. Structure-guided development of selective caseinolytic protease P agonists as antistaphylococcal agents. Cell Rep Med 2024; 5:101837. [PMID: 39615486 PMCID: PMC11722091 DOI: 10.1016/j.xcrm.2024.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Methicillin-resistant Staphylococcus aureus is a ubiquitous pathogen, posing a serious threat to human health worldwide. Thus, there is a high demand for antibiotics with distinct targets. Caseinolytic protease P (ClpP) is a promising target for combating staphylococcal infections; however, selectively activating S. aureus ClpP (SaClpP) rather than Homo sapiens ClpP (HsClpP) remains challenging. Herein, we rationally design and identify ZG297 by structure-based strategy. It binds and activates SaClpP instead of HsClpP. This is due to differentiated ligand binding attributed to crossed "tyrosine/histidine" amino acid pairs. ZG297 substantially inhibits the growth of a broad panel of S. aureus strains in vitro, outperforming the selective (R)-ZG197 agonist. ZG297 also functions as a potent antibiotic against multidrug-resistant S. aureus infections in Galleria mellonella larvae, zebrafish, murine skin, and thigh infection models. Collectively, we demonstrate that ZG297 is a safer and more potent antistaphylococcal agent than acyldepsipeptide 4 and (R)-ZG197.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengyu Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hailing Zhou
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyan Wei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yanling Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiahui Li
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Gan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
5
|
Liu J, Zhu J, Hao H, Bi J, Hou H, Zhang G. Transcriptomic and Molecular Docking Analysis Reveal Virulence Gene Regulation-Mediated Antibacterial Effects of Benzyl Isothiocyanate Against Staphylococcus aureus. Appl Biochem Biotechnol 2024; 196:8239-8253. [PMID: 38709426 DOI: 10.1007/s12010-024-04938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Staphylococcus aureus (S. aureus) is a common pathogen that can cause many serious infections. Thus, efficient and practical techniques to fight S. aureus are required. In this study, transcriptomics was used to evaluate changes in S. aureus following treatment with benzyl isothiocyanate (BITC) to determine its antibacterial action. The results revealed that the BITC at subinhibitory concentrations (1/8th MIC) treated group had 94 differentially expressed genes compared to the control group, with 52 downregulated genes. Moreover, STRING analyses were used to reveal the protein interactions encoded by 36 genes. Then, we verified three significant virulence genes by qRT-PCR, including capsular polysaccharide synthesis enzyme (cp8F), capsular polysaccharide biosynthesis protein (cp5D), and thermonuclease (nuc). Furthermore, molecular docking analysis was performed to investigate the action site of BITC with the encoded proteins of cp8F, cp5D, and nuc. The results showed that the docking fraction of BITC with selected proteins ranged from - 6.00 to - 6.60 kcal/mol, predicting the stability of these complexes. BITC forms hydrophobic, hydrogen-bonded, π-π conjugated interactions with amino acids TRP (130), GLY (10), ILE (406), LYS (368), TYR (192), and ARG (114) of these proteins. These findings will aid future research into the antibacterial effects of BITC against S. aureus.
Collapse
Affiliation(s)
- Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Junya Zhu
- Jinkui Food Science and Technology (Dalian) Co., Ltd, Dalian, 116000, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
6
|
Okoye CO, Jiang H, Wu Y, Li X, Gao L, Wang Y, Jiang J. Bacterial biosynthesis of flavonoids: Overview, current biotechnology applications, challenges, and prospects. J Cell Physiol 2024; 239:e31006. [PMID: 37025076 DOI: 10.1002/jcp.31006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Flavonoids are secondary metabolites present in plant organs and tissues. These natural metabolites are the most prevalent and display a wide range of beneficial physiological effects, making them usually intriguing in several scientific fields. Due to their safety for use and protective attributes, including antioxidant, anti-inflammatory, anticancer, and antimicrobial functions, flavonoids are broadly utilized in foods, pharmaceuticals, and nutraceuticals. However, conventional methods for producing flavonoids, such as plant extraction and chemical synthesis, entailed dangerous substances, and laborious procedures, with low product yield. Recent studies have documented the ability of microorganisms, such as fungi and bacteria, to synthesize adequate amounts of flavonoids. Bacterial biosynthesis of flavonoids from plant biomass is a viable and environmentally friendly technique for producing flavonoids on a larger scale and has recently received much attention. Still, only a few bacteria species, particularly Escherichia coli, have been extensively studied. The most recent developments in bacterial biosynthesis of flavonoids are reviewed and discussed in this article, including their various applications as natural food biocontrol agents. In addition, the challenges currently faced in bacterial flavonoid biosynthesis and possible solutions, including the application of modern biotechnology approaches for developing bacterial strains that could successfully produce flavonoids on an industrial scale, were elucidated.
Collapse
Affiliation(s)
- Charles O Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Huifang Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Gautheron G, Péraldi-Roux S, Vaillé J, Belhadj S, Patyra A, Bayle M, Youl E, Omhmmed S, Guyot M, Cros G, Guichou JF, Uzan B, Movassat J, Quignard JF, Neasta J, Oiry C. The flavonoid resokaempferol improves insulin secretion from healthy and dysfunctional pancreatic β-cells. Br J Pharmacol 2024. [PMID: 39327688 DOI: 10.1111/bph.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND AND PURPOSE The pharmacology of flavonoids on β-cell function is largely undefined especially in the context of defective secretion of insulin. We sought to identify flavonoids that increased the insulin-secreting function of β-cells and to explore the underlying mechanisms. EXPERIMENTAL APPROACH INS-1 β-cells in culture and islets of Langerhans isolated from control and diabetic male rats were used for insulin secretion experiments. Pharmacological and electrophysiological approaches were used for mechanistic studies. KEY RESULTS Among a set of flavonoids, exposure of INS-1 β-cells to resokaempferol (ResoK) enhanced glucose-stimulated insulin secretion and therefore we further characterised its activity and its pharmacological mechanism. ResoK glucose-dependently enhanced insulin secretion in INS-1 β-cells and pancreatic islets isolated from rats. Mechanistically, whole cell patch clamp recordings in INS-1 cells showed that ResoK rapidly and dose-dependently enhanced the L-type Ca2+ current whereas it was inactive towards T-type Ca2+ current. Accordingly, pharmacological inhibition of L-type Ca2+ current but not T-type Ca2+ current blocked the effects of ResoK on glucose-stimulated insulin secretion. ResoK was still active on dysfunctional β-cells as it ameliorated glucose-stimulated insulin secretion in glucotoxicity-induced dysfunctional INS-1 cells and in pancreatic islets isolated from diabetic rats. CONCLUSION AND IMPLICATIONS ResoK is a glucose-dependent activator of insulin secretion. Our results indicated that the effects of ResoK on insulin secretion involved its capacity to stimulate L-type Ca2+ currents in cultured β-cells. As ResoK was also effective on dysfunctional β-cells, our work provides a new approach to stimulating insulin secretion, using compounds based on the structure of ResoK.
Collapse
Affiliation(s)
| | | | - Justine Vaillé
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sahla Belhadj
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Andrzej Patyra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmaceutical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Morgane Bayle
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Estelle Youl
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Mélanie Guyot
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gérard Cros
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Benjamin Uzan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France
| | - Jérémie Neasta
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Catherine Oiry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
8
|
Li Z, Liu Z, Guo Y, Gao S, Tang Y, Li T, Xuan H. Propolis Alleviates Acute Lung Injury Induced by Heat-Inactivated Methicillin-Resistant Staphylococcus aureus via Regulating Inflammatory Mediators, Gut Microbiota and Serum Metabolites. Nutrients 2024; 16:1598. [PMID: 38892531 PMCID: PMC11175110 DOI: 10.3390/nu16111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Propolis has potential anti-inflammatory properties, but little is known about its efficacy against inflammatory reactions caused by drug-resistant bacteria, and the difference in efficacy between propolis and tree gum is also unclear. Here, an in vivo study was performed to study the effects of ethanol extract from poplar propolis (EEP) and poplar tree gum (EEG) against heat-inactivated methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) in mice. Pre-treatment with EEP and EEG (100 mg/kg, p.o.) resulted in significant protective effects on ALI in mice, and EEP exerted stronger activity to alleviate lung tissue lesions and ALI scores compared with that of EEG. Furthermore, EEP significantly suppressed the levels of pro-inflammatory mediators in the lung, including TNF-α, IL-1β, IL-6, and IFN-γ. Gut microbiota analysis revealed that both EEP and EEG could modulate the composition of the gut microbiota, enhance the abundance of beneficial microbiota and reduce the harmful ones, and partly restore the levels of short-chain fatty acids. EEP could modulate more serum metabolites and showed a more robust correlation between serum metabolites and gut microbiota. Overall, these results support the anti-inflammatory effects of propolis in the treatment of ALI, and the necessity of the quality control of propolis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Z.L.); (Z.L.); (Y.G.); (S.G.); (Y.T.); (T.L.)
| |
Collapse
|
9
|
Das S, Singh S, Chawla V, Chawla PA, Bhatia R. Surface plasmon resonance as a fascinating approach in target-based drug discovery and development. Trends Analyt Chem 2024; 171:117501. [DOI: 10.1016/j.trac.2023.117501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Li J, Zhang Q, Li X, Liu J, Wang F, Zhang W, Liu X, Li T, Wang S, Wang Y, Zhang X, Meng Y, Ma Y, Wang H. QingXiaoWuWei decoction alleviates methicillin-resistant Staphylococcus aureus-induced pneumonia in mice by regulating metabolic remodeling and macrophage gene expression network via the microbiota-short-chain fatty acids axis. Microbiol Spectr 2023; 11:e0034423. [PMID: 37823635 PMCID: PMC10714818 DOI: 10.1128/spectrum.00344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) colonizes the upper respiratory airways and is resistant to antibiotics. MRSA is a frequently acquired infection in hospital and community settings, including cases of MRSA-induced pneumonia. Multidrug-resistant Staphylococcus aureus and the limited efficacy of antibiotics necessitate alternative strategies for preventing or treating the infection. QingXiaoWuWei decoction (QXWWD) protects against both gut microbiota dysbiosis and MRSA-induced pneumonia. Furthermore, the QXWWD-regulated metabolic remodeling and macrophage gene expression network contribute to its protective effects through the microbiota-short-chain fatty acid axis. The results of this study suggest that QXWWD and its pharmacodynamic compounds might have the potential to prevent and treat pulmonary infections, especially those caused by multidrug-resistant organisms. Our study provides a theoretical basis for the future treatment of pulmonary infectious diseases by manipulating gut microbiota and their metabolites via traditional Chinese medicine.
Collapse
Affiliation(s)
- Jun Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Qian Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xue Li
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Liu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fang Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xingyue Liu
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Tiewei Li
- Zhengzhou Key Laboratory of Children’s Infection and Immunity, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou, China
| | - Shiqi Wang
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Yuqi Wang
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xinyu Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yukun Meng
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Huanyun Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
11
|
Wang Z, Yang L. The Therapeutic Potential of Natural Dietary Flavonoids against SARS-CoV-2 Infection. Nutrients 2023; 15:3443. [PMID: 37571380 PMCID: PMC10421531 DOI: 10.3390/nu15153443] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The exploration of non-toxic and cost-effective dietary components, such as epigallocatechin 3-gallate and myricetin, for health improvement and disease treatment has recently attracted substantial research attention. The recent COVID-19 pandemic has provided a unique opportunity for the investigation and identification of dietary components capable of treating viral infections, as well as gathering the evidence needed to address the major challenges presented by public health emergencies. Dietary components hold great potential as a starting point for further drug development for the treatment and prevention of SARS-CoV-2 infection owing to their good safety, broad-spectrum antiviral activities, and multi-organ protective capacity. Here, we review current knowledge of the characteristics-chemical composition, bioactive properties, and putative mechanisms of action-of natural bioactive dietary flavonoids with the potential for targeting SARS-CoV-2 and its variants. Notably, we present promising strategies (combination therapy, lead optimization, and drug delivery) to overcome the inherent deficiencies of natural dietary flavonoids, such as limited bioavailability and poor stability.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
12
|
Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells. Biomed Pharmacother 2023; 161:114460. [PMID: 36870282 DOI: 10.1016/j.biopha.2023.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Myricetin is a typical flavonol with various pharmacological effects which shows favorable biological activities in cancer. However, the underlying mechanisms and potential targets of myricetin in NSCLC (non-small cell lung cancer) cells remain unclear. First, we demonstrated that myricetin not only inhibited the proliferation, migration and invasion, but also induced apoptosis in A549 and H1299 cells in a dose-dependent manner. Then, we confirmed myricetin may play an anti-NSCLC effect through modulating MAPK-related functions and signaling pathway by Network pharmacology. Furthermore, MKK3 (MAP Kinase Kinase 3) was identified and confirmed as a potential target of myricetin by biolayer interferometry (BLI) and molecular docking, revealing that myricetin directly bound to MKK3. Moreover, three mutations (D208, L240, and Y245) of key amino acids predicted by molecular docking obviously decreased the affinity between myricetin and MKK3. Finally, enzyme activity assay was utilized to determine the effect of myricetin on MKK3 activity in vitro, and the result showed that myricetin attenuated MKK3 activity. Subsequently, myricetin decreased the phosphorylation of p38 MAPK. Furthermore, knockdown of MKK3 reduced the susceptibility of A549 and H1299 cells to myricetin. These results suggested that myricetin inhibited the growth of NSCLC cells via targeting MKK3 and influencing the downstream p38 MAPK signaling pathway. The findings revealed that MKK3 is a potential target of myricetin in the NSCLC and myricetin is considered to be a small-molecular inhibitor of MKK3, which can improve comprehension of the molecular mechanisms of myricetin pharmacological effects in cancer and further development of MKK3 inhibitors.
Collapse
|
13
|
González-Paz L, Lossada C, Hurtado-León ML, Fernández-Materán FV, Paz JL, Parvizi S, Cardenas Castillo RE, Romero F, Alvarado YJ. Intrinsic Dynamics of the ClpXP Proteolytic Machine Using Elastic Network Models. ACS OMEGA 2023; 8:7302-7318. [PMID: 36873006 PMCID: PMC9979342 DOI: 10.1021/acsomega.2c04347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Abstract
ClpXP complex is an ATP-dependent mitochondrial matrix protease that binds, unfolds, translocates, and subsequently degrades specific protein substrates. Its mechanisms of operation are still being debated, and several have been proposed, including the sequential translocation of two residues (SC/2R), six residues (SC/6R), and even long-pass probabilistic models. Therefore, it has been suggested to employ biophysical-computational approaches that can determine the kinetics and thermodynamics of the translocation. In this sense, and based on the apparent inconsistency between structural and functional studies, we propose to apply biophysical approaches based on elastic network models (ENM) to study the intrinsic dynamics of the theoretically most probable hydrolysis mechanism. The proposed models ENM suggest that the ClpP region is decisive for the stabilization of the ClpXP complex, contributing to the flexibility of the residues adjacent to the pore, favoring the increase in pore size and, therefore, with the energy of interaction of its residues with a larger portion of the substrate. It is predicted that the complex may undergo a stable configurational change once assembled and that the deformability of the system once assembled is oriented, to increase the rigidity of the domains of each region (ClpP and ClpX) and to gain flexibility of the pore. Our predictions could suggest under the conditions of this study the mechanism of the interaction of the system, of which the substrate passes through the unfolding of the pore in parallel with a folding of the bottleneck. The variations in the distance calculated by molecular dynamics could allow the passage of a substrate with a size equivalent to ∼3 residues. The theoretical behavior of the pore and the stability and energy of binding to the substrate based on ENM models suggest that in this system, there are thermodynamic, structural, and configurational conditions that allow a possible translocation mechanism that is not strictly sequential.
Collapse
Affiliation(s)
- Lenin González-Paz
- Facultad
Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio
de Genética y Biología Molecular (LGBM), Universidad del Zulia (LUZ), 4001 Maracaibo, Zulia, República Bolivariana
de Venezuela
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - Carla Lossada
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - Maria Laura Hurtado-León
- Facultad
Experimental de Ciencias (FEC), Departamento de Biología, Laboratorio
de Genética y Biología Molecular (LGBM), Universidad del Zulia (LUZ), 4001 Maracaibo, Zulia, República Bolivariana
de Venezuela
| | - Francelys V. Fernández-Materán
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB), Instituto Venezolano de Investigaciones
Científicas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| | - José Luis Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, 15081 Lima, Perú
| | - Shayan Parvizi
- Pulmonary,
Critical Care and Sleep Medicine, Baylor
College of Medicine, Houston, Texas 77030, United States
| | | | - Freddy Romero
- Pulmonary,
Critical Care and Sleep Medicine, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Ysaias J. Alvarado
- Centro
de Biomedicina Molecular (CBM), Laboratorio de Química Biofísica
Teórica y Experimental (LQBTE), Instituto
Venezolano de Investigaciones Cientificas (IVIC), 4001 Maracaibo, Zulia, República Bolivariana de Venezuela
| |
Collapse
|
14
|
Song W, Wang B, Sui L, Shi Y, Ren X, Wang X, Kong X, Hou J, Wang L, Wei L, Luan Y, Guan J, Zhao Y. Tamarixetin Attenuated the Virulence of Staphylococcus aureus by Directly Targeting Caseinolytic Protease P. JOURNAL OF NATURAL PRODUCTS 2022; 85:1936-1944. [PMID: 35833867 DOI: 10.1021/acs.jnatprod.2c00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus, especially drug-resistant S. aureus infections, is a worldwide healthcare challenge. There is a growing focus on antivirulence therapy against S. aureus. Caseinolytic protease p (ClpP) is a protein hydrolase essential for pathogenicity in S. aureus. A flavonoid compound, tamarixetin, which was screened in this work, was specifically able to inhibit the hydrolytic activity of ClpP on the fluorescent substrate Suc-LY-AMC with an IC50 of 49.73 μM, without affecting the growth of methicillin-resistant S. aureus strain USA300 and was without obvious cytotoxicity. Further assays found that tamarixetin inhibited the transcription of hla, agr, RNAIII, pvl, PSM-α, and spa genes as well as suppressed the protein expression levels of Hla and PVL. Moreover, tamarixetin was observed to dramatically inhibit the hemolytic activity of hla in S. aureus. Consistent with that of S. aureus USA300-ΔclpP, tamarixetin was shown to increase urease expression. The thermal shift and cellular thermal shift assays showed that tamarixetin markedly changed the thermal stability of ClpP. The dissociation constant (KD) value of tamarixetin with ClpP was 2.52 × 10-6 M measured by surface plasmon resonance. The molecular docking and ClpP point mutation results also demonstrated that tamarixetin had a strong interaction with ClpP. In vivo study showed that tamarixetin was effective in protecting mice from S. aureus pneumonia by increasing survival, reducing lung tissue load, and slowing down the infiltration of inflammatory factors. In addition, tamarixetin was able to enhance the antibacterial activity of cefotaxime in combination. In conclusion, tamarixetin was promising as a ClpP inhibitor for S. aureus infections.
Collapse
Affiliation(s)
- Wu Song
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Bingmei Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Liyan Sui
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Yan Shi
- School of Pharmacy, Jilin University, Changchun 130021, China
| | - Xinran Ren
- School of Pharmacy, Jilin University, Changchun 130021, China
| | - Xingye Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xiangri Kong
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Juan Hou
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Li Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Lin Wei
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yanhe Luan
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yicheng Zhao
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130017, China
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
15
|
Hinokiflavone Attenuates the Virulence of Methicillin-Resistant Staphylococcus aureus by Targeting Caseinolytic Protease P. Antimicrob Agents Chemother 2022; 66:e0024022. [PMID: 35862746 PMCID: PMC9380526 DOI: 10.1128/aac.00240-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Drug-resistant bacteria was the third leading cause of death worldwide in 2019, which sounds like a cautionary note for global public health. Therefore, developing novel strategies to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections is the need of the hour. Caseinolytic protease P (ClpP) represents pivotal microbial degradation machinery in MRSA involved in bacterial homeostasis and pathogenicity, considered an ideal target for combating S. aureus infections. Herein, we identified a natural compound, hinokiflavone, that inhibited the activity of ClpP of MRSA strain USA300 with an IC50 of 34.36 μg/mL. Further assays showed that hinokiflavone reduced the virulence of S. aureus by inhibiting multiple virulence factors expression. Results obtained from cellular thermal transfer assay (CETSA), thermal shift assay (TSA), local surface plasmon resonance (LSPR) and molecular docking (MD) assay enunciated that hinokiflavone directly bonded to ClpP with confirmed docking sites, including SER-22, LYS-26 and ARG-28. In vivo, the evaluation of anti-infective activity showed that hinokiflavone in combination with vancomycin effectively protected mice from MRSA-induced fatal pneumonia, which was more potent than vancomycin alone. As mentioned above, hinokiflavone, as an inhibitor of ClpP, could be further developed into a promising adjuvant against S. aureus infections.
Collapse
|
16
|
Hibifolin, a Natural Sortase A Inhibitor, Attenuates the Pathogenicity of Staphylococcus aureus and Enhances the Antibacterial Activity of Cefotaxime. Microbiol Spectr 2022; 10:e0095022. [PMID: 35913166 PMCID: PMC9430695 DOI: 10.1128/spectrum.00950-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to identify hibifolin as a sortase A (SrtA) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA). We employed a fluorescence resonance energy transfer (FRET) assay to screen a library of natural molecules to identify compounds that inhibit SrtA activity. Fluorescence quenching assay and molecular docking were performed to verify the direct binding interaction between SrtA and hibifolin. The pneumonia model was established using C57BL/6J mice by MRAS nasal administration for evaluating the effect of hibifolin on the pathogenicity of MRSA. Herein, we found that hibifolin was able to inhibit SrtA activity with an IC50 of 31.20 μg/mL. Further assays showed that the capacity of adhesion of bacteria to the host cells and biofilm formation was decreased in hibifolin-treated USA300. Results obtained from fluorescence quenching assay and molecular docking indicated that hibifolin was capable of targeting SrtA protein directly. This interaction was further confirmed by the finding that the inhibition activities of hibifolin on mutant SrtA were substantially reduced after mutating the binding sites (TRP-194, ALA-104, THR-180, ARG-197, ASN-114). The in vivo study showed that hibifolin in combination with cefotaxime protected mice from USA300 infection-induced pneumonia, which was more potent than cefotaxime alone, and no significant cytotoxicity of hibifolin was observed. Taken together, we identified that hibifolin attenuated the pathogenicity of S. aureus by directly targeting SrtA, which may be utilized in the future as adjuvant therapy for S. aureus infections. IMPORTANCE We identified hibifolin as a sortase A (SrtA) inhibitor by screening the natural compounds library, which effectively inhibited the activity of SrtA with an IC50 value of 31.20 μg/mL. Hibifolin attenuated the pathogenic behavior of Staphylococcus aureus, including adhesion, invasion, and biofilm formation. Binding assays showed that hibifolin bound to SrtA protein directly. Hibifolin improved the survival of pneumonia induced by S. aureus USA300 in mice and alleviated the pathological damage. Moreover, hibifolin showed a synergistic antibacterial effect with cefotaxime in USA300-infected mice.
Collapse
|
17
|
Jing S, Kong X, Wang L, Wang H, Feng J, Wei L, Meng Y, Liu C, Chang X, Qu Y, Guan J, Yang H, Zhang C, Zhao Y, Song W. Quercetin Reduces the Virulence of S. aureus by Targeting ClpP to Protect Mice from MRSA-Induced Lethal Pneumonia. Microbiol Spectr 2022; 10:e0234021. [PMID: 35319277 PMCID: PMC9045277 DOI: 10.1128/spectrum.02340-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
The dramatic increase of methicillin-resistant Staphylococcus aureus (MRSA) poses a great challenge to the treatment of Staphylococcus aureus (S. aureus) infections. Therefore, there is an urgent need to identify novel anti-infective agents to attack new targets to overcome antibiotic resistance. Casein hydrolase P (ClpP) is a key virulence factor in S. aureus to maintain cellular homeostasis. We screened from flavonoids and finally determined that quercetin could effectively attenuate the virulence of MRSA. The results of the thermal shift assay showed that quercetin could bind to ClpP and reduce the thermal stability of ClpP, and the KD value between quercetin and ClpP was 197 nM as determined by localized surface plasmon resonance. We found that quercetin exhibited a protective role of a mouse model of MRSA-induced lethal infection in a murine model. Based on the above facts, quercetin, as a ClpP inhibitor, could be further developed as a potential candidate for antivirulence agents to combat S. aureus infections. IMPORTANCE The resistance of Staphylococcus aureus (S. aureus) to various antibiotics has increased dramatically, and thus the development of new anti-infective drugs with new targets is urgently needed to combat resistance. Caseinolytic peptidase P (ClpP) is a casein hydrolase that has been shown to regulate a variety of important virulence factors in S. aureus. Here, we found that quercetin, a small-molecule compound from traditional Chinese herbal flavonoids, effectively inhibits ClpP activity. Quercetin attenuates the expression of multiple virulence factors in S. aureus and effectively protects mice from lethal pneumonia caused by MRSA. In conclusion, we determined that quercetin is a ClpP inhibitor and an effective lead compound for the development of a virulence factor-based treatment for S. aureus infection.
Collapse
Affiliation(s)
- Shisong Jing
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jiaxuan Feng
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Wei
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Meng
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Chang Liu
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiren Chang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yishen Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Haimiao Yang
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chi Zhang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
18
|
Jing S, Ren X, Wang L, Kong X, Wang X, Chang X, Guo X, Shi Y, Guan J, Wang T, Wang B, Song W, Zhao Y. Nepetin reduces virulence factors expression by targeting ClpP against MRSA-induced pneumonia infection. Virulence 2022; 13:578-588. [PMID: 35363605 PMCID: PMC8986306 DOI: 10.1080/21505594.2022.2051313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The resistance of Staphylococcus aureus (S. aureus) to various antibiotics has increased dramatically due to the misuse of antibiotics, and thus the development of new anti-infective drugs with new targets is urgently needed to combat resistance. Caseinolytic peptidase P is a case in hydrolase that regulates the virulence level of S. aureus. Here, we found that nepetin, a small-molecule compound from traditional Chinese herbal flavonoids, effectively inhibits ClpP activity. Nepetin suppressed the virulence of S. aureus and effectively combated the lethal pneumonia caused by MRSA. The results of cellular thermal shift assay showed that nepetin could bind to ClpP and reduce the thermal stability of ClpP, and the KD value of 602 nM between them was determined using localized surface plasmon resonance. The binding mode of nepetin and ClpP was further investigated by molecular docking, and it was found that Ser-22 and Gln-47 of ClpP residues were found to be involved in the binding of nepetin to ClpP. In conclusion, we determined that nepetin is a ClpP inhibitor and an effective lead compound for the development of a virulence factor-based treatment for MRSA infection.
Collapse
Affiliation(s)
- Shisong Jing
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Ren
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xingye Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,College of integrated Chinese and Western medicine, College of rehabilitation, Changchun University of Chinese Medicine, Changchun, China
| | - Xiren Chang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.,Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xuerui Guo
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
19
|
Scutellarin potentiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P. Biochem Pharmacol 2022; 199:114982. [PMID: 35247333 DOI: 10.1016/j.bcp.2022.114982] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023]
Abstract
The strategy of targeting virulence factor has received great attention as it barely develops bacterial resistance. Sortase A (SrtA) and caseinolytic peptidase P (ClpP), as important virulence factors, are considered to be ideal pharmacological targets for methicillin-resistant Staphylococcus aureus (MRSA) infection. Through screening hundreds of compounds, we found scutellarin, a natural flavonoid, markedly inhibited SrtA and ClpP activities of MRSA strain USA300 with an IC50 of 53.64 μg/mL and 107.00 μg/mL, respectively. Subsequently, we observed that scutellarin could inhibit the SrtA-related virulence of MRSA. To demonstrate whether scutellarin directly binding to SrtA, fluorescence quenching assay and molecular docking were performed and the results indicated that scutellarin directly bonded to SrtA molecule with a KA value of 7.58 × 104 L/mol. In addition to direct SrtA inhibition, scutellarin could also inhibit hemolytic activity of S. aureus by inhibiting the expression of Hla in a SrtA-independent manner. Further assays confirmed that scutellarin inhibited hemolysis by inhibiting ClpP. The combination of scutellarin and vancomycin showed enhancing inhibition of USA300 in vitro and in vivo, evidenced by decreased MIC from 3 μg/mL to 0.5 μg/mL and increased survival and improvement of lung pathology in pneumonia mice. Taken together, these results suggest that scutellarin exhibited di-inhibitory effects on SrtA and ClpP of USA300. The di-inhibition of virulence factors by scutellarin combined with vancomycin to prevent MRSA invasion of A549 cells and pneumonia in mice, indicating that scutellarin is expected to be a potential adjuvant against MRSA in the future.
Collapse
|
20
|
Fan J, Sun H, Liu Y, Li X, Wu H, Ren X. Sanchen powder extract combined with vancomycin against methicillin-resistant Staphylococcus aureus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|