1
|
Hoirisch-Clapauch S. The Impact of Emotional Responses on Female Reproduction: Fibrinolysis in the Spotlight. Semin Thromb Hemost 2024. [PMID: 39029520 DOI: 10.1055/s-0044-1788324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Fibrinolytic enzymes modify various substrates required for tissue remodeling, playing a crucial role in mechanisms underlying resilience, reward processing, ovulation, embryo implantation, and placentation. Individuals with low resilience and reduced reward responsiveness, when exposed to chronic stress, are at increased risk of experiencing a range of negative emotions. Chronic anxiety and melancholia are examples of negative emotions associated with hypercortisolism, while fear and atypical depression are characterized by systemic inflammation. Both cortisol and inflammatory cytokines stimulate the production of plasminogen activator inhibitor-1 (PAI-1), a potent fibrinolysis inhibitor. Chronic anxiety, fear, and depression are among the many hypofibrinolytic conditions increasing the risk of oligo-anovulation, miscarriage, fetal growth restriction, and preeclampsia. Although significant, the impact of negative emotions on implantation is not as obvious as on ovulation or placentation. Other hypofibrinolytic conditions that may affect female reproduction through mechanisms dependent or independent of PAI-1 include metabolic disturbances (e.g., due to consumption of highly palatable foods, often used to alleviate negative affect), inflammation, hyperhomocysteinemia, hypothyroidism, hypercortisolism, antiphospholipid antibodies, and the 4G allele of the PAI-1 gene. Benzodiazepines and antidepressants should be used with caution in the first trimester as this combination may cause malformations. Also, selective serotonin reuptake inhibitors have fibrinolytic properties that increase the risk of bleeding after surgical procedures. Psychological interventions, especially group therapy, are effective in the prevention of reproductive disorders. Controlled trials are needed to test the hypothesis that female reproductive health depends on psychological well-being, a balanced diet and physical activity, suppression of inflammation and autoantibodies, and homocysteine and hormonal homeostasis.
Collapse
Affiliation(s)
- Silvia Hoirisch-Clapauch
- Hematology Department, Vascular Medicine, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Keenen MM, Yang L, Liang H, Farmer VJ, Singh R, Gladfelter AS, Coyne CB. Comparative analysis of the syncytiotrophoblast in placenta tissue and trophoblast organoids using snRNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601571. [PMID: 39005304 PMCID: PMC11244908 DOI: 10.1101/2024.07.01.601571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The outer surface of chorionic villi in the human placenta consists of a single multinucleated cell called the syncytiotrophoblast (STB). The unique cellular ultrastructure of the STB presents challenges in deciphering its gene expression signature at the single-cell level, as the STB contains billions of nuclei in a single cell. There are many gaps in understanding the molecular mechanisms and developmental trajectories involved in STB formation and differentiation. To identify the underlying control of the STB, we performed comparative single nucleus (SN) and single cell (SC) RNA sequencing on placental tissue and tissue-derived trophoblast organoids (TOs). We found that SN was essential to capture the STB population from both tissue and TOs. Differential gene expression and pseudotime analysis of TO-derived STB identified three distinct nuclear subtypes reminiscent of those recently identified in vivo . These included a juvenile nuclear population that exhibited both CTB and STB marker expression, a population enriched in genes involved in oxygen sensing, and a fully differentiated subtype. Notably, suspension culture conditions of TOs that restore the native orientation of the STB (STB out ) showed elevated expression of canonical STB markers and pregnancy hormones, along with a greater proportion of the terminally differentiated mature STB subtype, compared to those cultivated with an inverted STB polarity (STB in ). Gene regulatory analysis identified novel markers of STB differentiation conserved in tissue and TOs, including the chromatin remodeler RYBP, that exhibited STB-specific RNA and protein expression. Finally, we compared STB gene expression signatures amongst first trimester tissue, full-term tissue, and TOs, identifying many commonalities but also notable variability across each sample type. This indicates that STB gene expression is responsive to its environmental context. Our findings emphasize the utility of TOs to accurately model STB differentiation and the distinct nuclear subtypes observed in vivo , offering a versatile platform for unraveling the molecular mechanisms governing STB functions in placental biology and disease.
Collapse
|
3
|
Kentistou KA, Lim BEM, Kaisinger LR, Steinthorsdottir V, Sharp LN, Patel KA, Tragante V, Hawkes G, Gardner EJ, Olafsdottir T, Wood AR, Zhao Y, Thorleifsson G, Day FR, Ozanne SE, Hattersley AT, O'Rahilly S, Stefansson K, Ong KK, Beaumont RN, Perry JRB, Freathy RM. Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.03.24305248. [PMID: 38633783 PMCID: PMC11023655 DOI: 10.1101/2024.04.03.24305248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. Genome-wide association studies of birth weight have highlighted associated variants in more than 200 regions of the genome, but the causal genes are mostly unknown. Rare genetic variants with robust evidence of association are more likely to point to causal genes, but to date, only a few rare variants are known to influence birth weight. We aimed to identify genes that harbour rare variants that impact birth weight when carried by either the fetus or the mother, by analysing whole exome sequence data in UK Biobank participants. We annotated rare (minor allele frequency <0.1%) protein-truncating or high impact missense variants on whole exome sequence data in up to 234,675 participants with data on their own birth weight (fetal variants), and up to 181,883 mothers who reported the birth weight of their first child (maternal variants). Variants within each gene were collapsed to perform gene burden tests and for each associated gene, we compared the observed fetal and maternal effects. We identified 8 genes with evidence of rare fetal variant effects on birth weight, of which 2 also showed maternal effects. One additional gene showed evidence of maternal effects only. We observed 10/11 directionally concordant associations in an independent sample of up to 45,622 individuals (sign test P=0.01). Of the genes identified, IGF1R and PAPPA2 (fetal and maternal-acting) have known roles in insulin-like growth factor bioavailability and signalling. PPARG, INHBE and ACVR1C (all fetal-acting) have known roles in adipose tissue regulation and rare variants in the latter two also showed associations with favourable adiposity patterns in adults. We highlight the dual role of PPARG in both adipocyte differentiation and placental angiogenesis. NOS3, NRK, and ADAMTS8 (fetal and maternal-acting) have been implicated in both placental function and hypertension. Analysis of rare coding variants has identified regulators of fetal adipose tissue and fetoplacental angiogenesis as determinants of birth weight, as well as further evidence for the role of insulin-like growth factors.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Brandon E M Lim
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Luke N Sharp
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | | | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Andrew R Wood
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | | | - Felix R Day
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., 102 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Ken K Ong
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - John R B Perry
- MRC Epidemiology Unit, Box 285 Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Rachel M Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Awoyemi T, Jiang S, Rahbar M, Logentherian P, Collett G, Zhang W, Cribbs A, Cerdeira S, Vatish M. MicroRNA analysis of medium/large placenta extracellular vesicles in normal and preeclampsia pregnancies. Front Cardiovasc Med 2024; 11:1371168. [PMID: 38628314 PMCID: PMC11018924 DOI: 10.3389/fcvm.2024.1371168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Background Preeclampsia (PE) is a hypertensive disorder of pregnancy, affecting 2%-8% of pregnancies worldwide, and is the leading cause of adverse maternal and fetal outcomes. The disease is characterized by oxidative and cellular stress and widespread endothelial dysfunction. While the precise mechanisms are not entirely understood, the pathogenesis of PE is closely linked to placental dysfunction and, to some extent, syncytiotrophoblast extracellular vesicle release (STB-EVs). These vesicles can be divided into the less well-studied medium/large EVs (220-1,000 nm) released in response to stress and small EVs (<220 nm) released as a component of intercellular communication. The previously described production of m/lSTB-EVs in response to cellular stress combined with the overwhelming occurrence of cellular and oxidative stress in PE prompted us to evaluate the microRNAome of PE m/lSTB-EVs. We hypothesized that the microRNAome profile of m/lSTB-EVs is different in PE compared to normal pregnancy (NP), which might permit the identification of potential circulating biomarkers not previously described in PE. Methods/study design We performed small RNA sequencing on medium/large STB-EVs isolated from PE and NP placentae using dual-lobe ex vivo perfusion. The sequencing data was bioinformatically analyzed to identify differentially regulated microRNAs. Identified microRNAs were validated with quantitative PCR analysis. We completed our analysis by performing an in-silico prediction of STB-EV mechanistic pathways. Results We identified significant differences between PE and NP in the STB-EVs micro ribonucleic acid (microRNA) profiles. We verified the differential expression of hsa-miR-193b-5p, hsa-miR-324-5p, hsa-miR-652-3p, hsa-miR-3196, hsa-miR-9-5p, hsa-miR-421, and hsa-miR-210-3p in the medium/large STB-EVs. We also confirmed the differential abundance of hsa-miR-9-5p in maternal serum extracellular vesicles (S EVs). In addition, we integrated the results of these microRNAs into the previously published messenger RNA (mRNA) data to better understand the relationship between these biomolecules. Conclusions We identified a differentially regulated micro-RNA, hsa-miR-9-5p, that may have biomarker potential and uncovered mechanistic pathways that may be important in the pathophysiology of PE.
Collapse
Affiliation(s)
- Toluwalase Awoyemi
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Shuhan Jiang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Maryam Rahbar
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Prasanna Logentherian
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Gavin Collett
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Wei Zhang
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Adam Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sofia Cerdeira
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Manu Vatish
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Nian J, Zhu Y, Lv X, Zhang Y, Xue Z, Wu Z, Zhou Y, Liu Y. Expression levels of ADAMTS 5, 9, and 12 in endometrial polyps and their predictive value for the diagnosis and recurrence of endometrial polyps. Eur J Obstet Gynecol Reprod Biol 2024; 295:86-91. [PMID: 38340595 DOI: 10.1016/j.ejogrb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE Endometrial polyps (EPs) are common gynecological disorders for which no clear etiology has been found. ADAMTS have been associated with a variety of diseases. This study aimed to investigate the potential correlation between serologic levels of ADAMTS 5, 9, and 12 in patients with EPs. METHODS A total of 88 patients were categorized into two groups: the EPs group, consisting of recurrent EPs and first occurrence EPs, and a control group. The study compared the general information and serum levels of ADAMTS 5, 9, and 12 between the groups. RESULTS Regarding the general data, a statistically significant age difference (p < 0.05) was observed, while no significant differences were found in the other variables. After considering age as a confounding factor, the previously observed statistical significance in the differences of ADAMTS5 and 9 between the groups diminished. However, it was found that the concentrations of ADAMTS12 in both the EPs group and the recurrent EPs group were significantly higher compared to the control group and the first occurrence EPs group (p < 0.05). ROC curves were generated to determine the critical values of ADAMTS12 for predicting EPs and recurrent EPs, which were found to be 0.6962 ng/ml (sensitivity: 100 %, specificity: 39.5 %) and 0.8768 ng/ml (sensitivity: 75.0 %, specificity: 76.3 %), respectively. CONCLUSION Our findings revealed elevated serologic levels of ADAMTS12 in the EPs group, particularly in the recurrent EPs group. Furthermore, ADAMTS-12 was identified as a valuable biomarker for assisting in the diagnosis and prediction of EPs recurrence.
Collapse
Affiliation(s)
- Jiejie Nian
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Hefei Maternal and Child Health Hospital, Hefei, Anhui 230001, China; Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuqing Zhu
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Hefei Maternal and Child Health Hospital, Hefei, Anhui 230001, China; Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoli Lv
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Hefei Maternal and Child Health Hospital, Hefei, Anhui 230001, China; Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yue Zhang
- Department of Gynecology and Obstetrics, Xuancheng City People's Hospital, Xuancheng, Anhui, 242000, China
| | - Zhongkai Xue
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Hefei Maternal and Child Health Hospital, Hefei, Anhui 230001, China; Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhongran Wu
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Hefei Maternal and Child Health Hospital, Hefei, Anhui 230001, China
| | - Yujia Zhou
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Hefei Maternal and Child Health Hospital, Hefei, Anhui 230001, China
| | - Yu Liu
- Department of Gynecology and Obstetrics, Maternity and Child Healthcare Hospital Affiliated to Anhui Medical University, Hefei Maternal and Child Health Hospital, Hefei, Anhui 230001, China; Department of Gynecology and Obstetrics, The Fifth Clinical College of Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
6
|
Xu B, Zhang JE, Ye L, Yuan CW. The progression of obstructive renal fibrosis in rats is regulated by ADAMTS18 gene methylation in the embryonic kidney through the AKT/Notch pathway. J Biochem Mol Toxicol 2024; 38:e23628. [PMID: 38229317 DOI: 10.1002/jbt.23628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
This study aimed to explore the mechanism by which postembryonic renal ADAMTS18 methylation influences obstructive renal fibrosis in rats. After exposure to transforming growth factor (TGF)-β1 during the embryonic period, analysis of postembryonic renal ADAMTS18 methylation and expression levels was conducted. Histological analysis was performed to assess embryonic kidney lesions and damage. Western blot analysis was used to determine the expression of renal fibrosis markers. Rats with ureteral obstruction and a healthy control group were selected. The methylation levels of ADAMTS18 in the different groups were analyzed. Western blot analysis and immunohistochemistry were performed to analyze the expression of renal fibrosis markers, and kidney-related indicators were measured. Treatment with TGF-β1 resulted in abnormal development of the postembryonic kidney, which was characterized by rough kidney surfaces with mild depressions and irregularities on the outer surface. TGF-β1 treatment significantly promoted ADAMTS18 methylation and activated the protein kinase B (AKT)/Notch pathway. Ureteral obstruction was induced to establish a renal hydronephrosis model, which led to renal fibrotic injury in newborn rats. Overexpression of the ADAMTS18 gene alleviated renal fibrosis. The western blot results showed that compared to that in the control group, the expression of renal fibrosis markers was significantly decreased after ADAMTS18 overexpression, and there was a thicker renal parenchymal tissue layer and significantly reduced p-AKT/AKT and Notch1 levels. TGF-β1 can induce ADAMTS18 gene methylation in the postembryonic kidney, and the resulting downregulation of ADAMTS18 expression has long-term effects on kidney development, potentially leading to increased susceptibility to obstructive renal fibrosis. This mechanism may involve activation of the AKT/Notch pathway. Reversing ADAMTS18 gene methylation may reverse this process.
Collapse
Affiliation(s)
- Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Jia-En Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Lin Ye
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Chang-Wei Yuan
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| |
Collapse
|
7
|
Tatar M, Uslu S, Öner J. Expression of placental growth factor and a disintegrin and metalloprotease with a thrombospondin type motifs 1-4-8 during the three trimesters of rat pregnancy at the maternal-fetal interface. Anat Histol Embryol 2023; 52:805-814. [PMID: 37424113 DOI: 10.1111/ahe.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
The functional roles of the a disintegrin and metalloprotease with a thrombospondin type motifs (ADAMTS) gene family in reproductive physiology, reproductive organs developments and adult reproductive health are still under investigation. The expression of the anti-angiogenic proteases ADAMTS-1, ADAMTS-4 and ADAMTS-8 in placental angiogenesis at various stages of pregnancy also remains unclear. The purpose of this study was therefore to determine the localization and expression of the ADAMTS-1, ADAMTS-4 and ADAMTS-8 proteins during the three stages of pregnancy in rats. Maternal-fetal tissue samples were collected on Days 5, 12 and 19 of each trimester, corresponding to the first, second and third trimesters. The expression of placental growth factor (PlGF) and ADAMTS-1, ADAMTS-4 and ADAMTS-8 at the maternal-fetal interface was examined using immunohistochemistry and western blot at three distinct phases of pregnancy. ADAMTS-1, ADAMTS-4 and ADAMTS-8 were detected in all three trimesters of pregnancy. The relative amount of PIGF increased in the first trimester and decreased significantly in the third trimester (p < 0.05). The expression of ADAMTS-1 and ADAMTS-4 was significantly higher in the second (p < 0.05) and third trimesters (p < 0.01) compared to the first trimester. However, no statistically significant change was observed in ADAMTS-8 expression between trimesters. The ADAMTS exhibiting the highest expression during the first trimester was ADAMTS8. These findings indicate that the expression of ADAMTS-1, ADAMTS-4 and ADAMTS-8 in the three different stages of rat pregnancy may be involved in the modulation of decidualization, morphogenesis and angiogenesis. Periodic changes in ADAMTS expression are thought to be regulated by gonadal steroids.
Collapse
Affiliation(s)
- Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Sema Uslu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Jale Öner
- Department of Basic Sciences of Histology and Embryology, Faculty of Dentistry, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
8
|
Gumina DL, Su EJ. Mechanistic insights into the development of severe fetal growth restriction. Clin Sci (Lond) 2023; 137:679-695. [PMID: 37186255 PMCID: PMC10241202 DOI: 10.1042/cs20220284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Fetal growth restriction (FGR), which most commonly results from suboptimal placental function, substantially increases risks for adverse perinatal and long-term outcomes. The only "treatment" that exists is delivery, which averts stillbirth but does not improve outcomes in survivors. Furthermore, the potential long-term consequences of FGR to the fetus, including cardiometabolic disorders, predispose these individuals to developing FGR in their future pregnancies. This creates a multi-generational cascade of adverse effects stemming from a single dysfunctional placenta, and understanding the mechanisms underlying placental-mediated FGR is critically important if we are to improve outcomes and overall health. The mechanisms behind FGR remain unknown. However, placental insufficiency derived from maldevelopment of the placental vascular systems is the most common etiology. To highlight important mechanistic interactions within the placenta, we focus on placental vascular development in the setting of FGR. We delve into fetoplacental angiogenesis, a robust and ongoing process in normal pregnancies that is impaired in severe FGR. We review cellular models of FGR, with special attention to fetoplacental angiogenesis, and we highlight novel integrin-extracellular matrix interactions that regulate placental angiogenesis in severe FGR. In total, this review focuses on key developmental processes, with specific focus on the human placenta, an underexplored area of research.
Collapse
Affiliation(s)
- Diane L Gumina
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, CO, U.S.A
| | - Emily J Su
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, CO, U.S.A
| |
Collapse
|