1
|
Liu L, Ji T, Chen R, Fan L, Dai J, Qiu Y. High prevalence of pneumocystis pneumonia in interstitial lung disease: a retrospective study. Infection 2024; 52:985-993. [PMID: 38147199 DOI: 10.1007/s15010-023-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Interstitial lung disease (ILD) is a new risk category for pneumocystis pneumonia (PCP) with a high mortality rate. The definite diagnostic criteria of PCP in ILD patients have not been established until now. The aims of this study were to identify potential risk factors of PCP in patients with ILD, and to evaluate the performance of metagenomic next-generation sequencing (mNGS), CD4 + T cell count, (1-3)-β-D-Glucan (BG) and lactate dehydrogenase (LDH) in the diagnosis of PCP in ILD patients. METHODS This is a retrospective, single-center, case-control study. ILD patients who underwent mNGS from December 2018 to December 2022 were included in the study. Based on the diagnosis criteria of PCP, these patients were divided into PCP-ILD and non-PCP-ILD groups. The potential risk factors for PCP occurrence in ILD patients were analysed via logistic regression. The diagnostic efficacy of mNGS was compared with serological biomarkers. RESULTS 92 patients with ILD were enrolled, 31 of which had a definite PCP and were assigned to the PCP-ILD group while 61 were to the non-PCP-ILD group. The infection rate of PJ in ILD patients was 33.7% (31/92). The history of glucocorticoid therapy, CD4 + T cell count, BG level and traction bronchiectasis on HRCT were associated with PCP occurrence in ILD patients. LDH level did not reach statistical significance in the logistic regression analysis. mNGS was confirmed as the most accurate test for PCP diagnosis in ILD patients. CONCLUSION ILD is a new risk group of PCP with high PCP prevalence. Clinicians should pay close attention to the occurrence of PCP in ILD patients who possess the risk factors of previous glucocorticoid therapy, decreased CD4 + T cell count, increased BG level and absence of traction bronchiectasis on HRCT. mNGS showed the most excellent performance for PCP diagnosis in ILD patients. Peripheral blood CD4 + T cell count and BG level are alternative diagnostic methods for PCP in ILD patients. However, the diagnostic value of serum LDH level was limited in ILD patients.
Collapse
Affiliation(s)
- Ling Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tong Ji
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ranxun Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Li Fan
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jinghong Dai
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yuying Qiu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Paes T, Feelders RA, Hofland LJ. Epigenetic Mechanisms Modulated by Glucocorticoids With a Focus on Cushing Syndrome. J Clin Endocrinol Metab 2024; 109:e1424-e1433. [PMID: 38517306 PMCID: PMC11099489 DOI: 10.1210/clinem/dgae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
In Cushing syndrome (CS), prolonged exposure to high cortisol levels results in a wide range of devastating effects causing multisystem morbidity. Despite the efficacy of treatment leading to disease remission and clinical improvement, hypercortisolism-induced complications may persist. Since glucocorticoids use the epigenetic machinery as a mechanism of action to modulate gene expression, the persistence of some comorbidities may be mediated by hypercortisolism-induced long-lasting epigenetic changes. Additionally, glucocorticoids influence microRNA expression, which is an important epigenetic regulator as it modulates gene expression without changing the DNA sequence. Evidence suggests that chronically elevated glucocorticoid levels may induce aberrant microRNA expression which may impact several cellular processes resulting in cardiometabolic disorders. The present article reviews the evidence on epigenetic changes induced by (long-term) glucocorticoid exposure. Key aspects of some glucocorticoid-target genes and their implications in the context of CS are described. Lastly, the effects of epigenetic drugs influencing glucocorticoid effects are discussed for their ability to be potentially used as adjunctive therapy in CS.
Collapse
Affiliation(s)
- Ticiana Paes
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston 02115, MA, USA
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Yamada H, Toko M, Nakamori M, Ueno H, Aoki S, Sugimoto T, Yasutomi H, Nakamichi K, Maruyama H. Progressive multifocal leukoencephalopathy associated with systemic lupus erythematosus: longitudinal observation of lymphocytes, JC virus in cerebrospinal fluid, and brain magnetic resonance imaging. J Neurovirol 2024; 30:197-201. [PMID: 38502271 PMCID: PMC11371889 DOI: 10.1007/s13365-024-01203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Progressive multifocal leukoencephalopathy (PML) rarely occurs in patients with systemic lupus erythematosus (SLE). This report presents the case of a patient who developed PML due to SLE-associated multiple factors. A 60-year-old woman diagnosed with SLE undergoing multiple immunosuppressive therapies, including azathioprine, presented with cerebral cortical symptoms, lymphocytopenia, and vitamin B12 deficiency and was subsequently diagnosed with SLE-associated PML. We evaluated the cause and disease activity of PML, focusing on the longitudinal assessment of lymphocytopenia, JC virus (JCV) DNA copy number in the cerebrospinal fluid, and magnetic resonance imaging (MRI) findings. Discontinuing azathioprine and initiating alternative immunosuppressive treatments with intramuscular vitamin B12 injections affected lymphocytopenia and disease management. However, despite recovery from lymphopenia and JCV DNA copy number being low, the large hyperintense and punctate lesions observed on the fluid-attenuated inversion recovery (FLAIR) images exhibited varying behaviors, indicating that the balance between contributing factors for PML may have fluctuated after the initial treatment. Clinicians should be meticulous when assessing the underlying pathology of the multifactorial causes of PML due to SLE. The difference in the transition pattern of these lesions on FLAIR images may be one of the characteristics of MRI findings in PML associated with SLE, reflecting fluctuations in disease activity and the progression stage of PML.
Collapse
MESH Headings
- Humans
- Leukoencephalopathy, Progressive Multifocal/diagnostic imaging
- Leukoencephalopathy, Progressive Multifocal/cerebrospinal fluid
- Leukoencephalopathy, Progressive Multifocal/virology
- Leukoencephalopathy, Progressive Multifocal/drug therapy
- Leukoencephalopathy, Progressive Multifocal/pathology
- JC Virus/genetics
- JC Virus/pathogenicity
- Female
- Middle Aged
- Lupus Erythematosus, Systemic/complications
- Lupus Erythematosus, Systemic/cerebrospinal fluid
- Lupus Erythematosus, Systemic/diagnostic imaging
- Lupus Erythematosus, Systemic/virology
- Lupus Erythematosus, Systemic/drug therapy
- Magnetic Resonance Imaging
- Lymphopenia/virology
- Lymphopenia/diagnostic imaging
- Lymphopenia/complications
- Lymphopenia/cerebrospinal fluid
- Brain/diagnostic imaging
- Brain/pathology
- Brain/virology
- Immunosuppressive Agents/therapeutic use
- Immunosuppressive Agents/adverse effects
- DNA, Viral/cerebrospinal fluid
- DNA, Viral/genetics
- Lymphocytes/pathology
- Lymphocytes/immunology
- Lymphocytes/virology
- Azathioprine/therapeutic use
- Azathioprine/adverse effects
Collapse
Affiliation(s)
- Hidetada Yamada
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Megumi Toko
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ueno
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomohiro Sugimoto
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroko Yasutomi
- Department of Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
4
|
Wang Z, Bao Y, Xu Z, Sun Y, Yan X, Sheng L, Ouyang G. A Novel Inflammatory-Nutritional Prognostic Scoring System for Patients with Diffuse Large B Cell Lymphoma. J Inflamm Res 2024; 17:1-13. [PMID: 38193043 PMCID: PMC10771722 DOI: 10.2147/jir.s436392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose This study aimed to examine the predictive ability of inflammatory and nutritional markers and further establish a novel inflammatory nutritional prognostic scoring (INPS) system. Patients and Methods We collected clinicopathological and baseline laboratory data of 352 patients with DLBCL between April 2010 and January 2023 at the First affiliated hospital of Ningbo University. Eligible patients were randomly divided into training and validation cohorts (n = 281 and 71, respectively) in an 8:2 ratio. We used the least absolute shrinkage and selection operator (LASSO) Cox regression model to determine the most important factors among the eight inflammatory-nutritional variables. The impact of INPS on OS was evaluated using the Kaplan-Meier curve and the Log rank test. A prognostic nomogram was developed based on the multivariate Cox regression method. Then, we used the concordance index (C-index), calibration plot, and time-dependent receiver operating characteristic (ROC) analysis to evaluate the prognostic performance and predictive accuracy of the nomogram. Results Seven inflammatory-nutritional biomarkers, including neutrophil-lymphocyte ratio (NLR), prognostic nutritional index (PNI), body mass index (BMI), monocyte-lymphocyte ratio (MLR), prealbumin, C reactive protein, and D-dimer were selected using the LASSO Cox analysis to construct INPS, In the multivariate analysis, IPI-High-intermediate group, IPI-High group, high INPS were independently associated with OS, respectively. The prognostic nomogram for overall survival consisting of the above two indicators showed excellent discrimination. The C-index for the nomogram was 0.94 and 0.95 in the training and validation cohorts. The time-dependent ROC curves showed that the predictive accuracy of the nomogram for OS was better than that of the NCCN-IPI system. Conclusion The INPS based on seven inflammatory-nutritional indexes was a reliable and convenient predictor of outcomes in DLBCL patients.
Collapse
Affiliation(s)
- Zanzan Wang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yurong Bao
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Zhijuan Xu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yongcheng Sun
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Xiao Yan
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Lixia Sheng
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Guifang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
5
|
Abstract
ABSTRACT Inflammation is a major underlying mechanism in the progression of numerous cardiovascular diseases (CVDs). Regulatory T cells (Tregs) are typical immune regulatory cells with recognized immunosuppressive properties. Despite the immunosuppressive properties, researchers have acknowledged the significance of Tregs in maintaining tissue homeostasis and facilitating repair/regeneration. Previous studies unveiled the heterogeneity of Tregs in the heart and aorta, which expanded in CVDs with unique transcriptional phenotypes and reparative/regenerative function. This review briefly summarizes the functional principles of Tregs, also including the synergistic effect of Tregs and other immune cells in CVDs. We discriminate the roles and therapeutic potential of Tregs in CVDs such as atherosclerosis, hypertension, abdominal arterial aneurysm, pulmonary arterial hypertension, Kawasaki disease, myocarditis, myocardial infarction, and heart failure. Tregs not only exert anti-inflammatory effects but also actively promote myocardial regeneration and vascular repair, maintaining the stability of the local microenvironment. Given that the specific mechanism of Tregs functioning in CVDs remains unclear, we reviewed previous clinical and basic studies and the latest findings on the function and mechanism of Tregs in CVDs.
Collapse
Affiliation(s)
- Wangling Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
6
|
Chen G, Zeng M, Liu Z, Zhou M, Zha J, Zhang L, Chen H, Liu H. The kinetics of mTORC1 activation associates with FOXP3 expression pattern of CD4+ T cells and outcome of steroid-sensitive minimal change disease. Int Immunopharmacol 2023; 122:110589. [PMID: 37418986 DOI: 10.1016/j.intimp.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Minimal change disease (MCD) usually responds to glucocorticoids (GCs) but relapses in most cases. Relapse pathogenesis after complete remission (CR) remains unclear. We hypothesized that FOXP3+ T regulatory cell (Treg) dysregulation may drive early relapses (ER). In this study, a cohort of 23 MCD patients were treated with a conventional GC regimen for the initial onset of nephrotic syndrome. Upon GC withdrawal, seven patients suffered from ER, while 16 patients sustained remission (SR) during the 12-month follow-up. Patients with ER had reduced FOXP3+ Treg proportions compared with healthy controls. Treg reduction, accompanied by IL-10 impairment, was ascribed to a proportional decline of FOXP3medium rather than FOXP3high cells. GC-induced CR was marked by a rise in the proportions of FOXP3+ and FOXP3medium cells compared to baseline levels. These increases declined in patients with ER. The expression level of phosphorylated ribosomal protein S6 was used to track the dynamic shifts in mTORC1 activity within CD4+ T cells of MCD patients at various stages of treatment. Baseline mTORC1 activity was inversely correlated with FOXP3+ and FOXP3medium Treg proportion. The mTORC1 activity in CD4+ T cells served as a reliable indicator for ER and demonstrated improved performance when paired with FOXP3 expression. Mechanically, targeting mTORC1 intervention by siRNAs sufficiently altered the conversion pattern of CD4+ T cell to FOXP3+ Treg. Taken together, the activity of mTORC1 in CD4+ T cells can act as a credible predictor for ER in MCD, especially when combined with FOXP3 expression, and may offer a potential therapeutic avenue for the treatment of podocytopathies.
Collapse
Affiliation(s)
- Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mi Zhou
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Zhang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huihui Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
7
|
Chen H, Liu Z, Zha J, Zeng L, Tang R, Tang C, Cai J, Tan C, Liu H, Dong Z, Chen G. Glucocorticoid regulation of the mTORC1 pathway modulates CD4 + T cell responses during infection. Clin Transl Immunology 2023; 12:e1464. [PMID: 37649974 PMCID: PMC10463561 DOI: 10.1002/cti2.1464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives Conventional glucocorticoid (GC) treatment poses significant risks for opportunistic infections due to its suppressive impact on CD4+ T cells. This study aimed to explore the mechanisms by which GCs modulate the functionality of CD4+ T cells during infection. Methods We consistently measured FOXP3, inflammatory cytokines and phospho-S6 ribosomal protein levels in CD4+ T cells from patients undergoing conventional GC treatment. Using Foxp3EGFP animals, we investigated the dynamic activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway and its correlation with the immunoregulatory function of CD4+ T cells under the influence of GCs. Results GCs dynamically altered the expression pattern of FOXP3 in CD4+ T cells, promoting their acquisition of an active T regulatory (Treg) cell phenotype upon stimulation. Mechanistically, GCs undermined the kinetics of the mTORC1 pathway, which was closely correlated with phenotype conversion and functional properties of CD4+ T cells. Dynamic activation of the mTORC1 signaling modified the GC-dampened immunoregulatory capacity of CD4+ T cells by phenotypically and functionally bolstering the FOXP3+ Treg cells. Interventions targeting the mTORC1 pathway effectively modulated the GC-dampened immunoregulatory capacity of CD4+ T cells. Conclusion These findings highlight a novel mTORC1-mediated mechanism underlying CD4+ T cell immunity in the context of conventional GC treatment.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Clinical Immunology Research Center of Central South UniversityChangshaChina
| | - Zhiwen Liu
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jie Zha
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Li Zeng
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Runyan Tang
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chengyuan Tang
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Juan Cai
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chongqing Tan
- Department of Pharmacythe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Hong Liu
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zheng Dong
- Department of Cellular Biology and AnatomyMedical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical CenterAugustaGAUSA
| | - Guochun Chen
- Clinical Immunology Research Center of Central South UniversityChangshaChina
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
8
|
Liu Z, Chen H, Tan C, Zha J, Liu H, Chen G. Activation of CD3+TIM3+ T Cells Contributes to Excessive Inflammatory Response During Glucocorticoid Treatment. Biochem Pharmacol 2023; 212:115551. [PMID: 37044297 DOI: 10.1016/j.bcp.2023.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Glucocorticoids (GCs) are widely used to treat autoimmune and inflammatory diseases, but recent research has challenged the notion that GCs are universally anti-inflammatory. In this study, we investigated the effects of long-term GC exposure on circulating T cells in a retrospective cohort of 5,476 patients with primary glomerular diseases. Our results revealed that GCs altered the composition pattern of circulating leukocytes and the correlation between circulating lymphocytes and serum cytokines in response to infections, as well as the subsets of CD4+ T cells. Specifically, GCs promoted the loss of CD4+ T cells and increased the proportions of CD3+TIM3+ T cells in response to infections, which correlated with the expression of serum inflammatory cytokines, such as IFNG and IL-10. Using animal models of cecal ligation and puncture, we demonstrated that long-term GC exposure exacerbated apoptosis of CD4+ T cells and cytokine storm during sepsis, which was mechanistically linked to the increase of CD3+TIM3+ T cells. Notably, we found that CD3+TIM3+ T cells expressed high levels of multiple cytokine genes during infections, suggesting a potent role of TIM3 in the regulation of T cell biology. In vitro studies further showed that engagement of anti-TIM3 treatment enhanced the inflammatory activity of CD3+ T cells. Our findings suggest a causal relationship between chronic exposure to GCs and an excessive inflammatory response mediated by T cells during infections, which is, at least partly, driven by dysregulation of CD3+TIM3+ T cells.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Huihui Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Chongqing Tan
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| |
Collapse
|