1
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
2
|
Tamaki T, Fukushima N. Oleic acid stimulates proliferation of RMG-1 ovarian cancer cells by activating the pentose phosphate pathway and glutamine metabolism. Biochem Biophys Res Commun 2024; 722:150162. [PMID: 38801802 DOI: 10.1016/j.bbrc.2024.150162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Extracellular fatty acids (FAs) play an important role in regulating cellular functions such as cell proliferation, survival, and migration. The effects of oleic acid (OA) on cancer cells vary depending on the cell type. Our prior study showed that two distinct ovarian cancer cell lines, RMG-1 and HNOA, proliferate in response to OA, but they differ with respect to glucose utilization. Here, we aimed to elucidate the mechanism(s) by which OA stimulates proliferation of RMG-1 cells. We found that OA stimulates RMG-1 proliferation by activating the FA transporter CD36. OA also increases uptake of glucose and glutamine, which subsequently activate the pentose phosphate pathway (PPP) and glutamine metabolism, respectively. Given that ribose 5-phosphate derived from the PPP is utilized for glutamine metabolism and the subsequent de novo nucleotide synthesis, our findings suggest that OA affects the PPP associated with Gln metabolism, rather than glycolysis associated with glutaminolysis; this leads ultimately to activation of DNA synthesis, which is required for cell proliferation. This selective activation by OA contrasts with the mechanisms observed in HNOA cells, in which OA-induced cell proliferation is driven by transcriptional regulation of the GLUT gene. The diverse responses of cancer cells to OA may be attributed to distinct mechanisms of OA reception and/or different metabolic pathways activated by OA.
Collapse
Affiliation(s)
- Takeru Tamaki
- Department of Life Science, Kindai University, Higashiosaka, 577-8502, Japan
| | - Nobuyuki Fukushima
- Department of Life Science, Kindai University, Higashiosaka, 577-8502, Japan.
| |
Collapse
|
3
|
Roca E, Aujayeb A, Astoul P. Diagnosis of Pleural Mesothelioma: Is Everything Solved at the Present Time? Curr Oncol 2024; 31:4968-4983. [PMID: 39329996 PMCID: PMC11430569 DOI: 10.3390/curroncol31090368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Ranked high in worldwide growing health issues, pleural diseases affect approximately one million people globally per year and are often correlated with a poor prognosis. Among these pleural diseases, malignant pleural mesothelioma (PM), a neoplastic disease mainly due to asbestos exposure, still remains a diagnostic challenge. Timely diagnosis is imperative to define the most suitable therapeutic approach for the patient, but the choice of diagnostic modalities depends on operator experience and local facilities while bearing in mind the yield of each diagnostic procedure. Since the analysis of pleural fluid cytology is not sufficient in differentiating historical features in PM, histopathological and morphological features obtained via tissue biopsies are fundamental. The quality of biopsy samples is crucial and often requires highly qualified expertise. Since adequate tissue biopsy is essential, medical or video-assisted thoracoscopy (MT or VATS) is proposed as the most suitable approach, with the former being a physician-led procedure. Indeed, MT is the diagnostic gold standard for malignant pleural pathologies. Moreover, this medical or surgical approach can allow diagnostic and therapeutic procedures: it provides the possibility of video-assisted biopsies, the drainage of high volumes of pleural fluid and the administration of sterile calibrated talcum powder under visual control in order to achieve pleurodesis, placement of indwelling pleural catheters if required and in a near future potential intrapleural therapy. In this context, dedicated diagnostic pathways remain a crucial need, especially to quickly and properly diagnose PM. Lastly, the interdisciplinary approach and multidisciplinary collaboration should always be implemented in order to direct the patient to the best customised diagnostic and therapeutic pathway. At the present time, the diagnosis of PM remains an unsolved problem despite MDT (multidisciplinary team) meetings, mainly because of the lack of standardised diagnostic work-up. This review aims to provide an overview of diagnostic procedures in order to propose a clear strategy.
Collapse
Affiliation(s)
- Elisa Roca
- Thoracic Oncology, Lung Unit, P. Pederzoli Hospital, Peschiera Del Garda, VR, Italy;
| | - Avinash Aujayeb
- Respiratory Department, Northumbria Health Care NHS Foundation Trust, Care of Gail Hewitt, Newcastle NE23 6NZ, UK;
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, North Hospital, Aix-Marseille University, Chemin des Bourrely, 13005 Marseille, France
- La Timone Campus, Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
4
|
Mirveis Z, Patil N, Byrne HJ. Experimental and computational investigation of the kinetic evolution of the glutaminolysis pathway and its interplay with the glycolysis pathway. FEBS Open Bio 2024; 14:1247-1263. [PMID: 38867138 PMCID: PMC11301260 DOI: 10.1002/2211-5463.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Exploring cellular responses necessitates studying real-time metabolic pathway kinetics, considering the adaptable nature of cells. Glycolysis and glutaminolysis are interconnected pathways fundamental to driving cellular metabolism, generating both energy and essential biosynthetic molecules. While prior studies explored glycolysis tracking, this research focuses on monitoring the kinetics of the glutaminolysis pathway by evaluating the effect of glutamine availability on glycolytic kinetics and by investigating the impact of a stimulator (oligomycin) and inhibitor (2DG) on the glycolytic flux in the presence of glutamine. Additionally, we adapted a rate equation model to provide improved understanding of the pathway kinetics. The experimental and simulated results indicate a significant reduction in extracellular lactate production in the presence of glutamine, reflecting a shift from glycolysis towards oxidative phosphorylation, due to the additional contribution of glutamine to energy production through the ETC (electron transport chain), reducing the glycolytic load. Oligomycin, an ETC inhibitor, increases lactate production to the original glycolytic level, despite the presence of glutamine. Nevertheless, its mechanism is influenced by the presence of glutamine, as predicted by the model. Conversely, 2DG notably reduces lactate production, affirming its glycolytic origin. The gradual increase in lactate production under the influence of 2DG implies increased activation of glutaminolysis as an alternative energy source. The model also simulates the varying metabolic responses under varying carbon/modulator concentrations. In conclusion, the kinetic model described here contributes to the understanding of changes in intracellular metabolites and their interrelationships in a way which would be challenging to obtain solely through kinetic assays.
Collapse
Affiliation(s)
- Zohreh Mirveis
- FOCAS Research InstituteTechnological University DublinIreland
- School of Physics and Optometric & Clinical SciencesTechnological University DublinIreland
| | - Nitin Patil
- FOCAS Research InstituteTechnological University DublinIreland
- School of Physics and Optometric & Clinical SciencesTechnological University DublinIreland
| | - Hugh J. Byrne
- FOCAS Research InstituteTechnological University DublinIreland
| |
Collapse
|
5
|
Seo KJ, Yoon JH, Chung BY, Lee HK, Park WS, Chae HS. Effects of photobiomodulation on colon cancer cell line HT29 according to mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112966. [PMID: 38970968 DOI: 10.1016/j.jphotobiol.2024.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND/AIM Although photobiomodulation therapy (PBMt) is available to alleviate post-operative side effects of malignant diseases, its application is still controversial due to some potential of cancer recurrence and occurrence of a secondary malignancy. We investigated effect of PBMt on mitochondrial function in HT29 colon cancer cells. METHODS HT29 cell proliferation was determined with MTT assay after PBMt. Immunofluorescent staining was performed to determine mitochondrial biogenesis and reactive oxygen species (ROS). Mitochondrial membrane potential was measured with Mitotracker. Western blotting was executed to determine expression of fission, fusion, UCP2, and cyclin B1 and D1 proteins. In vivo study was performed by subcutaneously inoculating cancer cells into nude mice and immunohistochemistry was done to determine expression of FIS1, MFN2, UCP2, and p-AKT. RESULTS The proliferation and migration of HT29 cells reached maximum with PBMt (670 nm, light emitting diode, LED) at 2.0 J/cm2 compared to control (P < 0.05) with more expression of cyclin B1 and cyclin D1 (P < 0.05). Immunofluorescent staining showed that ROS and mitochondrial membrane potential were enhanced after PBMt compared to control. ATP synthesis of mitochondria was also higher in the PBMt group than in the control (P < 0.05). Expression levels of fission and fusion proteins were significantly increased in the PBMt group than in the control (P < 0.05). Electron microscopy revealed that the percentage of mitochondria showing fission was not significantly different between the two groups. Oncometabolites including D-2-hydoxyglutamate in the supernatant of cell culture were higher in the PBMt group than in the control with increased UCP2 expression (P < 0.05). Both tumor size and weight of xenograft in nude mice model were bigger and heavier in the PBMt group than in the control (P < 0.05). Immunohistologically, mitochondrial biogenesis proteins UCP2 and p-AKT in xenograft of nude mice were expressed more in the PBMt group than in the control (P < 0.05). CONCLUSIONS Treatment with PBM using red light LED may induce proliferation and progression of HT29 cancer cells by increasing mitochondrial activity and fission.
Collapse
Affiliation(s)
- Kyung Jin Seo
- Department of Pathology, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bom Yee Chung
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Guil F, García R, García JM. Adding metabolic tasks to human GEM models to improve the study of gene targets and their associated toxicities. Sci Rep 2024; 14:17265. [PMID: 39068208 PMCID: PMC11283532 DOI: 10.1038/s41598-024-68073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Genetic minimal cut sets (gMCS) are genes that must be deactivated simultaneously to avoid unwanted states in a metabolic model. The concept of gMCS can be applied to two different scenarios. First, it can be used to identify potential gene toxicities in generic or healthy cell models. Second, it can be used to develop genetic strategies to target cancer cells and prevent their proliferation. Up to now, gMCS have been evaluated using the traditional procedure of preventing biomass production. This paper proposes an additional way: using essential metabolic tasks, which any human cell should perform, to enlarge the set of unwanted states. Including this addition can significantly improve the study of toxicities and reveal targets that can be used to treat unhealthy cells. Excluding metabolic tasks can cause important information to be overlooked, which could impact the study's success. Regarding toxicities, using the generic Human model, the number of detected generic toxicities with metabolic tasks increases from 106 to 281 (136 gMCSs of length 1 and 49 of length 2). We have used the following context-specific models to evaluate specific toxicities in different healthy tissues: blood, pancreas, liver, heart, and kidney. Again, considering metabolic tasks, we have found new toxicities (lengths 1 and 2) whose inactivation could damage these healthy tissues.Our research strategy has been applied to identify new cancer drug targets in two myeloma cell lines. We obtained new therapeutic targets of lengths 1 and 2 for each cell line. After analyzing the data, we conclude that incorporating metabolic tasks into cancer models can reveal important therapeutic targets previously disregarded by the conventional method of inhibiting biomass production. This approach also improves the evaluation of potential drug toxicities.
Collapse
Affiliation(s)
- Francisco Guil
- Facultad de Informática, Universidad de Murcia, Murcia, Spain.
| | - Raquel García
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - José M García
- Facultad de Informática, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
7
|
Wang Y, An R, Yu H, Dai Y, Lou L, Quan S, Chen R, Ding Y, Zhao H, Wu X, Liu Z, Wang Q, Gao Y, Xie X, Zhang J. Largescale multicenter study of a serum metabolite biomarker panel for the diagnosis of breast cancer. iScience 2024; 27:110345. [PMID: 39055906 PMCID: PMC11269948 DOI: 10.1016/j.isci.2024.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer (BC) is currently the most prevalent malignancy worldwide, and finding effective non-invasive biomarkers for routine clinical detection of BC remains a significant challenge. Here, we performed non-targeted and targeted metabolomics analysis on the screening, training and validation cohorts of serum samples from 1,947 participants. A metabolite biomarker model including glutamate, erythronate, docosahexaenoate, propionylcarnitine, and patient's age was established for detecting BC. This model demonstrated better diagnostic performance than carbohydrate antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA) alone in discriminating BC from healthy controls both in the training and validation cohorts [area under the curve (AUC), 0.954; sensitivity, 87.1% and specificity, 93.5% for the training cohort and 0.834, 68.3%, and 85.2%, respectively, for the validation cohort 1]. This study has established a noninvasive approach for the detection of BC, which shows potential as a suitable supplement to the clinical screening methods currently employed for BC.
Collapse
Affiliation(s)
- Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Rui An
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Haitao Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuehong Dai
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Luping Lou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Sheng Quan
- Hangzhou Calibra Diagnostics Co., Ltd. (A Subsidiary of DIAN Diagnostics), 329 Jinpeng Street, Xihu Industrial Park, Hangzhou, Zhejiang, People’s Republic of China
| | - Rongchang Chen
- Hangzhou Calibra Diagnostics Co., Ltd. (A Subsidiary of DIAN Diagnostics), 329 Jinpeng Street, Xihu Industrial Park, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanjun Ding
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongcan Zhao
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, Westlake University School of Medicine, 261 Huansha Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Xuanlan Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Xiasha Campus, Zhejiang University School of Medicine, 368 Xiasha Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhen Liu
- Department of Clinical Laboratory, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Street, Ningbo, Zhejiang, People’s Republic of China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
8
|
Bertoli E, De Carlo E, Bortolot M, Stanzione B, Del Conte A, Spina M, Bearz A. Targeted Therapy in Mesotheliomas: Uphill All the Way. Cancers (Basel) 2024; 16:1971. [PMID: 38893092 PMCID: PMC11171080 DOI: 10.3390/cancers16111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mesothelioma (MM) is an aggressive and lethal disease with few therapeutic opportunities. Platinum-pemetrexed chemotherapy is the backbone of first-line treatment for MM. The introduction of immunotherapy (IO) has been the only novelty of the last decades, allowing an increase in survival compared to standard chemotherapy (CT). However, IO is not approved for epithelioid histology in many countries. Therefore, therapy for relapsed MM remains an unmet clinical need, and the prognosis of MM remains poor, with an average survival of only 18 months. Increasing evidence reveals MM complexity and heterogeneity, of which histological classification fails to explain. Thus, scientific focus on possibly new molecular markers or cellular targets is increasing, together with the search for target therapies directed towards them. The molecular landscape of MM is characterized by inactivating tumor suppressor alterations, the most common of which is found in CDKN2A, BAP1, MTAP, and NF2. In addition, cellular targets such as mesothelin or metabolic enzymes such as ASS1 could be potentially amenable to specific therapies. This review examines the major targets and relative attempts of therapeutic approaches to provide an overview of the potential prospects for treating this rare neoplasm.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| |
Collapse
|
9
|
Liang Z, Zhang K, Guo H, Tang X, Chen M, Shi J, Yang J. Cordycepin alleviates hepatic fibrosis in association with the inhibition of glutaminolysis to promote hepatic stellate cell senescence. Int Immunopharmacol 2024; 132:111981. [PMID: 38565039 DOI: 10.1016/j.intimp.2024.111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Cordycepin (CRD) is an active component derived from Cordyceps militaris, which possesses multiple biological activities and uses in liver disease. However, whether CRD improves liver fibrosis by regulating hepatic stellate cell (HSC) activation has remained unknown. The study aims further to clarify the activities of CRD on liver fibrosis and elucidate the possible mechanism. Our results demonstrated that CRD significantly relieved hepatocyte injury and inhibited HSC activation, alleviating hepatic fibrogenesis in the Diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC)-induced mice model. In vitro, CRD exhibited dose-dependent repress effects on HSC proliferation, migration, and pro-fibrotic function in TGF-β1-activated LX-2 and JS-1 cells. The functional enrichment analysis of RNA-seq data indicated that the pathway through which CRD alleviates HSC activation involves cellular senescence and cell cycle-related pathways. Furthermore, it was observed that CRD accumulated the number of senescence-associated a-galactosidase positive cells and the levels of senescencemarker p21, and provoked S phasearrestof activated HSC. Remarkably, CRD treatment abolished TGF-β-induced yes-associated protein (YAP) nuclear translocation that acts upstream of glutaminolysis in activated HSC. On the whole, CRD significantly inhibited glutaminolysis of activated-HSC and induced cell senescence through the YAP signaling pathway, consequently alleviating liver fibrosis, which may be a valuable supplement for treating liver fibrosis.
Collapse
Affiliation(s)
- Zhu Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Keyan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Hongli Guo
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xujiao Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Mingzhu Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinsong Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jing Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
10
|
Papadopoulou MT, Panagopoulou P, Paramera E, Pechlivanis A, Virgiliou C, Papakonstantinou E, Palabougiouki M, Ioannidou M, Vasileiou E, Tragiannidis A, Papakonstantinou E, Theodoridis G, Hatzipantelis E, Evangeliou A. Metabolic Fingerprint in Childhood Acute Lymphoblastic Leukemia. Diagnostics (Basel) 2024; 14:682. [PMID: 38611595 PMCID: PMC11011894 DOI: 10.3390/diagnostics14070682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the most prevalent childhood malignancy. Despite high cure rates, several questions remain regarding predisposition, response to treatment, and prognosis of the disease. The role of intermediary metabolism in the individualized mechanistic pathways of the disease is unclear. We have hypothesized that children with any (sub)type of ALL have a distinct metabolomic fingerprint at diagnosis when compared: (i) to a control group; (ii) to children with a different (sub)type of ALL; (iii) to the end of the induction treatment. MATERIALS AND METHODS In this prospective case-control study (NCT03035344), plasma and urinary metabolites were analyzed in 34 children with ALL before the beginning (D0) and at the end of the induction treatment (D33). Their metabolic fingerprint was defined by targeted analysis of 106 metabolites and compared to that of an equal number of matched controls. Multivariate and univariate statistical analyses were performed using SIMCAP and scripts under the R programming language. RESULTS Metabolomic analysis showed distinct changes in patients with ALL compared to controls on both D0 and D33. The metabolomic fingerprint within the patient group differed significantly between common B-ALL and pre-B ALL and between D0 and D33, reflecting the effect of treatment. We have further identified the major components of this metabolic dysregulation, indicating shifts in fatty acid synthesis, transfer and oxidation, in amino acid and glycerophospholipid metabolism, and in the glutaminolysis/TCA cycle. CONCLUSIONS The disease type and time point-specific metabolic alterations observed in pediatric ALL are of particular interest as they may offer potential for the discovery of new prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Maria T. Papadopoulou
- 4th Pediatric Department, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece; (P.P.); (A.E.)
- Woman-Mother-Child Hospital, University Hospitals of Lyon, 69500 Bron, France
| | - Paraskevi Panagopoulou
- 4th Pediatric Department, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece; (P.P.); (A.E.)
| | | | - Alexandros Pechlivanis
- Department of Chemistry, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (A.P.)
- BIOMIC_Auth, Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (CIRI), Balkan Center, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Christina Virgiliou
- BIOMIC_Auth, Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (CIRI), Balkan Center, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
- Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Maria Palabougiouki
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | - Maria Ioannidou
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | - Eleni Vasileiou
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | - Athanasios Tragiannidis
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | | | - Georgios Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (A.P.)
- BIOMIC_Auth, Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (CIRI), Balkan Center, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Emmanuel Hatzipantelis
- Pediatric & Adolescents Hematology-Oncology Unit, 2nd Pediatric Department, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.P.); (M.I.); (A.T.); (E.H.)
| | - Athanasios Evangeliou
- 4th Pediatric Department, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece; (P.P.); (A.E.)
- St Luke’s Hospital S.A., 55236 Pannorama, Greece
| |
Collapse
|
11
|
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res 2024; 43:74. [PMID: 38459595 PMCID: PMC10921613 DOI: 10.1186/s13046-024-02994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Glutamine metabolism plays a pivotal role in cancer progression, immune cell function, and the modulation of the tumor microenvironment. Dysregulated glutamine metabolism has been implicated in cancer development and immune responses, supported by mounting evidence. Cancer cells heavily rely on glutamine as a critical nutrient for survival and proliferation, while immune cells require glutamine for activation and proliferation during immune reactions. This metabolic competition creates a dynamic tug-of-war between cancer and immune cells. Targeting glutamine transporters and downstream enzymes involved in glutamine metabolism holds significant promise in enhancing anti-tumor immunity. A comprehensive understanding of the intricate molecular mechanisms underlying this interplay is crucial for developing innovative therapeutic approaches that improve anti-tumor immunity and patient outcomes. In this review, we provide a comprehensive overview of recent advances in unraveling the tug-of-war of glutamine metabolism between cancer and immune cells and explore potential applications of basic science discoveries in the clinical setting. Further investigations into the regulation of glutamine metabolism in cancer and immune cells are expected to yield valuable insights, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Bolin Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinli Pei
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
12
|
Liu Z, Liu M, Wang H, Qin P, Di Y, Jiang S, Li Y, Huang L, Jiao N, Yang W. Glutamine attenuates bisphenol A-induced intestinal inflammation by regulating gut microbiota and TLR4-p38/MAPK-NF-κB pathway in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115836. [PMID: 38154151 DOI: 10.1016/j.ecoenv.2023.115836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Bisphenol A (BPA), as a kind of widely exerted environmental hazardous material, brings toxicity to both humans and animals. This study aimed to investigate the role of glutamine (Gln) in intestinal inflammation and microbiota in BPA-challenged piglets. Thirty-two piglets were randomly divided into four groups according to 2 factors including BPA (0 vs. 0.1%) and Gln (0 vs. 1%) supplemented in basal diet for a 42-day feeding experiment. The results showed BPA exposure impaired piglet growth, induced intestinal inflammation and disturbed microbiota balance. However, dietary Gln supplementation improved the growth performance, while decreasing serum pro-inflammatory cytokine levels in BPA-challenged piglets. In addition, Gln attenuated intestinal mucosal damage and inflammation by normalizing the activation of toll-like receptor 4 (TLR4)-p38/MAPK-nuclear factor-kappa B (NF-κB) pathway caused by BPA. Moreover, dietary Gln supplementation decreased the abundance of Actinobacteriota and Proteobacteria, and attenuated the decreased abundance of Roseburia, Prevotella, Romboutsia and Phascolarctobacterium and the content of short-chain fatty acids in cecum contents caused by BPA exposure. Moreover, there exerted potential relevance between the gut microbiota and pro-inflammatory cytokines and cecal short-chain fatty acids. In conclusion, Gln is critical nutrition for attenuating BPA-induced intestinal inflammation, which is partially mediated by regulating microbial balance and suppressing the TLR4/p38 MAPK/NF-κB signaling.
Collapse
Affiliation(s)
- Zihao Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Min Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Huiru Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Pengxiang Qin
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yanjiao Di
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Yang Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Libo Huang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China
| | - Ning Jiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong Province 271018, China.
| |
Collapse
|
13
|
Wu A, Zhao Y, Yu R, Zhou J, Tuo Y. Untargeted metabolomics analysis reveals the metabolic disturbances and exacerbation of oxidative stress in recurrent spontaneous abortion. PLoS One 2023; 18:e0296122. [PMID: 38127925 PMCID: PMC10735046 DOI: 10.1371/journal.pone.0296122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Recurrent spontaneous abortion (RSA) is characterized by the occurrence of two or more consecutive spontaneous abortions, with a rising prevalence among pregnant women and significant implications for their physical and mental well-being. The multifaceted etiology of RSA has posed challenges in unraveling the molecular mechanisms underlying that underlie its pathogenesis. Oxidative stress and immune response have been identified as pivotal factors in the development of its condition. METHODS Eleven serum samples from healthy pregnant women and 17 from RSA were subjected to liquid chromatography/mass spectrometry (LC-MS) analysis. Multivariate statistical analysis was employed to excavate system-level characterization of the serum metabolome. The measurement of seven oxidative stress products, namely superoxide dismutase (SOD), catalase (CAT), malonaldehyde (MDA), glutathione (GPx), glutathione peroxidase (GSH), oxidized glutathione (GSSG), heme oxygenase (HO-1), was carried out using ELISA. RESULTS Through the monitoring of metabolic and lipid alternations during RSA events, we have identified 816 biomarkers that were implicated in various metabolic pathways, including glutathione metabolism, phosphonate and phosphinate metabolism, nucleotide metabolism, sphingolipid metabolism, lysine degradation and purine metabolism, etc. These pathways have been found to be closely associated with the progression of the disease. Our finding indicated that the levels of MDA and HO-1 were elevated in the RSA group compared to the control group, whereas SOD, CAT and GPx exhibited a contrary pattern. However, no slight difference was observed in GSH and GSSG levels between the RSA group and the control group. CONCLUSION The manifestation of RSA elicited discernible temporal alternations in the serum metabolome and biochemical markers linked to the metabolic pathways of oxidative stress and immune response. Our investigation furnished a more comprehensive analytical framework encompassing metabolites and enzymes associated with oxidative stress. This inquiry furnished a more nuanced comprehension of the pathogenesis of RSA and established the ground work for prognostication and prophylaxis.
Collapse
Affiliation(s)
- AiNing Wu
- Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - YanHui Zhao
- Obstetrics department, Chifeng Municipal Hospital, Chifeng, China
| | - RongXin Yu
- Obstetrics and Gynecology, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - JianXing Zhou
- Department of Reproductive Medicine Centre, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Ya Tuo
- Department of Reproductive Medicine Centre, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
14
|
Ren LL, Mao T, Meng P, Zhang L, Wei HY, Tian ZB. Glutamine addiction and therapeutic strategies in pancreatic cancer. World J Gastrointest Oncol 2023; 15:1852-1863. [DOI: 10.4251/wjgo.v15.i11.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic cancer remains one of the most lethal diseases worldwide owing to its late diagnosis, early metastasis, and poor prognosis. Because current therapeutic options are limited, there is an urgent need to investigate novel targeted treatment strategies. Pancreatic cancer faces significant metabolic challenges, principally hypoxia and nutrient deprivation, due to specific microenvironmental constraints, including an extensive desmoplastic stromal reaction. Pancreatic cancer cells have been shown to rewire their metabolism and energy production networks to support rapid survival and proliferation. Increased glucose uptake and glycolytic pathway activity during this process have been extensively described. However, growing evidence suggests that pancreatic cancer cells are glutamine addicted. As a nitrogen source, glutamine directly (or indirectly via glutamate conversion) contributes to many anabolic processes in pancreatic cancer, including amino acids, nucleobases, and hexosamine biosynthesis. It also plays an important role in redox homeostasis, and when converted to α-ketoglutarate, glutamine serves as an energy and anaplerotic carbon source, replenishing the tricarboxylic acid cycle intermediates. The present study aims to provide a comprehensive overview of glutamine metabolic reprogramming in pancreatic cancer, focusing on potential therapeutic approaches targeting glutamine metabolism in pancreatic cancer.
Collapse
Affiliation(s)
- Lin-Lin Ren
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Pin Meng
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Li Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hong-Yun Wei
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
15
|
Chen L, Liang B, Xia S, Wang F, Li Z, Shao J, Zhang Z, Chen A, Zheng S, Zhang F. Emodin promotes hepatic stellate cell senescence and alleviates liver fibrosis via a nuclear receptor (Nur77)-mediated epigenetic regulation of glutaminase 1. Br J Pharmacol 2023; 180:2577-2598. [PMID: 37263753 DOI: 10.1111/bph.16156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Senescence in hepatic stellate cells (HSCs) limits liver fibrosis. Glutaminolysis promotes HSC activation. Here, we investigated how emodin affected HSC senescence involving glutaminolysis. EXPERIMENTAL APPROACH Senescence, glutaminolysis metabolites, Nur77 nuclear translocation, glutaminase 1 (GLS1) promoter methylation and related signalling pathways were examined in human HSC-LX2 cells using multiple cellular and molecular approaches. Fibrotic mice with shRNA-mediated knockdown of Nur77 were treated with emodin-vitamin A liposome for investigating the mechanisms in vivo. Human fibrotic liver samples were examined to verify the clinical relevance. KEY RESULTS Emodin upregulated several key markers of senescence and inhibited glutaminolysis cascade in HSCs. Emodin promoted Nur77 nuclear translocation, and knockdown of Nur77 abolished emodin blockade of glutaminolysis and induction of HSC senescence. Mechanistically, emodin facilitated Nur77/DNMT3b interaction and increased GLS1 promoter methylation, leading to inhibited GLS1 expression and blockade of glutaminolysis. Moreover, the glutaminolysis intermediate α-ketoglutarate promoted extracellular signal-regulated kinase (ERK) phosphorylation, which in turn phosphorylated Nur77 and reduced its interaction with DNMT3b. This led to decreased GLS1 promoter methylation and increased GLS1 expression, forming an ERK/Nur77/glutaminolysis positive feedback loop. However, emodin repressed ERK phosphorylation and interrupted the feedback cascade, stimulating senescence in HSCs. Studies in mice showed that emodin-vitamin A liposome inhibited glutaminolysis and induced senescence in HSCs, and consequently alleviated liver fibrosis; but knockdown of Nur77 abrogated these beneficial effects. Similar alterations were validated in human fibrotic liver tissues. CONCLUSIONS AND IMPLICATIONS Emodin stimulated HSC senescence through interruption of glutaminolysis. HSC-targeted delivery of emodin represented a therapeutic option for liver fibrosis.
Collapse
Affiliation(s)
- Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baoyu Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Farhana A, Alsrhani A, Khan YS, Rasheed Z. Cancer Bioenergetics and Tumor Microenvironments-Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers (Basel) 2023; 15:3836. [PMID: 37568652 PMCID: PMC10416858 DOI: 10.3390/cancers15153836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Qassim, Saudi Arabia
| |
Collapse
|
17
|
Adhikary G, Shrestha S, Naselsky W, Newland JJ, Chen X, Xu W, Emadi A, Friedberg JS, Eckert RL. Mesothelioma cancer cells are glutamine addicted and glutamine restriction reduces YAP1 signaling to attenuate tumor formation. Mol Carcinog 2023; 62:438-449. [PMID: 36562471 PMCID: PMC10071591 DOI: 10.1002/mc.23497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Glutamine addiction is an important phenotype displayed in some types of cancer. In these cells, glutamine depletion results in a marked reduction in the aggressive cancer phenotype. Mesothelioma is an extremely aggressive disease that lacks effective therapy. In this study, we show that mesothelioma tumors are glutamine addicted suggesting that glutamine depletion may be a potential therapeutic strategy. We show that glutamine restriction, by removing glutamine from the medium or treatment with inhibitors that attenuate glutamine uptake (V-9302) or conversion to glutamate (CB-839), markedly reduces mesothelioma cell proliferation, spheroid formation, invasion, and migration. Inhibition of the SLC1A5 glutamine importer, by knockout or treatment with V-9302, an SLC1A5 inhibitor, also markedly reduces mesothelioma cell tumor growth. A relationship between glutamine utilization and YAP1/TEAD signaling has been demonstrated in other tumor types, and the YAP1/TEAD signaling cascade is active in mesothelioma cells and drives cell survival and proliferation. We therefore assessed the impact of glutamine depletion on YAP1/TEAD signaling. We show that glutamine restriction, SLC1A5 knockdown/knockout, or treatment with V-9302 or CB-839, reduces YAP1 level, YAP1/TEAD-dependent transcription, and YAP1/TEAD target protein (e.g., CTGF, cyclin D1, COL1A2, COL3A1, etc.) levels. These changes are observed in both cells and tumors. These findings indicate that mesothelioma is a glutamine addicted cancer, show that glutamine depletion attenuates YAP1/TEAD signaling and tumor growth, and suggest that glutamine restriction may be useful as a mesothelioma treatment strategy.
Collapse
Affiliation(s)
- Gautam Adhikary
- Department of Biochemistry and Molecular Biology University of Maryland School of Medicine
| | - Suruchi Shrestha
- Department of Biochemistry and Molecular Biology University of Maryland School of Medicine
| | - Warren Naselsky
- Department of Surgery University of Maryland School of Medicine
| | - John J. Newland
- Department of Surgery University of Maryland School of Medicine
| | - Xi Chen
- Department of Biochemistry and Molecular Biology University of Maryland School of Medicine
| | - Wen Xu
- Department of Biochemistry and Molecular Biology University of Maryland School of Medicine
| | - Ashkan Emadi
- Department of Medicine University of Maryland School of Medicine
- The Marlene and Stewart Greenebaum Comprehensive Cancer Center University of Maryland School of Medicine
| | - Joseph S. Friedberg
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology University of Maryland School of Medicine
- Department of Dermatology University of Maryland School of Medicine
- The Marlene and Stewart Greenebaum Comprehensive Cancer Center University of Maryland School of Medicine
| |
Collapse
|
18
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
19
|
Franco R, Serrano-Marín J. The unbroken Krebs cycle. Hormonal-like regulation and mitochondrial signaling to control mitophagy and prevent cell death. Bioessays 2023; 45:e2200194. [PMID: 36549872 DOI: 10.1002/bies.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The tricarboxylic acid (TCA) or Krebs cycle, which takes place in prokaryotic cells and in the mitochondria of eukaryotic cells, is central to life on Earth and participates in key events such as energy production and anabolic processes. Despite its relevance, it is not perceived as tightly regulated compared to other key metabolisms such as glycolysis/gluconeogenesis. A better understanding of the functioning of the TCA cycle is crucial due to mitochondrial function impairment in several diseases, especially those that occur with neurodegeneration. This article revisits what is known about the regulation of the Krebs cycle and hypothesizes the need for large-scale, rapid regulation of TCA cycle enzyme activity. Evidence of mitochondrial enzyme activity regulation by activation/deactivation of protein kinases and phosphatases exists in the literature. Apart from indirect regulation via G protein-coupled receptors (GPCRs) at the cell surface, signaling upon activation of GPCRs in mitochondrial membranes may lead to a direct regulation of the enzymes of the Krebs cycle. Hormonal-like regulation by posttranscriptional events mediated by activable kinases and phosphatases deserve proper assessment using isolated mitochondria. Also see the video abstract here: https://youtu.be/aBpDSWiMQyI.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain.,Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.,School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Menchikov LG, Shestov AA, Popov AV. Warburg Effect Revisited: Embodiment of Classical Biochemistry and Organic Chemistry. Current State and Prospects. BIOCHEMISTRY (MOSCOW) 2023; 88:S1-S20. [PMID: 37069111 DOI: 10.1134/s0006297923140018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about "the prime cause of cancer", which is a matter of debate nowadays. Contrary to the hypothesis, his discovery was recognized entirely. However, the discovery had almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is essential for the prevention and diagnosis, yet the effects that influence tumor growth are more important for cancer treatment. Due to the Warburg effect, a large amount of data has been accumulated on biochemical changes in the cell and the organism as a whole. Due to the Warburg effect, the recovery of normal biochemistry and oxygen respiration and the restoration of the work of mitochondria of cancer cells can inhibit tumor growth and lead to remission. Here, we review the current knowledge on the inhibition of abnormal glycolysis, neutralization of its consequences, and normalization of biochemical parameters, as well as recovery of oxygen respiration of a cancer cell and mitochondrial function from the point of view of classical biochemistry and organic chemistry.
Collapse
Affiliation(s)
- Leonid G Menchikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Shestov
- University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman Center for Advanced Medicine, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- University of Pennsylvania, Department of Radiology, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|