1
|
Lu S, Liu K, Wang D, Ye Y, Jiang Z, Gao Y. Genomic structural variants analysis in leukemia by a novel cytogenetic technique: Optical genome mapping. Cancer Sci 2024. [PMID: 39180374 DOI: 10.1111/cas.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Genomic structural variants (SVs) play a pivotal role in driving the evolution of hematologic malignancies, particularly in leukemia, in which genetic abnormalities are crucial features. Detecting SVs is essential for achieving precise diagnosis and prognosis in these cases. Karyotyping, often complemented by fluorescence in situ hybridization and/or chromosomal microarray analysis, provides standard diagnostic outcomes for various types of SVs in front-line testing for leukemia. Recently, optical genome mapping (OGM) has emerged as a promising technique due to its ability to detect all SVs identified by other cytogenetic methods within one single assay. Furthermore, OGM has revealed additional clinically significant SVs in various clinical laboratories, underscoring its considerable potential for enhancing front-line testing in cases of leukemia. This review aims to elucidate the principles of conventional cytogenetic techniques and OGM, with a focus on the technical performance of OGM and its applications in diagnosing and prognosticating myelodysplastic syndromes, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Song Lu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yuan Ye
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, Hunan, China
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
4
|
Jang MA. Genomic technologies for detecting structural variations in hematologic malignancies. Blood Res 2024; 59:1. [PMID: 38485792 PMCID: PMC10903520 DOI: 10.1007/s44313-024-00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 03/18/2024] Open
Abstract
Genomic structural variations in myeloid, lymphoid, and plasma cell neoplasms can provide key diagnostic, prognostic, and therapeutic information while elucidating the underlying disease biology. Several molecular diagnostic approaches play a central role in evaluating hematological malignancies. Traditional cytogenetic diagnostic assays, such as chromosome banding and fluorescence in situ hybridization, are essential components of the current diagnostic workup that guide clinical care for most hematologic malignancies. However, each assay has inherent limitations, including limited resolution for detecting small structural variations and low coverage, and can only detect alterations in the target regions. Recently, the rapid expansion and increasing availability of novel and comprehensive genomic technologies have led to their use in clinical laboratories for clinical management and translational research. This review aims to describe the clinical relevance of structural variations in hematologic malignancies and introduce genomic technologies that may facilitate personalized tumor characterization and treatment.
Collapse
Affiliation(s)
- Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
5
|
Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, Arber DA, Arcila ME, Bejar R, Berliner N, Borowitz MJ, Branford S, Brown AL, Cargo CA, Döhner H, Falini B, Garcia-Manero G, Haferlach T, Hellström-Lindberg E, Kim AS, Klco JM, Komrokji R, Lee-Cheun Loh M, Loghavi S, Mullighan CG, Ogawa S, Orazi A, Papaemmanuil E, Reiter A, Ross DM, Savona M, Shimamura A, Skoda RC, Solé F, Stone RM, Tefferi A, Walter MJ, Wu D, Ebert BL, Cazzola M. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022; 140:2228-2247. [PMID: 36130297 PMCID: PMC10488320 DOI: 10.1182/blood.2022015853] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
Collapse
Affiliation(s)
- Eric J. Duncavage
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Courtney D. DiNardo
- Division of Cancer Medicine, Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Lucy A. Godley
- Section of Hematology and Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Alessandro M. Vannucchi
- Department of Hematology, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Keyur P. Patel
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Lettering Cancer Center, New York, NY
| | - Rafael Bejar
- Division of Hematology and Oncology, University of California San Diego, La Jolla, CA
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Michael J. Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Anna L. Brown
- Department of Pathology, South Australia Heath Alliance, Adelaide, Australia
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Brunangelo Falini
- Department of Hematology, CREO, University of Perugia, Perugia, Italy
| | | | | | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Mignon Lee-Cheun Loh
- Department of Pediatrics, Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Sanam Loghavi
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seishi Ogawa
- University of Kyoto School of Medicine, Kyoto, Japan
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX
| | | | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - David M. Ross
- Haematology Directorate, SA Pathology, Adelaide, Australia
| | - Michael Savona
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Akiko Shimamura
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Radek C. Skoda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Francesc Solé
- MDS Group, Institut de Recerca contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Akkari YM, Baughn LB, Dubuc AM, Smith AC, Mallo M, Dal Cin P, Diez Campelo M, Gallego MS, Granada Font I, Haase DT, Schlegelberger B, Slavutsky I, Mecucci C, Levine RL, Hasserjian RP, Solé F, Levy B, Xu X. Guiding the global evolution of cytogenetic testing for hematologic malignancies. Blood 2022; 139:2273-2284. [PMID: 35167654 PMCID: PMC9710485 DOI: 10.1182/blood.2021014309] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
Cytogenetics has long represented a critical component in the clinical evaluation of hematologic malignancies. Chromosome banding studies provide a simultaneous snapshot of genome-wide copy number and structural variation, which have been shown to drive tumorigenesis, define diseases, and guide treatment. Technological innovations in sequencing have ushered in our present-day clinical genomics era. With recent publications highlighting novel sequencing technologies as alternatives to conventional cytogenetic approaches, we, an international consortium of laboratory geneticists, pathologists, and oncologists, describe herein the advantages and limitations of both conventional chromosome banding and novel sequencing technologies and share our considerations on crucial next steps to implement these novel technologies in the global clinical setting for a more accurate cytogenetic evaluation, which may provide improved diagnosis and treatment management. Considering the clinical, logistic, technical, and financial implications, we provide points to consider for the global evolution of cytogenetic testing.
Collapse
Affiliation(s)
- Yassmine M.N. Akkari
- Departments of Cytogenetics and Molecular Pathology, Legacy Health, Portland, OR
| | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Adrian M. Dubuc
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Adam C. Smith
- Laboratory Medicine Program, University Health Network and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Mar Mallo
- MDS Group, Microarrays Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Maria Diez Campelo
- Hematology Department University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - Marta S. Gallego
- Laboratory of Cytogenetics and Molecular Cytogenetics, Department of Clinical Pathology, Italian Hospital, Buenos Aires, Argentina
| | - Isabel Granada Font
- Hematology Laboratory, Germans Trias i Pujol University Hospital–Catalan Institute of Oncology, Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Detlef T. Haase
- Clinics of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Irma Slavutsky
- Laboratory Genetics of Lymphoid Malignancies, Institute of Experimental Medicine, Buenos Aires, Argentina
| | - Cristina Mecucci
- Laboratory of Cytogenetics and Molecular Medicine, Hematology University of Perugia, Perugia, Italy
| | - Ross L. Levine
- Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Francesc Solé
- MDS Group, Microarrays Unit, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Brynn Levy
- College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY
| | - Xinjie Xu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|