1
|
Li Y. DNA Adducts in Cancer Chemotherapy. J Med Chem 2024; 67:5113-5143. [PMID: 38552031 DOI: 10.1021/acs.jmedchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
DNA adducting drugs, including alkylating agents and platinum-containing drugs, are prominent in cancer chemotherapy. Their mechanisms of action involve direct interaction with DNA, resulting in the formation of DNA addition products known as DNA adducts. While these adducts are well-accepted to induce cancer cell death, understanding of their specific chemotypes and their role in drug therapy response remain limited. This perspective aims to address this gap by investigating the metabolic activation and chemical characterization of DNA adducts formed by the U.S. FDA-approved drugs. Moreover, clinical studies on DNA adducts as potential biomarkers for predicting patient responses to drug efficacy are examined. The overarching goal is to engage the interest of medicinal chemists and stimulate further research into the use of DNA adducts as biomarkers for guiding personalized cancer treatment.
Collapse
|
2
|
Abstract
Relapse of AML patients to FLT3i treatment is the result of a long-term and stepwise process leading to resistance, whereby residual cancer cells initially survive and subsequently expand. Here, Joshi et al. use a multifaceted approach to characterize how microenvironment-driven early resistance to gilteritinib evolves into mutation-driven late resistance.
Collapse
Affiliation(s)
- Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Kadia TM, Kantarjian HM, Konopleva M. Myeloid cell leukemia-1 dependence in acute myeloid leukemia: a novel approach to patient therapy. Oncotarget 2019; 10:1250-1265. [PMID: 30815228 PMCID: PMC6383813 DOI: 10.18632/oncotarget.26579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/16/2018] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, affecting approximately 21,000 people annually (nearly 11,000 deaths) in the United States. B-cell lymphoma 2 (BCL-2) family proteins, notably myeloid cell leukemia-1 (MCL-1), have been associated with both the development and persistence of AML. MCL-1 is one of the predominant BCL-2 family members expressed in samples from patients with untreated AML. MCL-1 is a critical cell survival factor for cancer and contributes to chemotherapy resistance by directly affecting cell death pathways. Here, we review the role of MCL-1 in AML and the mechanisms by which the potent cyclin-dependent kinase 9 inhibitor alvocidib, through regulation of MCL-1, may serve as a rational therapeutic approach against the disease.
Collapse
Affiliation(s)
| | | | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
4
|
Edwards DK, Watanabe-Smith K, Rofelty A, Damnernsawad A, Laderas T, Lamble A, Lind EF, Kaempf A, Mori M, Rosenberg M, d'Almeida A, Long N, Agarwal A, Sweeney DT, Loriaux M, McWeeney SK, Tyner JW. CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood 2019; 133:588-599. [PMID: 30425048 PMCID: PMC6367650 DOI: 10.1182/blood-2018-03-838946] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
To identify new therapeutic targets in acute myeloid leukemia (AML), we performed small-molecule and small-interfering RNA (siRNA) screens of primary AML patient samples. In 23% of samples, we found sensitivity to inhibition of colony-stimulating factor 1 (CSF1) receptor (CSF1R), a receptor tyrosine kinase responsible for survival, proliferation, and differentiation of myeloid-lineage cells. Sensitivity to CSF1R inhibitor GW-2580 was found preferentially in de novo and favorable-risk patients, and resistance to GW-2580 was associated with reduced overall survival. Using flow cytometry, we discovered that CSF1R is not expressed on the majority of leukemic blasts but instead on a subpopulation of supportive cells. Comparison of CSF1R-expressing cells in AML vs healthy donors by mass cytometry revealed expression of unique cell-surface markers. The quantity of CSF1R-expressing cells correlated with GW-2580 sensitivity. Exposure of primary AML patient samples to a panel of recombinant cytokines revealed that CSF1R inhibitor sensitivity correlated with a growth response to CSF1R ligand, CSF1, and other cytokines, including hepatocyte growth factor (HGF). The addition of CSF1 increased the secretion of HGF and other cytokines in conditioned media from AML patient samples, whereas adding GW-2580 reduced their secretion. In untreated cells, HGF levels correlated significantly with GW-2580 sensitivity. Finally, recombinant HGF and HS-5-conditioned media rescued cell viability after GW-2580 treatment in AML patient samples. Our results suggest that CSF1R-expressing cells support the bulk leukemia population through the secretion of HGF and other cytokines. This study identifies CSF1R as a novel therapeutic target of AML and provides a mechanism of paracrine cytokine/growth factor signaling in this disease.
Collapse
Affiliation(s)
- David K Edwards
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute
| | | | - Angela Rofelty
- Division of Hematology and Medical Oncology, Knight Cancer Institute
| | | | - Ted Laderas
- Department of Medical Informatics and Clinical Epidemiology, and
| | - Adam Lamble
- Division of Hematology and Medical Oncology, Knight Cancer Institute
| | - Evan F Lind
- Division of Hematology and Medical Oncology, Knight Cancer Institute
| | - Andy Kaempf
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR; and
| | - Motomi Mori
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR; and
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR
| | - Mara Rosenberg
- Division of Hematology and Medical Oncology, Knight Cancer Institute
| | - Amanda d'Almeida
- Division of Hematology and Medical Oncology, Knight Cancer Institute
| | - Nicola Long
- Division of Hematology and Medical Oncology, Knight Cancer Institute
| | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Knight Cancer Institute
| | | | - Marc Loriaux
- Division of Hematology and Medical Oncology, Knight Cancer Institute
| | | | - Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute
| |
Collapse
|
5
|
Kuenzi BM, Remsing Rix LL, Kinose F, Kroeger JL, Lancet JE, Padron E, Rix U. Off-target based drug repurposing opportunities for tivantinib in acute myeloid leukemia. Sci Rep 2019; 9:606. [PMID: 30679640 PMCID: PMC6345777 DOI: 10.1038/s41598-018-37174-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
GSK3α has been identified as a new target in the treatment of acute myeloid leukemia (AML). However, most GSK3 inhibitors lack specificity for GSK3α over GSK3β and other kinases. We have previously shown in lung cancer cells that GSK3α and to a lesser extent GSK3β are inhibited by the advanced clinical candidate tivantinib (ARQ197), which was designed as a MET inhibitor. Thus, we hypothesized that tivantinib would be an effective therapy for the treatment of AML. Here, we show that tivantinib has potent anticancer activity across several AML cell lines and primary patient cells. Tivantinib strongly induced apoptosis, differentiation and G2/M cell cycle arrest and caused less undesirable stabilization of β-catenin compared to the pan-GSK3 inhibitor LiCl. Subsequent drug combination studies identified the BCL-2 inhibitor ABT-199 to synergize with tivantinib while cytarabine combination with tivantinib was antagonistic. Interestingly, the addition of ABT-199 to tivantinib completely abrogated tivantinib induced β-catenin stabilization. Tivantinib alone, or in combination with ABT-199, downregulated anti-apoptotic MCL-1 and BCL-XL levels, which likely contribute to the observed synergy. Importantly, tivantinib as single agent or in combination with ABT-199 significantly inhibited the colony forming capacity of primary patient AML bone marrow mononuclear cells. In summary, tivantinib is a novel GSK3α/β inhibitor that potently kills AML cells and tivantinib single agent or combination therapy with ABT-199 may represent attractive new therapeutic opportunities for AML.
Collapse
Affiliation(s)
- Brent M Kuenzi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, 33620, United States
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Jodi L Kroeger
- Flow Cytometry Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Jeffrey E Lancet
- Department of Hematologic Malignancies, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Eric Padron
- Department of Hematologic Malignancies, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, 33612, United States.
| |
Collapse
|
6
|
Zhou J, Chng WJ. Resistance to FLT3 inhibitors in acute myeloid leukemia: Molecular mechanisms and resensitizing strategies. World J Clin Oncol 2018; 9:90-97. [PMID: 30254964 PMCID: PMC6153124 DOI: 10.5306/wjco.v9.i5.90] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is classified as a type III receptor tyrosine kinase, which exerts a key role in regulation of normal hematopoiesis. FLT3 mutation is the most common genetic mutation in acute myeloid leukemia (AML) and represents an attractive therapeutic target. Targeted therapy with FLT3 inhibitors in AML shows modest promising results in current ongoing clinical trials suggesting the complexity of FLT3 targeting in therapeutics. Importantly, resistance to FLT3 inhibitors may explain the lack of overwhelming response and could obstruct the successful treatment for AML. Here, we summarize the molecular mechanisms of primary resistance and acquired resistance to FLT3 inhibitors and discuss the strategies to circumvent the emergency of drug resistance and to develop novel treatment intervention.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Hematology-Oncology, National University Cancer Institute, NUHS, Singapore 119228, Singapore
| |
Collapse
|
7
|
Wang C, Xu P, Zhang L, Huang J, Zhu K, Luo C. Current Strategies and Applications for Precision Drug Design. Front Pharmacol 2018; 9:787. [PMID: 30072901 PMCID: PMC6060444 DOI: 10.3389/fphar.2018.00787] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Since Human Genome Project (HGP) revealed the heterogeneity of individuals, precision medicine that proposes the customized healthcare has become an intractable and hot research. Meanwhile, as the Precision Medicine Initiative launched, precision drug design which aims at maximizing therapeutic effects while minimizing undesired side effects for an individual patient has entered a new stage. One of the key strategies of precision drug design is target based drug design. Once a key pathogenic target is identified, rational drug design which constitutes the major part of precision drug design can be performed. Examples of rational drug design on novel druggable targets and protein-protein interaction surfaces are summarized in this review. Besides, various kinds of computational modeling and simulation approaches increasingly benefit for the drug discovery progress. Molecular dynamic simulation, drug target prediction and in silico clinical trials are discussed. Moreover, due to the powerful ability in handling high-dimensional data and complex system, deep learning has efficiently promoted the applications of artificial intelligence in drug discovery and design. In this review, deep learning methods that tailor to precision drug design are carefully discussed. When a drug molecule is discovered, the development of specific targeted drug delivery system becomes another key aspect of precision drug design. Therefore, state-of-the-art techniques of drug delivery system including antibody-drug conjugates (ADCs), and ligand-targeted conjugates are also included in this review.
Collapse
Affiliation(s)
- Chen Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Pan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Luyu Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jing Huang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Yu MG, Zheng HY. Acute Myeloid Leukemia: Advancements in Diagnosis and Treatment. Chin Med J (Engl) 2017; 130:211-218. [PMID: 28091414 PMCID: PMC5282679 DOI: 10.4103/0366-6999.198004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Leukemia is the most common pediatric malignancy and a major cause of morbidity and mortality in children. Among all subtypes, a lack of consensus exists regarding the diagnosis and treatment of acute myeloid leukemia (AML). Patient survival rates have remained modest for the past three decades in AML. Recently, targeted therapy has emerged as a promising treatment. DATA SOURCES We searched the PubMed database for recently published research papers on diagnostic development, target therapy, and other novel therapies of AML. Clinical trial information was obtained from ClinicalTrials.gov. For the major purpose of this review that is to outline the latest therapeutic development of AML, we only listed the ongoing clinical trials for reference. However, the published results of complete clinical trials were also mentioned. STUDY SELECTION This article reviewed the latest developments related to the diagnosis and treatment of AML. In the first portion, we provided some novel insights on the molecular basis of AML, as well as provided an update on the classification of AML. In the second portion, we summarized the results of research on potential molecular therapeutic agents including monoclonal antibodies, tyrosine kinase/Fms-like tyrosine kinase 3 (FLT3) inhibitors, epigenetic/demethylating agents, and cellular therapeutic agents. We will also highlight ongoing research and clinical trials in pediatric AML. RESULTS We described clonal evolution and how it changes our view on leukemogenesis, treatment responses, and disease relapse. Pediatric-specific genomic mapping was discussed with a novel diagnostic method highlighted. In the later portion of this review, we summarized the researches on potential molecular therapeutic agents including monoclonal antibodies, tyrosine kinase/FLT3 inhibitors, epigenetic/demethylating agents, and cellular therapeutic agents. CONCLUSION Gene sequencing techniques should set the basis for next-generation diagnostic methods of AML, and target therapy should be the focus of future clinical research in the exploration of therapeutic possibilities.
Collapse
Affiliation(s)
- Meng-Ge Yu
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- National Key Discipline of Pediatrics, Ministry of Education, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Hu-Yong Zheng
- Beijing Key Laboratory of Pediatric Hematology Oncology, Beijing 100045, China
- National Key Discipline of Pediatrics, Ministry of Education, Beijing 100045, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing 100045, China
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
9
|
Nachliely M, Sharony E, Kutner A, Danilenko M. Novel analogs of 1,25-dihydroxyvitamin D 2 combined with a plant polyphenol as highly efficient inducers of differentiation in human acute myeloid leukemia cells. J Steroid Biochem Mol Biol 2016; 164:59-65. [PMID: 26365556 DOI: 10.1016/j.jsbmb.2015.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022]
Abstract
1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3] is known to act as a powerful differentiation inducer in various types of cancer cells, including acute myeloid leukemia (AML) cells. However, supraphysiological concentrations of 1,25(OH)2D3 required to induce terminal maturation of AML cells can cause lethal hypercalcemia in vivo. Here we characterized the differentiation-inducing effects of novel double-point modified analogs of 1,25-dihydroxyvitamin D2 [1,25(OH)2D2], PRI-5201 and PRI-5202 [Pietraszek et al. (2013) Steroids, 78:1003-1014], on HL60, U937 and MOLM-13 human AML cells in comparison with their direct precursors (PRI-1906 and PRI-1907, respectively) and 1,25(OH)2D3. The results demonstrated the following order of potency for the tested compounds: PRI-5202>PRI-1907>PRI-5201>PRI-1906≥1,25(OH)2D3, as determined by measuring the expression of cell surface markers of myeloid differentiation. Particularly, the sensitivity of different AML cell lines to PRI-5201 and PRI-5202 was 3-15-fold and 13-50 fold higher, respectively, compared to that of 1,25(OH)2D3. Importantly, all the analogs tested at 0.25-1nM concentrations retained the ability of 1,25(OH)2D3 to cooperate with the rosemary polyphenol carnosic acid, which strongly potentiated their prodifferentiation activity in a cell type-dependent manner. These synergistic effects were associated with increased induction of the vitamin D receptor (VDR) protein expression. However, surprisingly, carnosic acid was able to significantly enhance only 1,25(OH)2D3-induced transactivation of the direct repeat 3 (DR3)-type vitamin D response element (VDRE), whereas no such cooperation was seen with 1,25(OH)2D2 analogs. Furthermore, dose-response analysis revealed that 1,25(OH)2D3 was more efficacious than the analogs in inducing VDRE activation. This suggests that the superior prodifferentiation activity of the analogs, as compared to 1,25(OH)2D3, may be due to their potential for enhanced activation of the differentiation-related VDRE(s) that differ from the DR3-type element tested in this study. Collectively, the results demonstrate that the new double-point modified 1,25(OH)2D2 analogs are much stronger inducers of myeloid differentiation than 1,25(OH)2D3 and that their efficacy can be further enhanced by combination with plant polyphenols. These combinations warrant their further mechanistic and translational exploration in AML and other types of cancer.
Collapse
Affiliation(s)
- Matan Nachliely
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ehud Sharony
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Andrzej Kutner
- Department of Pharmacology, Pharmaceutical Research Institute, Warsaw 01-793, Poland
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
10
|
Nachliely M, Sharony E, Bolla NR, Kutner A, Danilenko M. Prodifferentiation Activity of Novel Vitamin D₂ Analogs PRI-1916 and PRI-1917 and Their Combinations with a Plant Polyphenol in Acute Myeloid Leukemia Cells. Int J Mol Sci 2016; 17:ijms17071068. [PMID: 27399677 PMCID: PMC4964444 DOI: 10.3390/ijms17071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/28/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D3) is a powerful differentiation inducer for acute myeloid leukemia (AML) cells. However, 1,25D3 doses required for differentiation of AML cells may cause lethal hypercalcemia in vivo. There is evidence that vitamin D2 is less toxic than vitamin D3 in animals. Here, we determined the differentiation effects of novel analogs of 1α,25-dihydroxyvitamin D2 (1,25D2), PRI-1916 and PRI-1917, in which the extended side chains of their previously reported precursors (PRI-1906 and PRI-1907, respectively) underwent further 24Z (24-cis) modification. Using four human AML cell lines representing different stages of myeloid maturation (KG-1a, HL60, U937, and MOLM-13), we found that the potency of PRI-1916 was slightly higher or equal to that of PRI-1906 while PRI-1917 was significantly less potent than PRI-1907. We also demonstrated that 1,25D2 was a less effective differentiation agent than 1,25D3 in these cell lines. Irrespective of their differentiation potency, all the vitamin D2 derivatives tested were less potent than 1,25D3 in transactivating the DR3-type vitamin D response elements. However, similar to 1,25D3, both 1,25D2 and its analogs could strongly cooperate with the plant polyphenol carnosic acid in inducing cell differentiation and inhibition of G1–S cell cycle transition. These results indicate that the 24Z modification has contrasting effects on the differentiation ability of PRI-1906 and PRI-1907 and that the addition of a plant polyphenol could result in a similar extent of cell differentiation induced by different vitamin D compounds. The enhanced antileukemic effects of the tested combinations may constitute the basis for the development of novel approaches for differentiation therapy of AML.
Collapse
Affiliation(s)
- Matan Nachliely
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| | - Ehud Sharony
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| | - Narasimha Rao Bolla
- Department of Chemistry and Department of Pharmacology, Pharmaceutical Research Institute, Warsaw 01-793, Poland.
| | - Andrzej Kutner
- Department of Chemistry and Department of Pharmacology, Pharmaceutical Research Institute, Warsaw 01-793, Poland.
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| |
Collapse
|
11
|
Zhamanbayeva GT, Aralbayeva AN, Murzakhmetova MK, Tuleukhanov ST, Danilenko M. Cooperative antiproliferative and differentiation-enhancing activity of medicinal plant extracts in acute myeloid leukemia cells. Biomed Pharmacother 2016; 82:80-9. [PMID: 27470342 DOI: 10.1016/j.biopha.2016.04.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with poor prognosis and limited treatment options. Sea buckthorn (Hippophae rhamnoides) berries, dog rose (Rosa canina) rosehips, and garden sage (Salvia officinalis) and oregano (Origanum vulgare) aerial parts are widely used in traditional medicine and exhibit antitumor effects in preclinical models. However, these plants remain scarcely tested for antileukemic activity. Here, we show that their water-ethanol leaf extracts reduced the growth and viability of AML cells and, at non-cytotoxic doses, potentiated cell differentiation induced by a low concentration of 1α,25-dihydroxyvitamin D3, the hormonal form of vitamin D, in a cell type-dependent manner. The latter effect was accompanied by upregulation of the vitamin D receptor protein components and its transcriptional activity. Furthermore, at minimally effective doses the extracts cooperated with one another to produce marked cytostatic effects associated with a partial S-phase arrest and a modest induction of apoptosis. In contrast, these combinations only slightly affected the growth and viability of proliferating normal human peripheral blood mononuclear cells. In addition, the extracts strongly inhibited microsomal lipid peroxidation and protected normal erythrocytes against hypoosmotic shock. Our results suggest that further exploration of the enhanced antileukemic effects of the combinations tested here may lead to the development of alternative therapeutic and preventive approaches against AML.
Collapse
Affiliation(s)
- Gulzhan T Zhamanbayeva
- Department of Biophysics and Biomedicine, Al-Farabi Kazakh National University, Almaty 480078, Kazakhstan
| | - Araylim N Aralbayeva
- Laboratory of Membrane Physiology, Institute of Human and Animal Physiology, Almaty 050060, Kazakhstan
| | - Maira K Murzakhmetova
- Laboratory of Membrane Physiology, Institute of Human and Animal Physiology, Almaty 050060, Kazakhstan
| | - Sultan T Tuleukhanov
- Department of Biophysics and Biomedicine, Al-Farabi Kazakh National University, Almaty 480078, Kazakhstan
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
12
|
Dihydroartemisinin and its derivative induce apoptosis in acute myeloid leukemia through Noxa-mediated pathway requiring iron and endoperoxide moiety. Oncotarget 2016; 6:5582-96. [PMID: 25714024 PMCID: PMC4467388 DOI: 10.18632/oncotarget.3336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/04/2015] [Indexed: 12/29/2022] Open
Abstract
Anti-apoptotic protein Mcl-1 plays an important role in protecting cell from death in acute myeloid leukemia (AML). The apoptosis blocking activity of Mcl-1 is inhibited by BH3-only protein Noxa. We found that dihydroartemisinin (DHA) and its derivative X-11 are potent apoptosis inducers in AML cells and act through a Noxa-mediate pathway; X-11 is four-fold more active than DHA. DHA and X-11-induced apoptosis is associated with induction of Noxa; apoptosis is blocked by silencing Noxa. DHA and X-11 induce Noxa expression by upregulating the transcription factor FOXO3a in a reactive oxygen species-mediated pathway. Interfering with the integrity of the endoperoxide moiety of DHA and X-11, as well as chelating intracellular iron with deferoxamine, diminish apoptosis and Noxa induction. AML cells expressing Bcl-xL, or with overexpression of Bcl-2, have decreased sensitivity to DHA and X-11-induced apoptosis which could be overcome by addition of Bcl-2/Bcl-xL inhibitor ABT-737. DHA and X-11 represent a new group of AML cells-apoptosis inducing compounds which work through Noxa up-regulation utilizing the specific endoperoxide moiety and intracellular iron.
Collapse
|
13
|
Grimwade D, Ivey A, Huntly BJP. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016; 127:29-41. [PMID: 26660431 PMCID: PMC4705608 DOI: 10.1182/blood-2015-07-604496] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/04/2015] [Indexed: 01/13/2023] Open
Abstract
Recent major advances in understanding the molecular basis of acute myeloid leukemia (AML) provide a double-edged sword. Although defining the topology and key features of the molecular landscape are fundamental to development of novel treatment approaches and provide opportunities for greater individualization of therapy, confirmation of the genetic complexity presents a huge challenge to successful translation into routine clinical practice. It is now clear that many genes are recurrently mutated in AML; moreover, individual leukemias harbor multiple mutations and are potentially composed of subclones with differing mutational composition, rendering each patient's AML genetically unique. In order to make sense of the overwhelming mutational data and capitalize on this clinically, it is important to identify (1) critical AML-defining molecular abnormalities that distinguish biological disease entities; (2) mutations, typically arising in subclones, that may influence prognosis but are unlikely to be ideal therapeutic targets; (3) mutations associated with preleukemic clones; and (4) mutations that have been robustly shown to confer independent prognostic information or are therapeutically relevant. The reward of identifying AML-defining molecular lesions present in all leukemic populations (including subclones) has been exemplified by acute promyelocytic leukemia, where successful targeting of the underlying PML-RARα oncoprotein has eliminated the need for chemotherapy for disease cure. Despite the molecular heterogeneity and recognizing that treatment options for other forms of AML are limited, this review will consider the scope for using novel molecular information to improve diagnosis, identify subsets of patients eligible for targeted therapies, refine outcome prediction, and track treatment response.
Collapse
Affiliation(s)
- David Grimwade
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Adam Ivey
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Brian J P Huntly
- Department of Haematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| |
Collapse
|
14
|
Bisacchi GS, Hale MR. A "Double-Edged" Scaffold: Antitumor Power within the Antibacterial Quinolone. Curr Med Chem 2016; 23:520-77. [PMID: 26695512 PMCID: PMC4997924 DOI: 10.2174/0929867323666151223095839] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/27/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
In the late 1980s, reports emerged describing experimental antibacterial quinolones having significant potency against eukaryotic Type II topoisomerases (topo II) and showing cytotoxic activity against tumor cell lines. As a result, several pharmaceutical companies initiated quinolone anticancer programs to explore the potential of this class in comparison to conventional human topo II inhibiting antitumor drugs such as doxorubicin and etoposide. In this review, we present a modern re-evaluation of the anticancer potential of the quinolone class in the context of today's predominantly pathway-based (rather than cytotoxicity-based) oncology drug R&D environment. The quinolone eukaryotic SAR is comprehensively discussed, contrasted with the corresponding prokaryotic data, and merged with recent structural biology information which is now beginning to help explain the basis for that SAR. Quinolone topo II inhibitors appear to be much less susceptible to efflux-mediated resistance, a current limitation of therapy with conventional agents. Recent advances in the biological understanding of human topo II isoforms suggest that significant progress might now be made in overcoming two other treatment-limiting disadvantages of conventional topo II inhibitors, namely cardiotoxicity and drug-induced secondary leukemias. We propose that quinolone class topo II inhibitors could have a useful future therapeutic role due to the continued need for effective topo II drugs in many cancer treatment settings, and due to the recent biological and structural advances which can now provide, for the first time, specific guidance for the design of a new class of inhibitors potentially superior to existing agents.
Collapse
Affiliation(s)
- Gregory S Bisacchi
- Syngene International Ltd., Biocon Park, Jigani Link Road, Bangalore 560099, India.
| | | |
Collapse
|
15
|
Simon T, Tomuleasa C, Bojan A, Berindan-Neagoe I, Boca S, Astilean S. Design of FLT3 Inhibitor - Gold Nanoparticle Conjugates as Potential Therapeutic Agents for the Treatment of Acute Myeloid Leukemia. NANOSCALE RESEARCH LETTERS 2015; 10:466. [PMID: 26625890 PMCID: PMC4666845 DOI: 10.1186/s11671-015-1154-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/07/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Releasing drug molecules at the targeted location could increase the clinical outcome of a large number of anti-tumor treatments which require low systemic damage and low side effects. Nano-carriers of drugs show great potential for such task due to their capability of accumulating and releasing their payload specifically, at the tumor site. RESULTS FLT3 inhibitor - gold nanoparticle conjugates were fabricated to serve as vehicles for the delivery of anti-tumor drugs. Lestaurtinib, midostaurin, sorafenib, and quizartinib were selected among the FLT3 inhibitor drugs that are currently used in clinics for the treatment of acute myeloid leukemia. The drugs were loaded onto nanoparticle surface using a conjugation strategy based on hydrophobic-hydrophobic interactions with the Pluronic co-polymer used as nanoparticle surface coating. Optical absorption characterization of the particles in solution showed that FLT3 inhibitor-incorporated gold nanoparticles were uniformly distributed and chemically stable regardless of the drug content. Drug loading study revealed a high drug content in the case of midostaurin drug which also showed increased stability. Drug release test in simulated cancer cell conditions demonstrated more than 56 % release of the entrapped drug, a result that correlates well with the superior cytotoxicity of the nano-conjugates comparatively with the free drug. CONCLUSIONS This is a pioneering study regarding the efficient loading of gold nanoparticles with selected FLT3 inhibitors. In vitro cytotoxicity assessment shows that FLT3-incorporated gold nanoparticles are promising candidates as vehicles for anti-tumor drugs and demonstrate superior therapeutic effect comparatively with the bare drugs.
Collapse
Affiliation(s)
- Timea Simon
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania.
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Oncology Institute, Bulevardul 21 Decembrie 1918 Nr 73, 400124, Cluj-Napoca, Romania.
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Marinescu Street 23, 40015, Cluj-Napoca, Romania.
| | - Anca Bojan
- Department of Hematology, Ion Chiricuta Oncology Institute, Bulevardul 21 Decembrie 1918 Nr 73, 400124, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Marinescu Street 23, 40015, Cluj-Napoca, Romania.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sanda Boca
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania.
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
16
|
|
17
|
RNAi profiling of primary human AML cells identifies ROCK1 as a therapeutic target and nominates fasudil as an antileukemic drug. Blood 2015; 125:3760-8. [PMID: 25931586 DOI: 10.1182/blood-2014-07-590646] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by a marked genetic heterogeneity, which complicates the development of novel therapeutics. The delineation of pathways essential within an individual patient's mutational background might overcome this limitation and facilitate personalized treatment. We report the results of a large-scale lentiviral loss-of-function RNA interference (RNAi) screen in primary leukemic cells. Stringent validation identified 6 genes (BNIPL1, ROCK1, RPS13, STK3, SNX27, WDHD1) whose knockdown impaired growth and viability of the cells. Dependence on these genes was not caused by mutation or overexpression, and although some of the candidates seemed to be rather patient specific, others were essential in cells isolated from other AML patients. In addition to the phenotype observed after ROCK1 knockdown, treatment with the approved ROCK inhibitor fasudil resulted in increased apoptosis and decreased viability of primary AML cells. In contrast to observations in some other malignancies, ROCK1 inhibition did not foster growth of immature malignant progenitors but was toxic to this cell fraction in feeder coculture and xenotransplant experiments, indicating a distinct effect of ROCK1 inhibition on leukemic progenitors. We conclude that large-scale RNAi screens in primary patient-derived cells are feasible and can complement other methods for personalized cancer therapies, such as expression and mutation profiling.
Collapse
|
18
|
Current challenges in clinical development of "targeted therapies": the case of acute myeloid leukemia. Blood 2015; 125:2461-6. [PMID: 25762181 DOI: 10.1182/blood-2015-01-561373] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022] Open
Abstract
A fundamental difficulty in testing "targeted therapies" in acute myeloid leukemia (AML) is the limitations of preclinical models in capturing inter- and intrapatient genomic heterogeneity. Clinical trials typically focus on single agents despite the routine emergence of resistant subclones and experience in blast-phase chronic myeloid leukemia and acute promyelocytic leukemia arguing against this strategy. Inclusion of only relapsed-refractory, or unfit newly diagnosed, patients risks falsely negative results. There is uncertainty as to whether eligibility should require demonstration of the putative target and regarding therapeutic end points. Although use of in vivo preclinical models employing primary leukemic cells is first choice, newer preclinical models including "organoids" and combinations of pharmacologic and genetic approaches may better align models with human AML. We advocate earlier inclusion of combinations ± chemotherapy and of newly diagnosed patients into clinical trials. When a drug plausibly targets a pathway uniquely related to a specific genetic aberration, eligibility should begin with this subset, including patients with other malignancies, with subsequent extension to other patients. In other cases, a more open-minded approach to initial eligibility would facilitate quicker identification of responsive subsets. Complete remission without minimal residual disease seems a particularly useful short-term end point. Genotypic and phenotypic studies should be prespecified and performed routinely to distinguish responders from nonresponders.
Collapse
|
19
|
Wang NN, Li ZH, Zhao H, Tao YF, Xu LX, Lu J, Cao L, Du XJ, Sun LC, Zhao WL, Xiao PF, Fang F, Su GH, Li YH, Li G, Li YP, Xu YY, Zhou HT, Wu Y, Jin MF, Liu L, Ni J, Wang J, Hu SY, Zhu XM, Feng X, Pan J. Molecular targeting of the oncoprotein PLK1 in pediatric acute myeloid leukemia: RO3280, a novel PLK1 inhibitor, induces apoptosis in leukemia cells. Int J Mol Sci 2015; 16:1266-92. [PMID: 25574601 PMCID: PMC4307303 DOI: 10.3390/ijms16011266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/29/2014] [Indexed: 01/03/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Na-Na Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Zhi-Heng Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - He Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yan-Fang Tao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Li-Xiao Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Lan Cao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xiao-Juan Du
- Department of Gastroenterology, the 5th Hospital of Chinese People's Liberation Army (PLA), Yinchuan 750000, China.
| | - Li-Chao Sun
- Department of Cell and Molecular Biology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.
| | - Wen-Li Zhao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Pei-Fang Xiao
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Fang Fang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Guang-Hao Su
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yan-Hong Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Gang Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yi-Ping Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yun-Yun Xu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Hui-Ting Zhou
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Yi Wu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Mei-Fang Jin
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Lin Liu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jian Ni
- Translational Research Center, Second Hospital, The Second Clinical School, Nanjing Medical University, Nanjing 210000, China.
| | - Jian Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xue-Ming Zhu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Xing Feng
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou 215003, China.
| |
Collapse
|
20
|
Wang ES. Treating acute myeloid leukemia in older adults. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:14-20. [PMID: 25696830 DOI: 10.1182/asheducation-2014.1.14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Acute myeloid leukemia (AML) is a disease of older adults, with a median age of 67 years at presentation. In the past, only a third of older patients (defined as individuals older than 60-65 years of age) with AML received definitive therapy for their disease due to concerns about their overall fitness and potential treatment-related mortality. However, compelling epidemiological data have shown unequivocally that older AML patients up to 80 years old both tolerate and survive longer after therapy than their untreated counterparts. Current therapeutic options for elderly individuals with AML include intensive chemotherapy with a cytarabine and anthracycline backbone, hypomethylating agents (decitabine and azacitidine), low-dose cytarabine, investigational agents, and supportive care with hydroxyurea and transfusions. Over the last few years, there has been increasing debate regarding the appropriate therapeutic approach to take in older adults given the diversity of the geriatric patient population and heterogeneous AML disease biology. This article discusses how performance status, comorbidities, disease characteristics, quality of life concerns, and long-term treatment goals affect the selection of appropriate therapy for older adults with AML. Risks and benefits of each treatment approach based on the most recent medical literature are discussed. Finally, a treatment algorithm summarizing these data and incorporating geriatric assessment and molecular and cytogenetic markers predictive of therapeutic response is proposed to aid in the clinical decision-making process.
Collapse
Affiliation(s)
- Eunice S Wang
- Leukemia Service, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY
| |
Collapse
|
21
|
Bose P, Grant S. Orphan drug designation for pracinostat, volasertib and alvocidib in AML. Leuk Res 2014; 38:862-5. [PMID: 24996975 DOI: 10.1016/j.leukres.2014.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
22
|
Pemmaraju N, Kantarjian H, Andreeff M, Cortes J, Ravandi F. Investigational FMS-like tyrosine kinase 3 inhibitors in treatment of acute myeloid leukemia. Expert Opin Investig Drugs 2014; 23:943-54. [PMID: 24749672 DOI: 10.1517/13543784.2014.911839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Outcomes for the majority of patients with acute myeloid leukemia (AML) remain poor. Over the past decade, significant progress has been made in the understanding of the cytogenetic and molecular determinants of AML pathogenesis. One such advance is the identification of recurring mutations in the FMS-like tyrosine kinase 3 gene (FLT3). Currently, this marker, which appears in approximately one-third of all AML patients, not only signifies a poorer prognosis but also identifies an important target for therapy. FLT3 inhibitors have now undergone clinical evaluation in Phase I, II and III clinical trials, as both single agents and in combination with chemotherapeutics. Unfortunately, to date, none of the FLT3 inhibitors have gained FDA approval for the treatment of patients with AML. Yet, several promising FLT3 inhibitors are being evaluated in all phases of drug development. AREAS COVERED This review aims to highlight the agents furthest along in their development. It also focuses on those FLT3 inhibitors that are being evaluated in combination with other anti-leukemia agents. EXPERT OPINION The authors believe that the field of research for FLT3 inhibitors remains promising, despite the historically poor prognosis of this subgroup of patients with AML. The most promising areas of research will likely be the elucidation of the mechanisms of resistance to FLT3 inhibitors, and development of potent FLT3 inhibitors alone or in combination with hypomethylating agents, cytotoxic chemotherapy or with other targeted agents.
Collapse
Affiliation(s)
- Naveen Pemmaraju
- MD Anderson Cancer Center, Department of Leukemia , 1515 Holcombe Blvd Houston, TX 77030 , USA
| | | | | | | | | |
Collapse
|