1
|
Mittermeier F, Fischer F, Hauke S, Hirschmann P, Weuster-Botz D. Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed. BIOTECH 2024; 13:15. [PMID: 38804297 PMCID: PMC11130873 DOI: 10.3390/biotech13020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
The enzymatic hydrolysis of agricultural residues like wheat bran enables the valorization of otherwise unused carbon sources for biotechnological processes. The co-culture of Aspergillus niger and Trichoderma reesei with wheat bran particles as substrate produces an enzyme set consisting of xylanases, amylases, and cellulases that is suitable to degrade lignocellulosic biomass to sugar monomers (D-glucose, D-xylose, and L-arabinose). An integrated one-pot process for enzyme production followed by hydrolysis in stirred tank bioreactors resulted in hydrolysates with overall sugar concentrations of 32.3 g L-1 and 24.4 g L-1 at a 25 L and a 1000 L scale, respectively, within 86 h. Furthermore, the residual solid biomass consisting of fermented wheat bran with protein-rich fungal mycelium displays improved nutritional properties for usage as animal feed due to its increased content of sugars, protein, and fat.
Collapse
Affiliation(s)
- Fabian Mittermeier
- Chair of Biochemical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Fabienne Fischer
- Chair of Biochemical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Sebastian Hauke
- Chair of Biochemical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Peter Hirschmann
- Bavarian Milling Confederation (Bayerischer Müllerbund e.V.), 80333 Munich, Germany
| | - Dirk Weuster-Botz
- Chair of Biochemical Engineering, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
2
|
Wysocki Ł, Adamczuk P, Bardadyn P, Gabor A, Jelonek K, Kudelska M, Kukuć M, Piasek A, Pietras M, Słomka M, Trojan Z, Tybulczuk W, Sobiepanek A, Żylińska-Urban J, Cieśla J. Development of lactic acid production from coffee grounds hydrolysate by fermentation with Lacticaseibacillus rhamnosus. J Ind Microbiol Biotechnol 2024; 51:kuae032. [PMID: 39227166 PMCID: PMC11399779 DOI: 10.1093/jimb/kuae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
Spent coffee grounds (SCG) are commercial waste that are still rich in numerous valuable ingredients and can be further processed into useful products such as coffee oil, antioxidant extract, lactic acid, and lignin. The challenge and innovation is to develop the SCG processing technology, maximizing the use of raw material and minimizing the use of other resources within the sequential process. The presented research is focused on the aspect of biotechnological production of lactic acid from SCG by using the Lacticaseibacillus rhamnosus strain isolated from the environment. Thanks to the optimization of the processes of acid hydrolysis, neutralization, enzymatic hydrolysis of SCG, and fermentation, the obtained concentration of lactic acid was increased after 72 hr of culture from the initial 4.60 g/l to 48.6 g/l. In addition, the whole process has been improved, taking into account the dependence on other processes within the complete SCG biorefinery, economy, energy, and waste aspects. Costly enzymatic hydrolysis was completely eliminated, and it was proven that supplementation of SCG hydrolysate with expensive yeast extract can be replaced by cheap waste from the agri-food industry. ONE-SENTENCE SUMMARY A process for efficient lactic acid production from spent coffee grounds using the Lacticaseibacillus rhamnosus strain was developed and optimized, including nutrient solution preparation, supplementation and fermentation.
Collapse
Affiliation(s)
- Łukasz Wysocki
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Patrycja Adamczuk
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Paula Bardadyn
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Anna Gabor
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Karolina Jelonek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Monika Kudelska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Maksymilian Kukuć
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
- Chair of Polymer Chemistry and Technology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Adrianna Piasek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Marta Pietras
- Chair of Polymer Chemistry and Technology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Monika Słomka
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Zoja Trojan
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
- EcoBean Sp. z o. o. (Polish Limited Liability Company), 00-662 Warsaw, Poland
| | - Wiktoria Tybulczuk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Joanna Żylińska-Urban
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Joanna Cieśla
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| |
Collapse
|
3
|
Moreno-León GR, Avila-Reyes SV, Villalobos-Espinosa JC, Camacho-Díaz BH, Tapia-Maruri D, Jiménez-Aparicio AR, Arenas-Ocampo ML, Solorza-Feria J. Effect of Agave Fructans on Changes in Chemistry, Morphology and Composition in the Biomass Growth of Milk Kefir Grains. Microorganisms 2023; 11:1570. [PMID: 37375072 DOI: 10.3390/microorganisms11061570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prebiotic effects have been attributed to agave fructans through bacterial and yeast fermentations, but there are few reports on their use as raw materials of a carbon source. Kefir milk is a fermented drink with lactic acid bacteria and yeast that coexist in a symbiotic association. During fermentation, these microorganisms mainly consume lactose and produce a polymeric matrix called kefiran, which is an exopolysaccharide composed mainly of water-soluble glucogalactan, suitable for the development of bio-degradable films. Using the biomass of microorganisms and proteins together can be a sustainable and innovative source of biopolymers. In this investigation, the effects of lactose-free milk as a culture medium and the addition of other carbon sources (dextrose, fructose, galactose, lactose, inulin and fructans) in concentrations of 2, 4 and 6% w/w, coupled with initial parameters such as temperature (20, 25 and 30 °C), % of starter inoculum (2, 5 and 10% w/w) was evaluated. The method of response surface analysis was performed to determine the optimum biomass production conditions at the start of the experiment. The response surface method showed that a 2% inoculum and a temperature of 25 °C were the best parameters for fermentation. The addition of 6% w/w agave fructans in the culture medium favored the growth of biomass (75.94%) with respect to the lactose-free culture medium. An increase in fat (3.76%), ash (5.57%) and protein (7.12%) content was observed when adding agave fructans. There was an important change in the diversity of microorganisms with an absence of lactose. These compounds have the potential to be used as a carbon source in a medium culture to increase kefir granule biomass. There was an important change in the diversity of microorganisms with an absence of lactose, where the applied image digital analysis led to the identification of the morphological changes in the kefir granules through modification of the profile of such microorganisms.
Collapse
Affiliation(s)
- Germán R Moreno-León
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Sandra V Avila-Reyes
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
- CONAHCyT- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Julieta C Villalobos-Espinosa
- Tecnológico Nacional de México/Campus ITS Teziutlán, Ingeniería en Industrias Alimentarias, Fracción I y II Aire Libre S/N, Teziutlán C.P. 73960, Puebla, Mexico
| | - Brenda H Camacho-Díaz
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Daniel Tapia-Maruri
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Antonio R Jiménez-Aparicio
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Martha L Arenas-Ocampo
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Javier Solorza-Feria
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| |
Collapse
|
4
|
Chauhan S, Mitra S, Yadav M, Kumar A. Microbial production of lactic acid using organic wastes as low-cost substrates. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Lactic acid is a natural organic acid with diverse of applications in food, pharmaceutical, cosmetics, and chemical industry. Recently, the demand of lactic acid has been grown due to its utilization for polylactic acid production. Microbial production of lactic acid production is preferable due to optical purity of product, utilization of low cost substrates, and low energy requirement. Lignocellulosic biomass and other organic wastes are considered potential raw materials for cost-effective production of lactic acid. The raw materials are either hydrolyzed by enzymes or dilute acids to release the reducing sugars that are fermented in to lactic acid. This review has been focussed on microbial production of lactic acid using different organic wastes as low cost substrate.
Collapse
Affiliation(s)
- Sushmita Chauhan
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| | - Shreya Mitra
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| | - Mukesh Yadav
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , Haryana , India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , India
| |
Collapse
|
5
|
Tong X, Prasanna G, Zhang N, Jing P. Spectroscopic and molecular docking studies on the interaction of phycocyanobilin with peptide moieties of C-phycocyanin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118316. [PMID: 32344374 DOI: 10.1016/j.saa.2020.118316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The binding of C-phycocyanin (CPC), a light harvesting pigment with phycocyanobilin (PCB), a chromophore is instrumental for the coloration and bioactivity. In this study, structure-mediated color changes of CPC from Spirulina platensis during various enzymatic hydrolysis was investigated based on UV-visible, circular dichroism, infra-red, fluorescence, mass spectrometry, and molecular docking. CPC was hydrolyzed using 7.09 U/mg protein of each enzyme at their optimal hydrolytic conditions for 3 h as follows: papain (pH 6.6, 60 °C), dispase (pH 6.6, 50 °C), and trypsin (pH 7.8, 37 °C). The degree of hydrolysis was in the order of papain (28.4%) > dispase (20.8%) > trypsin (7.3%). The sequence of color degradation rate and total color difference (ΔE) are dispase (82.9% and 40.37), papain (72.4% and 24.70), and trypsin (58.7% and 25.43). The hydrolyzed peptides were of diverse sequence length ranging from 8 to 9 residues (papain), 7-12 residues (dispase), and 9-63 residues (trypsin). Molecular docking studies showed that key amino acid residues in the peptides interacting with chromophore. Amino acid residues such as Arg86, Asp87, Tyr97, Asp152, Phe164, Ala167, and Val171 are crucial in hydrogen bonding interaction. These results indicate that the color properties of CPC might associate with chromopeptide sequences and their non-covalent interactions.
Collapse
Affiliation(s)
- Xueyu Tong
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Govindarajan Prasanna
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Nitrogen Sources Effect on Lactobacillus reuteri Growth and Performance Cultivated in Date Palm (Phoenix dactylifera L.) By-Products. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lactic acid bacteria (LAB) are fastidious microorganisms that have specific nutritional requirements. The de Man, Rogosa, and Sharpe (MRS) is an expensive standard growth medium for LAB to produce lactic acid, and the industry is always looking for an alternative low-cost medium. The date palm (Phoenix dactylifera L.) is naturally full of essential nutrients that lead to stimulate or promote the growth of Lactobacillus spp. The date fruit industries generate a large amount of unwanted date by-product. Thus, the objective of this study was to examine the effect of different nitrogen sources on the growth of Lactobacillus reuteri grown in a date base medium. In this study, date palm fruit was pressed, and the fiber was blended with distilled water, centrifuged, and the supernatant was autoclaved to obtain date palm extract (DPE). The date palm medium (DPM) was formed by mixing the DPE with buffer solution. The DPM was then supplemented with different concentrations of different nitrogen sources. Lactobacilli MRS was used as a standard growth medium. Three different L. reuteri strains were individually inoculated into batches of MRS and DPMs at an initial inoculum 2.5 Log CFU/mL, and then incubated at 37 °C for 18 h. Bacterial growth was monitored by measuring the optical density readings (O.D 610 nm) for up to 18 h. At the end of the incubation period, final populations of each individual strain were verified by enumeration of the MRS agar. Our results showed that the bacterial population in DPM (control; without nitrogen), reached 3.55 ± 0.5 Log CFU/mL. However, the bacterial populations that reached 7.03 ± 0.1 Log CFU/mL in the DPM medium were supplemented with 0.8% phytone peptone, compared to the MRS 7.90 ± 0.24 Log CFU/mL. Our findings thus suggest that date by-products could be used as a low-cost alternative for the LAB growth medium.
Collapse
|
7
|
Tarraran L, Mazzoli R. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives. FEMS Microbiol Lett 2019; 365:4995910. [PMID: 30007320 DOI: 10.1093/femsle/fny126] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria (LAB) have a long history in industrial processes as food starters and biocontrol agents, and also as producers of high-value compounds. Lactic acid, their main product, is among the most requested chemicals because of its multiple applications, including the synthesis of biodegradable plastic polymers. Moreover, LAB are attractive candidates for the production of ethanol, polyhydroalkanoates, sweeteners and exopolysaccharides. LAB generally have complex nutritional requirements. Furthermore, they cannot directly ferment inexpensive feedstocks such as lignocellulose. This significantly increases the cost of LAB fermentation and hinders its application in the production of high volumes of low-cost chemicals. Different strategies have been explored to extend LAB fermentation to lignocellulosic biomass. Fermentation of lignocellulose hydrolysates by LAB has been frequently reported and is the most mature technology. However, current economic constraints of this strategy have driven research for alternative approaches. Co-cultivation of LAB with native cellulolytic microorganisms may reduce the high cost of exogenous cellulase supplementation. Special attention is given in this review to the construction of recombinant cellulolytic LAB by metabolic engineering, which may generate strains able to directly ferment plant biomass. The state of the art of these strategies is illustrated along with perspectives of their applications to industrial second generation biorefinery processes.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
8
|
Pleissner D, Dietz D, van Duuren JBJH, Wittmann C, Yang X, Lin CSK, Venus J. Biotechnological Production of Organic Acids from Renewable Resources. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 166:373-410. [PMID: 28265703 DOI: 10.1007/10_2016_73] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.
Collapse
Affiliation(s)
- Daniel Pleissner
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Donna Dietz
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Xiaofeng Yang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Joachim Venus
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy Potsdam (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany.
| |
Collapse
|
9
|
Romo-Buchelly J, Rodríguez-Torres M, Orozco-Sánchez F. Biotechnological valorization of agro industrial and household wastes for lactic acid production. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n1.69284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactic acid (LA) is an organic compound used in several industries, such as food, textile, chemical, and pharmaceutical. The global interest in this product is due to its use for the synthesis of numerous chemical compounds, including polylactic acid, a biode-gradable thermoplastic and substitute for petroleum-derived plastics. An in-depth overview of the use of industrial and household wastes as inexpensive substrates in order to reduce the cost of LA production is presented. A review is carried out of the biotech-nological aspects that must be taken into account when using some wastes with high transformation potential to produce LA in a submerged culture, as well recommendations for their use. The advantages and disadvantages of different types of treatments used for the transformation of waste into suitable substrates are considered. Several methods of fermentation, as well as genetic strategies for increasing the production, are summarized and compared. It is expected that in a few years there will be many ad-vances in these areas that will allow greater large-scale production of LA using agroindustrial or household wastes, with potential positive economic and environmental impact in some regions of the planet.
Collapse
|
10
|
Cunha MCD, Masotti MT, Mondragón-Bernal OL, Alves JGLF. HIGHLY EFFICIENT PRODUCTION OF L (+)-LACTIC ACID USING MEDIUM WITH POTATO, CORN STEEP LIQUOR AND CALCIUM CARBONATE BY Lactobacillus rhamnosus ATCC 9595. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180353s20170024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Radosavljević M, Pejin J, Kocić-Tanackov S, Mladenović D, Djukić-Vuković A, Mojović L. Brewers' spent grain and thin stillage as raw materials in l
-(+)-lactic acid fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Miloš Radosavljević
- University of Novi Sad; Faculty of Technology; 21 000 Novi Sad Bulevar cara Lazara 1 Serbia
| | - Jelena Pejin
- University of Novi Sad; Faculty of Technology; 21 000 Novi Sad Bulevar cara Lazara 1 Serbia
| | - Sunčica Kocić-Tanackov
- University of Novi Sad; Faculty of Technology; 21 000 Novi Sad Bulevar cara Lazara 1 Serbia
| | - Dragana Mladenović
- University of Belgrade; Faculty of Technology and Metallurgy; 11 000 Belgrade Karnegijeva 4 Serbia
| | | | - Ljiljana Mojović
- University of Belgrade; Faculty of Technology and Metallurgy; 11 000 Belgrade Karnegijeva 4 Serbia
| |
Collapse
|
12
|
Co-production of functional exopolysaccharides and lactic acid by Lactobacillus kefiranofaciens originated from fermented milk, kefir. Journal of Food Science and Technology 2017; 55:331-340. [PMID: 29358826 DOI: 10.1007/s13197-017-2943-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/30/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Kefiran is a functional exopolysaccharide produced by Lactobacillus kefiranofaciens originated from kefir, traditional fermented milk in the Caucasian Mountains, Russia. Kefiran is attractive as thickeners, stabilizers, emulsifiers, gelling agents and also has antimicrobial and antitumor activity. However, the production costs of kefiran are still high mainly due to high cost of carbon and nitrogen sources. This study aimed to produce kefiran and its co-product, lactic acid, from low-cost industrial byproducts. Among the sources tested, whey lactose (at 2% sugar concentration) and spent yeast cells hydrolysate (at 6 g-nitrogen/L) gave the highest kefiran of 480 ± 21 mg/L along with lactic acid of 20.1 ± 0.2 g/L. The combination of these two sources and initial pH were optimized through Response Surface Methodology. With the optimized medium, L. kefiranofaciens produced more kefiran and lactic acid up to 635 ± 7 mg/L and 32.9 ± 0.7 g/L, respectively. When the pH was controlled to alleviate the inhibition from acidic pH, L. kefiranofaciens could consume all sugars and produced kefiran and lactic acid up to 1693 ± 29 mg/L and 87.49 ± 0.23 g/L, respectively. Moreover, the fed-batch fermentation with intermittent adding of whey lactose improved kefiran and lactic acid productions up to 2514 ± 93 mg/L and 135 ± 1.75 g/L, respectively. These results indicate the promising approach to economically produce kefiran and lactic acid from low-cost nutrient sources.
Collapse
|
13
|
Djellouli M, Martínez-Álvarez O, Arancibia MY, Florez-Cuadrado D, Ugarte-Ruíz M, Domínguez L, Zadi-Karam H, Karam N, Roudj S, López-Caballero ME. Effect of seafood peptones on biomass and metabolic activity by Enterococcus faecalis DM19. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Watanabe M, Techapun C, Kuntiya A, Leksawasdi N, Seesuriyachan P, Chaiyaso T, Takenaka S, Maeda I, Koyama M, Nakamura K. Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function. J Biosci Bioeng 2017; 123:245-251. [DOI: 10.1016/j.jbiosc.2016.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 12/01/2022]
|
15
|
Terpou A, Gialleli AI, Bekatorou A, Dimitrellou D, Ganatsios V, Barouni E, Koutinas AA, Kanellaki M. Sour milk production by wheat bran supported probiotic biocatalyst as starter culture. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Juodeikiene G, Zadeike D, Bartkiene E, Bartkevics V, Dikiy A, Shumilina E. Potential of an Exploitation of Acid-Tolerant Antimicrobial Microorganisms Evolving Enzyme Systems for the Utilization of Dairy By-products and Lignocellulosic Biomass to Lactic Acid. Front Bioeng Biotechnol 2016; 4:92. [PMID: 27965954 PMCID: PMC5124565 DOI: 10.3389/fbioe.2016.00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/14/2016] [Indexed: 11/23/2022] Open
Affiliation(s)
- Grazina Juodeikiene
- Food Science and Technology, Kaunas University of Technology , Kaunas , Lithuania
| | - Daiva Zadeike
- Food Science and Technology, Kaunas University of Technology , Kaunas , Lithuania
| | - Elena Bartkiene
- Food Safety and Quality, Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia; Department of Chemistry, University of Latvia, Riga, Latvia
| | - Alexander Dikiy
- Norwegian University of Science and Technology , Trondheim , Norway
| | - Elena Shumilina
- Norwegian University of Science and Technology , Trondheim , Norway
| |
Collapse
|
17
|
Juodeikiene G, Klupsaite D, Zadeike D, Cizeikiene D, Vidziunaite I, Bartkiene E, Cernauskas D. Bioconversion of agro-industrial by-products to lactic acid usingLactobacillus sakeiand twoPediococcusspp. strains. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Grazina Juodeikiene
- Department of Food Science and Technology; Faculty of Chemical Technology; Kaunas University of Technology; Radvilenu str. 19 LT-50254 Kaunas Lithuania
| | - Dovile Klupsaite
- Department of Food Science and Technology; Faculty of Chemical Technology; Kaunas University of Technology; Radvilenu str. 19 LT-50254 Kaunas Lithuania
| | - Daiva Zadeike
- Department of Food Science and Technology; Faculty of Chemical Technology; Kaunas University of Technology; Radvilenu str. 19 LT-50254 Kaunas Lithuania
| | - Dalia Cizeikiene
- Department of Food Science and Technology; Faculty of Chemical Technology; Kaunas University of Technology; Radvilenu str. 19 LT-50254 Kaunas Lithuania
| | - Ieva Vidziunaite
- Department of Food Science and Technology; Faculty of Chemical Technology; Kaunas University of Technology; Radvilenu str. 19 LT-50254 Kaunas Lithuania
| | - Elena Bartkiene
- Department of Food Quality and Safety; Lithuanian University of Health Sciences; Veterinary Academy; Tilzes str. 18 LT-47181 Kaunas Lithuania
| | - Darius Cernauskas
- Department of Food Science and Technology; Faculty of Chemical Technology; Kaunas University of Technology; Radvilenu str. 19 LT-50254 Kaunas Lithuania
| |
Collapse
|
18
|
Coghetto CC, Brinques GB, Ayub MAZ. Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions. Int J Food Sci Nutr 2016; 67:929-43. [PMID: 27456038 DOI: 10.1080/09637486.2016.1211995] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotic products are dietary supplements containing live microorganisms producing beneficial health effects on the host by improving intestinal balance and nutrient absorption. Among probiotic microorganisms, those classified as lactic acid bacteria are of major importance to the food and feed industries. Probiotic cells can be produced using alternative carbon and nitrogen sources, such as agroindustrial residues, at the same time contributing to reduce process costs. On the other hand, the survival of probiotic cells in formulated food products, as well as in the host gut, is an essential nutritional aspect concerning health benefits. Therefore, several cell microencapsulation techniques have been investigated as a way to improve cell viability and survival under adverse environmental conditions, such as the gastrointestinal milieu of hosts. In this review, different aspects of probiotic cells and technologies of their related products are discussed, including formulation of culture media, and aspects of cell microencapsulation techniques required to improve their survival in the host.
Collapse
Affiliation(s)
- Chaline Caren Coghetto
- a Biotechnology and Biochemical Engineering Laboratory (BiotecLab) , Federal University of Rio Grande Do Sul , Porto Alegre , Brazil
| | - Graziela Brusch Brinques
- b Nutrition Department , Federal University of Health Sciences of Porto Alegre , Porto Alegre , Brazil
| | - Marco Antônio Záchia Ayub
- a Biotechnology and Biochemical Engineering Laboratory (BiotecLab) , Federal University of Rio Grande Do Sul , Porto Alegre , Brazil
| |
Collapse
|
19
|
Coghetto CC, Vasconcelos CB, Brinques GB, Ayub MAZ. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue. Braz J Microbiol 2016; 47:941-948. [PMID: 27522926 PMCID: PMC5052335 DOI: 10.1016/j.bjm.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett–Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87 g L−1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59 g L−1, corresponding to a productivity of 1.46 g L−1 h−1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.
Collapse
Affiliation(s)
- Chaline Caren Coghetto
- Federal University of Rio Grande do Sul, Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Porto Alegre, RS, Brazil
| | - Carolina Bettker Vasconcelos
- Federal University of Rio Grande do Sul, Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Porto Alegre, RS, Brazil
| | - Graziela Brusch Brinques
- Federal University of Health Sciences of Porto Alegre, Nutrition Department, Porto Alegre, RS, Brazil
| | - Marco Antônio Záchia Ayub
- Federal University of Rio Grande do Sul, Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Kumar A, Gautam A, Dutt D. Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/abb.2016.73014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
The influence of calcium-carbonate and yeast extract addition on lactic acid fermentation of brewer's spent grain hydrolysate. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Yu J, Zeng A, Yuan X, Zhang X, Ju J. Optimizing and scale-up strategy of molecular distillation for the purification of lactic acid from fermentation broth. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1056363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 2015; 120:115-9. [DOI: 10.1016/j.carbpol.2014.11.061] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 11/29/2014] [Indexed: 11/20/2022]
|
24
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
25
|
Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans. Appl Biochem Biotechnol 2014; 173:1896-906. [PMID: 24879598 DOI: 10.1007/s12010-014-0975-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient L-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for L-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett-Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l(-1) L-lactic acid was obtained from 100 g l(-1) xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l(-1) L-lactic acid was obtained in 36 h and the yield was 83.09 %.
Collapse
|
26
|
Kang TS, Korber DR, Tanaka T. Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1. J Ind Microbiol Biotechnol 2014; 41:629-35. [PMID: 24522935 DOI: 10.1007/s10295-014-1403-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022]
Abstract
Thin stillage (TS) is a waste residue that remains after bioethanol production, and its disposal reflects the high costs of bioethanol production. Thus, the development of cost-effective ways to process TS is a pending issue in bioethanol plants. The aim of this study was to evaluate the utilization of TS for the production of the valuable chemical, 1,3-propanediol (1,3-PDO), by Lactobacillus panis PM1. Different fermentation parameters, including temperature, pH and strains [wild-type and a recombinant strain expressing a NADPH-dependent aldehyde reductase (YqhD) gene] were tested in batch and fed-batch cultivations. The highest 1,3-PDO concentration (12.85 g/L) and yield (0.84 g/g) were achieved by batch fermentation at pH-4.5/30 °C by the YqhD recombinant strain. Furthermore, pH-controlled batch fermentation reduced the total fermentation period, resulting in the maximal 1,3-PDO concentration of 16.23 g/L and yield of 0.72 g/g in TS without an expensive nutrient or nitrogen (e.g., yeast extract, beef extract, and peptone) supplementation. The addition of two trace elements, Mg(2+) and Mn(2+), in TS increased 1,3-PDO yield (0.74 g/g) without 3-hydroxypropionaldehyde production, the only intermediate of 1,3-PDO biosynthetic pathway in L. panis PM1. Our results suggest that L. panis PM1 can offer a cost-effective process that utilizes the TS to produce a value-added chemical, 1,3-PDO.
Collapse
Affiliation(s)
- Tae Sun Kang
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | | | |
Collapse
|
27
|
Ouyang J, Ma R, Zheng Z, Cai C, Zhang M, Jiang T. Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. BIORESOURCE TECHNOLOGY 2013; 135:475-80. [PMID: 23127843 DOI: 10.1016/j.biortech.2012.09.096] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 05/18/2023]
Abstract
Highly efficient L-lactate production by a thermophilic strain Bacillus sp. NL01 was demonstrated in this study. Lignocellulosic hydrolyzates containing a high content of glucose, which was prepared from corn stover, was used as substrate for L-lactic acid production. The fermentation was carried out under open condition without sterilization and used NaOH as alkaline neutralizing reagent. In batch fermentation, 56.37 g l(-1) L-lactic acid was obtained from lignocellulosic hydrolyzates which contained the solid residues produced in enzymatic saccharification. In fed-batch fermentation, 75.03 g l(-1) L-lactic acid was obtained from lignocellulosic hydrolyzates supernatant. The yield was 74.5% and the average productivity was 1.04 g l(-1) h(-1).
Collapse
Affiliation(s)
- Jia Ouyang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
28
|
Chooklin S, Kaewsichan L, Kaewsrichan J. Potential use of oil palm sap on lactic acid production and product adsorption on Dowex™ 66 resin as adsorbent. ASIA-PAC J CHEM ENG 2013. [DOI: 10.1002/apj.1615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Supasit Chooklin
- Department of Food Science and Technology, Faculty of Agro-Industry; Rajamangala University of Technology Srivijaya; Thung Yai; Nakhon Si Thammarat; 80240; Thailand
| | - Lupong Kaewsichan
- Department of Chemical Engineering, Faculty of Engineering; Prince of Songkla University; Hat Yai; Songkhla; 90112; Thailand
| | - Jasadee Kaewsrichan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences; Prince of Songkla University; Hat Yai; Songkhla; 90112; Thailand
| |
Collapse
|
29
|
Djukić-Vuković AP, Mojović LV, Vukašinović-Sekulić MS, Rakin MB, Nikolić SB, Pejin JD, Bulatović ML. Effect of different fermentation parameters on l-lactic acid production from liquid distillery stillage. Food Chem 2012; 134:1038-43. [DOI: 10.1016/j.foodchem.2012.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 03/05/2012] [Indexed: 11/15/2022]
|
30
|
Production of succinic acid and lactic acid by Corynebacterium crenatum under anaerobic conditions. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0441-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
31
|
Nguyen CM, Kim JS, Hwang HJ, Park MS, Choi GJ, Choi YH, Jang KS, Kim JC. Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. BIORESOURCE TECHNOLOGY 2012; 110:552-9. [PMID: 22336740 DOI: 10.1016/j.biortech.2012.01.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/10/2012] [Accepted: 01/16/2012] [Indexed: 05/18/2023]
Abstract
The freshwater microalga, Hydrodictyon reticulum, that contained 47.5% reducing sugars including 35% glucose was used as substrate for the production of l-lactic acid (LA) by LA-producing bacteria. Lactobacillus paracasei LA104 was selected for fermentation in a 5-l fermentor since it was able to grow at pH 3, 60g LA/l, 200g glucose/l, 125g NaCl/l, and 45°C and produced over 97.3% optically pure l-lactic acid with glucose as a substrate. Simultaneous saccharification and cofermentation from H. reticulum to l-LA using LA104 was investigated in a jar fermentor. The yield reached 46g/100g H. reticulum dry material, with a final concentration of 37.11g/l and a productivity of 1.03g/l/h. This is the first report of the production of l-LA from a microalga, and H. reticulum could be a potential feedstock for large-scale production of l-LA by LA104.
Collapse
Affiliation(s)
- Cuong Mai Nguyen
- University of Science and Technology, Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|