1
|
Zhang X, Yang B. The serum levels of gasdermin D in uremic patients and its relationship with the prognosis: a prospective observational cohort study. Ren Fail 2024; 46:2312534. [PMID: 38486504 PMCID: PMC10946257 DOI: 10.1080/0886022x.2024.2312534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/27/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVE This study aimed to explore the serum levels of gasdermin D (GSDMD) in uremic (end-stage kidney disease, ESKD) patients and their correlation with vascular calcification (VC) and clinical results. METHODS This prospective observational cohort study enrolled 213 ESKD patients who were undergoing regular maintenance hemodialysis (MHD) for > 3 months in our hospital from August 2019 to July 2022. The abdominal aortic calcification score (AACS) was used to assess the VC condition of patients with ESKD. Serum GSDMD, caspase-1, interleukin (IL)-6, IL-1β, IL-18 and C-reactive protein (CRP) levels were measured using enzyme-linked immunosorbent assay (ELISA). Demographic and clinical data were obtained. All patients were followed up for 1 year, and patients with major adverse cardiovascular events (MACE) were defined as having a poor prognosis. All data used SPSS 26.0 to statistical analyses. RESULTS The serum total cholesterol (TC) levels of patients in the AACS > 4 group were significantly elevated compared with those in the AACS ≤ 4 group. In addition, ESKD patients with an AACS > 4 had significantly higher serum levels of GSDMD, caspase-1, IL-6, IL-18 and IL-1β. Moreover, Pearson's analysis supported a positive correlation between GSDMD and caspase-1, IL-6, and IL-1β. In addition, we found that GSDMD levels were positively correlated with the clinical data (AACS scores and serum TC levels) of patients with ERSD. Additionally, ROC curves showed that the serum levels of GSDMD could be a potential predictive biomarker of moderate/severe VC and prognosis in patients with ESKD. Finally, the results of logistic regression indicated that GSDMD and AACS scores were risk factors for poor prognosis in patients with ESKD. CONCLUSION Serum GSDMD levels were remarkably elevated in patients with ESKD with moderate/severe calcification. In addition, serum levels of GSDMD could be a potential predictive biomarker of moderate/severe VC and prognosis in patients with ESKD.
Collapse
Affiliation(s)
- XiaPing Zhang
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bo Yang
- Department of Clinical Nursing, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Zhou Y, Liu Y, Luo H, Wen C, Cui Y, Du L, Kwaku OE, Li L, Xiong L, Zheng J, Ding X, Shen X, Zhou P, Hu H, Yue R. Myoferlin alleviates pressure overload-induced cardiac hypertrophy and dysfunction by inhibiting NLRP3-mediated pyroptosis. PeerJ 2024; 12:e18499. [PMID: 39553724 PMCID: PMC11568814 DOI: 10.7717/peerj.18499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
Myoferlin (MYOF) is a muscle-derived secretory protein. Recent studies have found that MYOF protects against cell damage. However, the role of MYOF in cardiac hypertrophy remains unclear. Increasing evidence suggests that NLRP3 (NOD-like receptor protein 3) and the pyroptosis cascade play critical roles in the development of cardiac hypertrophy and inflammation. To investigate the role of MYOF in cardiac hypertrophy, we conducted a transverse aortic constriction (TAC) experiment in a mouse model. We found that MYOF can improve cardiac hypertrophy and cardiac function. Furthermore, our study confirmed a connection between cardiac hypertrophy and myocardial pyroptosis. Cardiac hypertrophy significantly increased the proportion of apoptotic cells and upregulated apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and gasdermin D (GSDMD). This suggests that pharmacological or genetic inhibition of NLRP3 can effectively reduce cardiac hypertrophy. An abnormal increase in NLRP3 can reverse the cardioprotective effects of MYOF. Our findings indicate that MYOF is a potential therapeutic agent for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yanxu Liu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hao Luo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Cong Wen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yangyang Cui
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Linqing Du
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ofe Eugene Kwaku
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Family Health University College and Hospital, Opposite Kofi Annan International Peace Keeping Training Center, Teshie- Accra, Ghana
| | - Lan Li
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lijuan Xiong
- Department of Cardiology, People’s Hospital of Guang ’an District, Guang ’an, Sichuan, China
| | - Jiankang Zheng
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuefeng Ding
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiufeng Shen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Peng Zhou
- Department of Cardiology, People’s Hospital of Guang ’an District, Guang ’an, Sichuan, China
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Cardiology, People’s Hospital of Guang ’an District, Guang ’an, Sichuan, China
| |
Collapse
|
3
|
Wen R, Zhang TN, Yang N. [Recent research on pyroptosis in sepsis-induced myocardial depression]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:774-781. [PMID: 39014956 PMCID: PMC11562036 DOI: 10.7499/j.issn.1008-8830.2312039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Sepsis-induced myocardial depression (SIMD), a common complication of sepsis, is one of the main causes of death in patients with sepsis. The pathogenesis of SIMD is complicated, and the process of SIMD remains incompletely understood, with no single or definitive mechanism fully elucidated. Notably, pyroptosis, as a pro-inflammatory programmed cell death, is characterized by Gasdermin-mediated formation of pores on the cell membrane, cell swelling, and cell rupture accompanied by the release of large amounts of inflammatory factors and other cellular contents. Mechanistically, pyroptosis is mainly divided into the canonical pathway mediated by caspase-1 and the non-canonical pathway mediated by caspase-4/5/11. Pyroptosis has been confirmed to participate in various inflammation-associated diseases. In recent years, more and more studies have shown that pyroptosis is also involved in the occurrence and development of SIMD. This article reviews the molecular mechanisms of pyroptosis and its research progress in SIMD, aiming to provide novel strategies and targets for the treatment of SIMD.
Collapse
Affiliation(s)
- Ri Wen
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatric Intensive Care Unit, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
4
|
Bhatti R, Sato PY. Exploring the role of pyroptosis in the pathogenicity of heart disease. Front Physiol 2024; 15:1357285. [PMID: 38645692 PMCID: PMC11026861 DOI: 10.3389/fphys.2024.1357285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cell death is an essential cellular mechanism that ensures quality control and whole-body homeostasis. Various modes of cell death have been studied and detailed. Unbalanced cell death can lead to uncontrolled cell proliferation (i.e., tumors) or excessive loss of cells (i.e., ischemia injury tissue loss). Thus, it is imperative for modes of cell death to be balanced and controlled. Here, we will focus on a recent mode of cell death called pyroptosis. While extensive studies have shown the role of this route of cell death in macrophages and monocytes, evidence for pyroptosis have expanded to encompass other pathologies, including cancer and cardiac diseases. Herein, we provide a brief review on pyroptosis and discuss current gaps in knowledge and scientific advances in cardiac pyroptosis in recent years. Lastly, we provide conclusions and prospective on the relevance to various cardiac diseases.
Collapse
Affiliation(s)
| | - Priscila Y. Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Jiang X, Zhang M. The roles of long noncoding RNA NEAT1 in cardiovascular diseases. Hypertens Res 2024; 47:735-746. [PMID: 38177287 DOI: 10.1038/s41440-023-01551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
The morbidity of cardiovascular diseases (CVDs) gradually increases worldwide. Long noncoding RNAs (lncRNAs) are a large class of non-(protein)-coding RNAs with lengths beyond 200 nucleotides. Increasing evidence suggests that lncRNA NEAT1 plays important roles in the pathogenesis of CVDs, such as myocardial infarction, heart failure, myocardial ischemia-reperfusion (I/R) injury, atherosclerosis, hypertension, cardiomyopathy, and others. We summarized the current studies of NEAT1 in CVDs, which shed light on the understanding of the molecular mechanisms of CVDs and understanding the therapeutic potential of NEAT1.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Mingjuan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
6
|
An Y, Wang X, Guan X, Yuan P, Liu Y, Wei L, Wang F, Qi X. Endoplasmic reticulum stress-mediated cell death in cardiovascular disease. Cell Stress Chaperones 2024; 29:158-174. [PMID: 38295944 PMCID: PMC10939083 DOI: 10.1016/j.cstres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a vital function in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) can trigger various modes of cell death by activating the unfolded protein response (UPR) signaling pathway. Cell death plays a crucial role in the occurrence and development of diseases such as cancer, liver diseases, neurological diseases, and cardiovascular diseases. Several cardiovascular diseases including hypertension, atherosclerosis, and heart failure are associated with ER stress. ER stress-mediated cell death is of interest in cardiovascular disease. Moreover, an increasing body of evidence supports the potential of modulating ERS for treating cardiovascular disease. This paper provides a comprehensive review of the UPR signaling pathway, the mechanisms that induce cell death, and the modes of cell death in cardiovascular diseases. Additionally, we discuss the mechanisms of ERS and UPR in common cardiovascular diseases, along with potential therapeutic strategies.
Collapse
Affiliation(s)
- Yajuan An
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinshuang Wang
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Yuan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Fei Wang
- Department of Vascular Surgery, Hebei General Hospital, Hebei, China
| | - Xin Qi
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
7
|
Zhou Z, Ou-yang C, Chen Q, Ren Z, Guo X, Lei M, Liu C, Yang X. Trafficking and effect of released DNA on cGAS-STING signaling pathway and cardiovascular disease. Front Immunol 2023; 14:1287130. [PMID: 38152400 PMCID: PMC10751357 DOI: 10.3389/fimmu.2023.1287130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Evidence from clinical research and animal studies indicates that inflammation is an important factor in the occurrence and development of cardiovascular disease (CVD). Emerging evidence shows that nucleic acids serve as crucial pathogen-associated molecular patterns (PAMPs) or non-infectious damage-associated molecular patterns (DAMPs), are released and then recognized by pattern recognition receptors (PRRs), which activates immunological signaling pathways for host defense. Mechanistically, the released nucleic acids activate cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING) to promote type I interferons (IFNs) production, which play an important regulatory function during the initiation of an innate immune response to various diseases, including CVD. This pathway represents an essential defense regulatory mechanism in an organism's innate immune system. In this review, we outline the overall profile of cGAS-STING signaling, summarize the latest findings on nucleic acid release and trafficking, and discuss their potential role in CVD. This review also sheds light on potential directions for future investigations on CVD.
Collapse
Affiliation(s)
- Zimo Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Changhan Ou-yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
8
|
Jiang X, Lei R. Extracellular lncRNAs secreted and absorbed by cardiomyocytes. J Cell Biochem 2023. [PMID: 37183382 DOI: 10.1002/jcb.30425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Exosomes are membrane-surrounded extracellular vesicles released by almost all cell types, which mediate intercellular communications by delivering bioactive molecules from secretory cells to recipient cells. Long noncoding RNAs (lncRNAs) are a large class of non-(protein)-coding RNAs with lengths exceeding 200 nucleotides that are very active in the development of cardiovascular diseases (CVDs). Increasing evidence suggests that exosomal lncRNAs also play important roles in the progress of CVDs. We focus on the current available studies regarding these extracellular lncRNAs secreted and absorbed by cardiomyocytes and their functional roles in CVDs, hopefully providing a basis for deeper understanding of the pathological mechanisms of CVDs and their potential for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ronghui Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|