1
|
Devasia AG, Shanmugham M, Ramasamy A, Bellanger S, Parry LJ, Leo CH. Therapeutic potential of relaxin or relaxin mimetics in managing cardiovascular complications of diabetes. Biochem Pharmacol 2024; 229:116507. [PMID: 39182735 DOI: 10.1016/j.bcp.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Diabetes mellitus is a metabolic disease with an escalating global prevalence. Despite the abundance and relative efficacies of current therapeutic approaches, they primarily focus on attaining the intended glycaemic targets, but patients ultimately still suffer from various diabetes-associated complications such as retinopathy, nephropathy, cardiomyopathy, and atherosclerosis. There is a need to explore innovative and effective diabetic treatment strategies that not only address the condition itself but also combat its complications. One promising option is the reproductive hormone relaxin, an endogenous ligand of the RXFP1 receptor. Relaxin is known to exert beneficial actions on the cardiovascular system through its vasoprotective, anti-inflammatory and anti-fibrotic effects. Nevertheless, the native relaxin peptide exhibits a short biological half-life, limiting its therapeutic potential. Recently, several relaxin mimetics and innovative delivery technologies have been developed to extend its biological half-life and efficacy. The current review provides a comprehensive landscape of the cardiovascular effects of relaxin, focusing on its potential therapeutic applications in managing complications associated with diabetes. The latest advancements in the development of relaxin mimetics and delivery methods for the treatment of cardiometabolic disorders are also discussed.
Collapse
Affiliation(s)
- Arun George Devasia
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Sophie Bellanger
- A*STAR Skin Research Labs (A*SRL), Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Laura J Parry
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Huei Leo
- Department of Biomedical Engineering, College of Design & Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
2
|
Li Y, Hunter A, Wakeel MM, Sun G, Lau RWK, Broughton BRS, Pino IEO, Deng Z, Zhang T, Murthi P, Del Borgo MP, Widdop RE, Polo JM, Ricardo SD, Samuel CS. The renoprotective efficacy and safety of genetically-engineered human bone marrow-derived mesenchymal stromal cells expressing anti-fibrotic cargo. Stem Cell Res Ther 2024; 15:375. [PMID: 39443975 PMCID: PMC11515549 DOI: 10.1186/s13287-024-03992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Kidney fibrosis is a hallmark of chronic kidney disease (CKD) and compromises the viability of transplanted human bone marrow-derived mesenchymal stromal cells (BM-MSCs). Hence, BM-MSCs were genetically-engineered to express the anti-fibrotic and renoprotective hormone, human relaxin-2 (RLX) and green fluorescent protein (BM-MSCs-eRLX + GFP), which enabled BM-MSCs-eRLX + GFP delivery via a single intravenous injection. METHODS BM-MSCs were lentiviral-transduced with human relaxin-2 cDNA and GFP, under a eukaryotic translation elongation factor-1α promoter (BM-MSCs-eRLX + GFP) or GFP alone (BM-MSCs-eGFP). The ability of BM-MSCs-eRLX + GFP to differentiate, proliferate, migrate, produce RLX and cytokines was evaluated in vitro, whilst BM-MSC-eRLX + GFP vs BM-MSCs-eGFP homing to the injured kidney and renoprotective effects were evaluated in preclinical models of ischemia reperfusion injury (IRI) and high salt (HS)-induced hypertensive CKD in vivo. The long-term safety of BM-MSCs-RLX + GFP was also determined 9-months after treatment cessation in vivo. RESULTS When cultured for 3- or 7-days in vitro, 1 × 106 BM-MSCs-eRLX + GFP produced therapeutic RLX levels, and secreted an enhanced but finely-tuned cytokine profile without compromising their proliferation or differentiation capacity compared to naïve BM-MSCs. BM-MSCs-eRLX + GFP were identified in the kidney 2-weeks post-administration and retained the therapeutic effects of RLX in vivo. 1-2 × 106 BM-MSCs-eRLX + GFP attenuated the IRI- or therapeutically abrogated the HS-induced tubular epithelial damage and interstitial fibrosis, and significantly reduced the HS-induced hypertension, glomerulosclerosis and proteinuria. This was to an equivalent extent as RLX and BM-MSCs administered separately but to a broader extent than BM-MSCs-eGFP or the angiotensin-converting enzyme inhibitor, perindopril. Additionally, these renoprotective effects of BM-MSCs-eRLX + GFP were maintained in the presence of perindopril co-treatment, highlighting their suitability as adjunct therapies to ACE inhibition. Importantly, no major long-term adverse effects of BM-MSCs-eRLX + GFP were observed. CONCLUSIONS BM-MSCs-eRLX + GFP produced greater renoprotective and therapeutic efficacy over that of BM-MSCs-eGFP or ACE inhibition, and may represent a novel and safe treatment option for acute kidney injury and hypertensive CKD.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Alex Hunter
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Miqdad M Wakeel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Guizhi Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ricky W K Lau
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Ivan E Oyarce Pino
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Zihao Deng
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Tingfang Zhang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Padma Murthi
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Mark P Del Borgo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- The South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sharon D Ricardo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Agoulnik IU, Kaftanovskaya EM, Myhr C, Bathgate RAD, Kocan M, Peng Y, Lindsay RM, DiStefano PS, Agoulnik AI. Engineering a long acting, non-biased relaxin agonist using Protein-in-Protein technology. Biochem Pharmacol 2024; 227:116401. [PMID: 38945278 DOI: 10.1016/j.bcp.2024.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The peptide hormone relaxin plays a critical role in tissue remodeling in a variety of tissues through activation of its cognate receptor, RXFP1. Relaxin's ability to modify extracellular matrices has provided a strong rationale for treating fibrosis in a variety of tissues. Treatment with recombinant relaxin peptides in clinical studies of heart failure has not yet proven useful, likely due to the short half-life of infused peptide. To circumvent this particular pharmacokinetic pitfall we have used a Protein-in-Protein (PiP) antibody technology described previously, to insert a single-chain human relaxin construct into the complementarity-determining region (CDR) of an immunoglobulin G (IgG) backbone, creating a relaxin molecule with a half-life of ∼4-5 days in mice. Relaxin-PiP biologics displaced Europium-labeled human relaxin in RXFP1-expressing cells and demonstrated full agonist activity on both human and mouse RXFP1 receptors. Relaxin-PiPs did not show signal transduction bias, as they activated cAMP in THP-1 cells, and cGMP and pERK signaling in primary human cardiac fibroblasts. In an induced carbon tetrachloride mouse model of liver fibrosis one relaxin-PiP, R2-PiP, caused reduction of liver lesions, ameliorated collagen accumulation in the liver with the corresponding reduction of Collagen1a1 gene expression, and increased cell proliferation in hepatic parenchyma. These relaxin biologics represent a novel approach to the design of a long-acting RXFP1 agonist to probe the clinical utility of relaxin/RXFP1 signaling to treat a variety of human fibrotic diseases.
Collapse
Affiliation(s)
- Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Courtney Myhr
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Yingjie Peng
- Scripps Research, 10550 N Torrey Pines Rd, La Jolla, CA 92037 USA
| | - Ronald M Lindsay
- Zebra Biologics, Inc., 1041 Old Marlboro Road, Concord, MA 01742 USA
| | - Peter S DiStefano
- Zebra Biologics, Inc., 1041 Old Marlboro Road, Concord, MA 01742 USA.
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
4
|
Almeida-Pinto N, Dschietzig TB, Brás-Silva C, Adão R. Cardiovascular effects of relaxin-2: therapeutic potential and future perspectives. Clin Res Cardiol 2024; 113:1137-1150. [PMID: 37721595 PMCID: PMC11269324 DOI: 10.1007/s00392-023-02305-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
The hormone relaxin-2 has emerged as a promising player in regulating the physiology of the cardiovascular system. Through binding to the relaxin family peptide receptor 1 (RXFP1), this hormone elicits multiple physiological responses including vasodilation induction, reduction of inflammation and oxidative stress, and angiogenesis stimulation. The role of relaxin-2, or its recombinant human form known as serelaxin, has been investigated in preclinical and clinical studies as a potential therapy for cardiovascular diseases, especially heart failure, whose current therapy is still unoptimized. However, evidence from past clinical trials has been inconsistent and further research is needed to fully understand the potential applications of relaxin-2. This review provides an overview of serelaxin use in clinical trials and discusses future directions in the development of relaxin-2 mimetics, which may offer new therapeutic options for patients with heart failure.
Collapse
Affiliation(s)
- Nísia Almeida-Pinto
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | | | - Carmen Brás-Silva
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Rui Adão
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
- CIBER Enfermedades Respiratorias (Ciberes), Madrid, Spain.
| |
Collapse
|
5
|
Satoh Y, Ono Y, Takahashi R, Katayama H, Iwaoka M, Yoshino O, Arai K. Seleno-relaxin analogues: effect of internal and external diselenide bonds on the foldability and a fibrosis-related factor of endometriotic stromal cells. RSC Chem Biol 2024; 5:729-737. [PMID: 39092438 PMCID: PMC11289879 DOI: 10.1039/d4cb00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024] Open
Abstract
Human relaxin-2 (H2 relaxin) is a peptide hormone of about 6 kDa, first identified as a reproductive hormone involved in vasoregulation during pregnancy. It has recently attracted strong interest because of its diverse functions, including anti-inflammatory, anti-fibrotic, and vasodilatory, and has been suggested as a potential peptide-based drug candidate for a variety of diseases. Mature H2 relaxin is constituted by the A- and B-chains stabilized by two interchain disulfide (SS) bridges and one intrachain SS linkage. In this study, seleno-relaxins, SeRlx-α and SeRlx-β, which are [C11UA,C11UB] and [C10UA,C15UA] variants of H2 relaxin, respectively, were synthesized via a one-pot oxidative chain assembly (folding) from the component A- and B-chains. The substitution of SS bonds in a protein with their analogue, diselenide (SeSe) bonds, has been shown to alter the physical, chemical, and physiological properties of the protein. The surface SeSe bond (U11A-U11B) enhanced the yield of chain assembly while the internal SeSe bond (U10A-U15A) improved the reaction rate of the folding, indicating that these bridges play a major role in controlling the thermodynamics and kinetics, respectively, of the folding mechanism. Furthermore, SeRlx-α and SeRlx-β effectively reduced the expression of a tissue fibrosis-related factor in human endometriotic stromal cells. Thus, the findings of this study indicate that the S-to-Se substitution strategy not only enhances the foldability of relaxin, but also provides new guidance for the development of novel relaxin formulations for endometriosis treatment.
Collapse
Affiliation(s)
- Yuri Satoh
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Yosuke Ono
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology, University of Yamanashi 1110 Shimokato Chuo-shi Yamanashi 409-3898 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan +81-463-50-2094 +81-463-58-1211
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| |
Collapse
|
6
|
Poirier B, Pasquier O, Chenede X, Corbier A, Prigent P, Azam A, Bernard C, Guillotel M, Gillot F, Riva L, Briand V, Ingenito R, Gauzy-Lazo L, Duclos O, Philippo C, Maillere B, Bianchi E, Mallart S, Janiak P, Illiano S. R2R01: A long-acting single-chain peptide agonist of RXFP1 for renal and cardiovascular diseases. Br J Pharmacol 2024; 181:1993-2011. [PMID: 38450758 DOI: 10.1111/bph.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The therapeutic potential of relaxin for heart failure and renal disease in clinical trials is hampered by the short half-life of serelaxin. Optimization of fatty acid-acetylated single-chain peptide analogues of relaxin culminated in the design and synthesis of R2R01, a potent and selective RXFP1 agonist with subcutaneous bioavailability and extended half-life. EXPERIMENTAL APPROACH Cellular assays and pharmacological models of RXFP1 activation were used to validate the potency and selectivity of R2R01. Increased renal blood flow was used as a translational marker of R2R01 activity. Human mastocytes (LAD2 cells) were used to study potential pseudo-allergic reactions and CD4+ T-cells to study immunogenicity. The pharmacokinetics of R2R01 were characterized in rats and minipigs. KEY RESULTS In vitro, R2R01 had comparable potency and efficacy to relaxin as an agonist for human RXFP1. In vivo, subcutaneous administration of R2R01 increased heart rate and renal blood flow in normotensive and hypertensive rat and did not show evidence of tachyphylaxis. R2R01 also increased nipple length in rats, used as a chronic model of RXFP1 engagement. Pharmacokinetic studies showed that R2R01 has a significantly extended terminal half-life. The in vitro assays with LAD2 cells and CD4+ T-cells showed that R2R01 had low potential for pseudo-allergic and immunogenic reactions, respectively. CONCLUSION AND IMPLICATIONS R2R01 is a potent RXFP1 agonist with an extended half-life that increases renal blood flow in various settings including normotensive and hypertensive conditions. The preclinical efficacy and safety data supported clinical development of R2R01 as a potential new therapy for renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Bruno Poirier
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | | | - Xavier Chenede
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Alain Corbier
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Philippe Prigent
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | | | - Carine Bernard
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Michel Guillotel
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Florence Gillot
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Laurence Riva
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Veronique Briand
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Raffaele Ingenito
- Peptides and Small Molecules R&D Department, IRBM Spa, Pomezia, Rome, Italy
| | - Laurence Gauzy-Lazo
- Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Olivier Duclos
- Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | | | | | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM Spa, Pomezia, Rome, Italy
| | - Sergio Mallart
- Département Médicaments et Technologies pour la Santé, Université de Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Philip Janiak
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
| | - Stephane Illiano
- Cardio-Vascular and metabolism, Sanofi R&D, Chilly Mazarin, France
- Investigative Toxicology, Sanofi R&D, Chilly Mazarin, France
| |
Collapse
|
7
|
Samuel CS, Li Y, Wang Y, Widdop RE. Functional crosstalk between angiotensin receptors (types 1 and 2) and relaxin family peptide receptor 1 (RXFP1): Implications for the therapeutic targeting of fibrosis. Br J Pharmacol 2024; 181:2302-2318. [PMID: 36560925 DOI: 10.1111/bph.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Class A, rhodopsin-like, G-protein-coupled receptors (GPCRs) are by far the largest class of GPCRs and are integral membrane proteins used by various cells to convert extracellular signals into intracellular responses. Initially, class A GPCRs were believed to function as monomers, but a growing body of evidence has emerged to suggest that these receptors can function as homodimers and heterodimers and can undergo functional crosstalk to influence the actions of agonists or antagonists acting at each receptor. This review will focus on the angiotensin type 1 (AT1) and type 2 (AT2) receptors, as well as the relaxin family peptide receptor 1 (RXFP1), each of which have their unique characteristics but have been demonstrated to undergo some level of interaction when appropriately co-expressed, which influences the function of each receptor. In particular, this receptor functional crosstalk will be discussed in the context of fibrosis, the tissue scarring that results from a failed wound-healing response to injury, and which is a hallmark of chronic disease and related organ dysfunction. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
9
|
Aragón-Herrera A, Feijóo-Bandín S, Vázquez-Abuín X, Anido-Varela L, Moraña-Fernández S, Bravo SB, Tarazón E, Roselló-Lletí E, Portolés M, García-Seara J, Seijas J, Rodríguez-Penas D, Bani D, Gualillo O, González-Juanatey JR, Lago F. Human recombinant relaxin-2 (serelaxin) regulates the proteome, lipidome, lipid metabolism and inflammatory profile of rat visceral adipose tissue. Biochem Pharmacol 2024; 223:116157. [PMID: 38518995 DOI: 10.1016/j.bcp.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Recombinant human relaxin-2 (serelaxin) has been widely proven as a novel drug with myriad effects at different cardiovascular levels, which support its potential therapeutic efficacy in several cardiovascular diseases (CVD). Considering these effects, together with the influence of relaxin-2 on adipocyte physiology and adipokine secretion, and the connection between visceral adipose tissue (VAT) dysfunction and the development of CVD, we could hypothesize that relaxin-2 may regulate VAT metabolism. Our objective was to evaluate the impact of a 2-week serelaxin treatment on the proteome and lipidome of VAT from Sprague-Dawley rats. We found that serelaxin increased 1 polyunsaturated fatty acid and 6 lysophosphatidylcholines and decreased 4 triglycerides in VAT employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) based platforms, and that regulates 47 phosphoproteins using SWATH/MS analysis. Through RT-PCR, we found that serelaxin treatment also caused an effect on VAT lipolysis through an increase in the mRNA expression of hormone-sensitive lipase (HSL) and a decrease in the expression of adipose triglyceride lipase (ATGL), together with a reduction in the VAT expression of the fatty acid transporter cluster of differentiation 36 (Cd36). Serelaxin also caused an anti-inflammatory effect in VAT by the decrease in the mRNA expression of tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), chemerin, and its receptor. In conclusion, our results highlight the regulatory role of serelaxin in the VAT proteome and lipidome, lipolytic function, and inflammatory profile, suggesting the implication of several mechanisms supporting the potential benefit of serelaxin for the prevention of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Xocas Vázquez-Abuín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Javier García-Seara
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Arrhytmia Unit, Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Seijas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniele Bani
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Oreste Gualillo
- Laboratory of Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Chen D, Rehfeld JF, Watts AG, Rorsman P, Gundlach AL. History of key regulatory peptide systems and perspectives for future research. J Neuroendocrinol 2023; 35:e13251. [PMID: 37053148 DOI: 10.1111/jne.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Hossain MA, Praveen P, Noorzi NA, Wu H, Harrison IP, Handley T, Selemidis S, Samuel CS, Bathgate RAD. Development of Novel High-Affinity Antagonists for the Relaxin Family Peptide Receptor 1. ACS Pharmacol Transl Sci 2023; 6:842-853. [PMID: 37200817 PMCID: PMC10186362 DOI: 10.1021/acsptsci.3c00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 05/20/2023]
Abstract
H2 relaxin is a peptide hormone that exerts its biological actions through the G protein-coupled receptor, RXFP1. The numerous important biological functions of H2 relaxin, including potent renal, vasodilatory, cardioprotective, and anti-fibrotic actions, have resulted in considerable interest in its use as a therapeutic for various cardiovascular diseases and other fibrotic indications. Interestingly though, H2 relaxin and RXFP1 have been shown to be overexpressed in prostate cancer, allowing for the downregulation or blocking of relaxin/RXFP1 to decrease prostate tumor growth. These findings suggest the application of an RXFP1 antagonist for the treatment of prostate cancer. However, these therapeutically relevant actions are still poorly understood and have been hindered by the lack of a high-affinity antagonist. In this study, we chemically synthesized three novel H2 relaxin analogues that have complex insulin-like structures with two chains (A and B) and three disulfide bridges. We report here the structure-activity relationship studies on H2 relaxin that resulted in the development of a novel high-affinity RXFP1 antagonist, H2 B-R13HR (∼40 nM), that has only one extra methylene group in the side chain of arginine 13 in the B-chain (ArgB13) of H2 relaxin. Most notably, the synthetic peptide was shown to be active in a mouse model of prostate tumor growth in vivo where it inhibited relaxin-mediated tumor growth. Our compound H2 B-R13HR will be an important research tool to understand relaxin actions through RXFP1 and may be a potential lead compound for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mohammed Akhter Hossain
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- School
of Chemistry, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Praveen Praveen
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Nurhayati Ahmad Noorzi
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Hongkang Wu
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Ian P. Harrison
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Thomas Handley
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Stavros Selemidis
- School
of
Health and Biomedical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular
Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
- Department
of Pharmacology, Monash University, Clayton 3800, Victoria, Australia
| | - Ross A. D. Bathgate
- Florey
Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville 3010, Victoria, Australia
| |
Collapse
|
13
|
Praveen P, Wang C, Handley TNG, Wu H, Samuel CS, Bathgate RAD, Hossain MA. A Lipidated Single-B-Chain Derivative of Relaxin Exhibits Improved In Vitro Serum Stability without Altering Activity. Int J Mol Sci 2023; 24:ijms24076616. [PMID: 37047588 PMCID: PMC10094921 DOI: 10.3390/ijms24076616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Human relaxin-2 (H2 relaxin) is therapeutically very important due to its strong anti-fibrotic, vasodilatory, and cardioprotective effects. Therefore, relaxin’s receptor, relaxin family peptide receptor 1 (RXFP1), is a potential target for the treatment of fibrosis and related disorders, including heart failure. H2 relaxin has a complex two-chain structure (A and B) and three disulfide bridges. Our laboratory has recently developed B7-33 peptide, a single-chain agonist based on the B-chain of H2 relaxin. However, the peptide B7-33 has a short circulation time in vitro in serum (t1/2 = ~6 min). In this study, we report structure-activity relationship studies on B7-33 utilizing different fatty-acid conjugations at different positions. We have shown that by fatty-acid conjugation with an appropriate spacer length, the in vitro half-life of B7-33 can be increased from 6 min to 60 min. In the future, the lead lipidated molecule will be studied in animal models to measure its PK/PD properties, which will lead to their pre-clinical applications.
Collapse
Affiliation(s)
- Praveen Praveen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Chao Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3168, Australia
| | - Thomas N. G. Handley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hongkang Wu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3168, Australia
| | - Ross A. D. Bathgate
- Department of Biochemistry and Pharmacology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- Florey Department of Neuroscience and Mental, Florey Institute of Neuroscience and Mental Health, School of Chemistry, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
14
|
Alam F, Gaspari TA, Kemp-Harper BK, Low E, Aw A, Ferens D, Spizzo I, Jefferis AM, Praveen P, Widdop RE, Bathgate RAD, Hossain MA, Samuel CS. The single-chain relaxin mimetic, B7-33, maintains the cardioprotective effects of relaxin and more rapidly reduces left ventricular fibrosis compared to perindopril in an experimental model of cardiomyopathy. Biomed Pharmacother 2023; 160:114370. [PMID: 36753958 DOI: 10.1016/j.biopha.2023.114370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The hormone, relaxin (RLX), exerts various organ-protective effects independently of etiology. However, its complex two-chain and three disulphide bonded structure is a limitation to its preparation and affordability. Hence, a single chain-derivative of RLX, B7-33, was developed and shown to retain the anti-fibrotic effects of RLX in vitro and in vivo. Here, we determined whether B7-33 could retain the other cardioprotective effects of RLX, and also compared its therapeutic efficacy to the ACE inhibitor, perindopril. Adult male 129sv mice were subjected to isoprenaline (ISO; 25 mg/kg/day, s.c)-induced cardiomyopathy, then s.c-treated with either RLX (0.5 mg/kg/day), B7-33 (0.25 mg/kg/day; equivalent dose corrected for MW) or perindopril (1 mg/kg/day) from days 7-14 post-injury. Control mice received saline instead of ISO. Changes in animal body weight (BW) and systolic blood pressure (SBP) were measured weekly, whilst cardiomyocyte hypertrophy and measures of vascular dysfunction and rarefaction, left ventricular (LV) inflammation and fibrosis were assessed at day 14 post-injury. ISO-injured mice had significantly increased LV inflammation, cardiomyocyte hypertrophy, fibrosis, vascular rarefaction and aortic contractility in the absence of any changes in BW or SBP at day 14 post-injury. Both B7-33 and RLX equivalently reduced LV fibrosis and normalised the ISO-induced LV inflammation and cardiomyocyte hypertrophy, whilst restoring blood vessel density and aortic contractility. Comparatively, perindopril lowered SBP and the ISO-induced LV inflammation and vascular rarefaction, but not fibrosis or hypertrophy. As B7-33 retained the cardioprotective effects of RLX and provided rapid-occurring anti-fibrotic effects compared to perindopril, it could be considered as a cost-effective cardioprotective therapy.
Collapse
Affiliation(s)
- Fariha Alam
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Edward Low
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Aaron Aw
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Dorota Ferens
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ann-Maree Jefferis
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Praveen Praveen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Li Y, Zheng G, Salimova E, Broughton BRS, Ricardo SD, de Veer M, Samuel CS. Simultaneous late-gadolinium enhancement and T1 mapping of fibrosis and a novel cell-based combination therapy in hypertensive mice. Biomed Pharmacother 2023; 158:114069. [PMID: 36502754 DOI: 10.1016/j.biopha.2022.114069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is a hallmark of chronic hypertension and disrupts the viability of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) post-transplantation. This study thus, determined whether the anti-fibrotic drug, serelaxin (RLX), could enhance the therapeutic effects of BM-MSCs or BM-MSC-derived exosomes (BM-MSC-EXO) in hypertensive mice. Left ventricular (LV) fibrosis in particular was assessed using conventional histological staining and non-invasive cardiac magnetic resonance imaging (CMRI). CMRI was employed using a novel magnetisation prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence to simultaneously perform late gadolinium enhancement imaging and T1 mapping. Adult male C57BL/6 mice were uninephrectomised, received deoxycorticosterone acetate and saline to drink (1 K/DOCA/salt) for 21 days, whilst control mice were given normal drinking water for the same time-period. On day 14 post-injury, subgroups of 1 K/DOCA/salt-hypertensive mice were treated with RLX alone or in combination with BM-MSCs or BM-MSC-EXO; or the mineralocorticoid receptor antagonist, spironolactone. At day 21 post-injury, LV and kidney histopathology was assessed, whilst LV fibrosis and function were additionally analysed by CMRI and echocardiography. 1 K/DOCA/salt-hypertensive mice developed kidney tubular injury, inflammation, fibrosis, and more moderate LV hypertrophy, fibrosis and diastolic dysfunction. RLX and BM-MSCs combined provided optimal protection against these pathologies and significantly reduced picrosirius red-stained organ fibrosis and MP2RAGE analysis of LV fibrosis. A significant correlation between MP2RAGE analysis and histologically-stained interstitial LV fibrosis was detected. It was concluded that the MP2RAGE sequence enhanced the non-invasive CMRI detection of LV fibrosis. Furthermore, combining RLX and BM-MSCs may represent a promising treatment option for hypertensive cardiorenal syndrome.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
16
|
D'Ercole A, Nistri S, Pacini L, Carotenuto A, Santoro F, Papini AM, Bathgate RAD, Bani D, Rovero P. Synthetic short-chain peptide analogues of H1 relaxin lack affinity for the RXFP1 receptor and relaxin-like bioactivity. Clues to a better understanding of relaxin agonist design. Front Pharmacol 2022; 13:942178. [PMID: 36034864 PMCID: PMC9402926 DOI: 10.3389/fphar.2022.942178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The peptide hormone relaxin (RLX), also available as clinical-grade recombinant protein (serelaxin), holds great promise as a cardiovascular and anti-fibrotic agent but is limited by the pharmacokinetic issues common to all peptide drugs. In this study, by a computational modelling chemistry approach, we have synthesized and tested a set of low molecular weight peptides based on the putative receptor-binding domain of the B chain of human H1 RLX isoform, with the objective to obtain RLX analogues with improved pharmacokinetic features. Some of them were stabilized to induce the appropriate 3-D conformation by intra-chain tri-azolic staples, which should theoretically enhance their resistance to digestive enzymes making them suited for oral administration. Despite these favourable premises, none of these H1 peptides, either linear or stapled, revealed a sufficient affinity to the specific RLX receptor RXFP1. Moreover, none of them was endowed with any RLX-like biological effects in RXFP1-expressing THP-1 human monocytic cells and mouse NIH-3T3-derived myofibroblasts in in vitro culture, in terms of significantly relevant cAMP elevation and ERK1/2 phosphorylation, which represent two major signal transduction events downstream RXFP1 activation. This was at variance with authentic serelaxin, which induced a clear-cut, significant activation of both these classical RLX signaling pathways. Albeit negative, the results of this study offer additional information about the structural requirements that new peptide therapeutics shall possess to effectively behave as RXFP1 agonists and RLX analogues.
Collapse
Affiliation(s)
- Annunziata D'Ercole
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Silvia Nistri
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | | | - Federica Santoro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ross A. D. Bathgate
- Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, Unviversity of Melbourne, Melbourne, VIC, Australia
| | - Daniele Bani
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Daniele Bani, ; Paolo Rovero,
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, University of Florence, Florence, Italy
- Department of NeuroFarBa, University of Florence, Florence, Italy
- *Correspondence: Daniele Bani, ; Paolo Rovero,
| |
Collapse
|
17
|
Wieczfinska J, Pawliczak R. Relaxin Affects Airway Remodeling Genes Expression through Various Signal Pathways Connected with Transcription Factors. Int J Mol Sci 2022; 23:ijms23158413. [PMID: 35955554 PMCID: PMC9368845 DOI: 10.3390/ijms23158413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Fibrosis is one of the parameters of lung tissue remodeling in asthma. Relaxin has emerged as a natural suppressor of fibrosis, showing efficacy in the prevention of a multiple models of fibrosis. Therefore, the aim of this study was to analyze the aptitudes of relaxin, in the context of its immunomodulatory properties, in the development of airway remodeling. WI-38 and HFL1 fibroblasts, as well as epithelial cells (NHBE), were incubated with relaxin. Additionally, remodeling conditions were induced with two serotypes of rhinovirus (HRV). The expression of the genes contributing to airway remodeling were determined. Moreover, NF-κB, c-Myc, and STAT3 were knocked down to analyze the pathways involved in airway remodeling. Relaxin decreased the mRNA expression of collagen I and TGF-β and increased the expression of MMP-9 (p < 0.05). Relaxin also decreased HRV-induced expression of collagen I and α-SMA (p < 0.05). Moreover, all the analyzed transcription factors—NF-κB, c-Myc, and STAT3—have shown its influence on the pathways connected with relaxin action. Though relaxin requires further study, our results suggest that this natural compound offers great potential for inhibition of the development, or even reversing, of factors related to airway remodeling. The presented contribution of the investigated transcription factors in this process additionally increases its potential possibilities through a variety of its activity pathways.
Collapse
|
18
|
Tapia Cáceres F, Gaspari TA, Hossain MA, Samuel CS. Relaxin Inhibits the Cardiac Myofibroblast NLRP3 Inflammasome as Part of Its Anti-Fibrotic Actions via the Angiotensin Type 2 and ATP (P2X7) Receptors. Int J Mol Sci 2022; 23:ijms23137074. [PMID: 35806076 PMCID: PMC9266307 DOI: 10.3390/ijms23137074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/18/2022] Open
Abstract
Chronic NLRP3 inflammasome activation can promote fibrosis through its production of interleukin (IL)-1β and IL-18. Conversely, recombinant human relaxin (RLX) can inhibit the pro-fibrotic interactions between IL-1β, IL-18 and transforming growth factor (TGF)-β1. Here, the broader extent by which RLX targeted the myofibroblast NLRP3 inflammasome to mediate its anti-fibrotic effects was elucidated. Primary human cardiac fibroblasts (HCFs), stimulated with TGF-β1 (to promote myofibroblast (HCMF) differentiation), LPS (to prime the NLRP3 inflammasome) and ATP (to activate the NLRP3 inflammasome) (T+L+A) or benzoylbenzoyl-ATP (to activate the ATP receptor; P2X7R) (T+L+Bz), co-expressed relaxin family peptide receptor-1 (RXFP1), the angiotensin II type 2 receptor (AT2R) and P2X7R, and underwent increased protein expression of toll-like receptor (TLR)-4, NLRP3, caspase-1, IL-1β and IL-18. Whilst RLX co-administration to HCMFs significantly prevented the T+L+A- or T+L+Bz-stimulated increase in these end points, the inhibitory effects of RLX were annulled by the pharmacological antagonism of either RXFP1, AT2R, P2X7R, TLR-4, reactive oxygen species (ROS) or caspase-1. The RLX-induced amelioration of left ventricular inflammation, cardiomyocyte hypertrophy and fibrosis in isoproterenol (ISO)-injured mice, was also attenuated by P2X7R antagonism. Thus, the ability of RLX to ameliorate the myofibroblast NLRP3 inflammasome as part of its anti-fibrotic effects, appeared to involve RXFP1, AT2R, P2X7R and the inhibition of TLR-4, ROS and caspase-1.
Collapse
Affiliation(s)
- Felipe Tapia Cáceres
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
| | - Tracey A. Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence:
| |
Collapse
|