1
|
Vázquez JA, Comesaña S, Soengas JL, Pérez M, Bermúdez R, Rotllant J, Valcarcel J. Optimal and sustainable production of tailored fish protein hydrolysates from tuna canning wastes and discarded blue whiting: Effect of protein molecular weight on chemical and bioactive properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173461. [PMID: 38815836 DOI: 10.1016/j.scitotenv.2024.173461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Thousands tons of discards of blue whiting (BW) and tuna heads (YT) by-products are generated each year in Europe. BW is the species most discarded by European fishing fleet and, in some canning factories, YT are processed for the retrieval of oil rich in omega-3, but producing a huge amount of solid remains and effluents disposal as wastes. The development of optimal and sustainable processes for both substrates is mandatory in order to reach clean solutions under the circular economy precepts. This work focused on the mathematical optimization of the production of tailored fish protein hydrolysates (FPH), from blue whiting and tuna residues, in terms of controlling average molecular weights (Mw) of proteins. For the modeling of the protein depolymerization time-course, a pseudo-mechanistic model was used, which combined a reaction mechanistic equation affected, in the kinetic parameters, by two non-lineal equations (a first-order kinetic and like-Weibull formulae). In all situations, experimental data were accurately simulated by that model achieving R2 values higher than 0.96. The validity of the experimental conditions obtained from modeling were confirmed performing productions of FPH at scale of 5 L-reactor, without pH-control in most of cases, at the different ranges of Mw selected (1-2 kDa, 2-5 kDa and 5-10 kDa). The results showed that FPH from BW with lower Mw led to a remarkable yield of production (12 % w/w of substrate), largest protein contents (77 % w/w of BW hydrolysate), greatest in vitro digestibility (>95 %), highest essential amino acid presence (43 %) and the best antioxidant (DPPH = 62 %) and antihypertensive (IC50-ACE = 80 mg/L) properties. Our results prove that the proposed procedure to produce sustainable FPH, with specific Mw characterisitics, could be extended to other fish waste substrates. Tailored FPH may have the potential to serve as valuable ingredients for functional foods and high-quality aquaculture feed.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain.
| | - Sara Comesaña
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Galicia, Spain
| | - José Luis Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Galicia, Spain
| | - Montse Pérez
- Grupo de Investigación en Biotecnología y Acuicultura Marina Sostenible (AquaCOV), Centro Oceanográfico de Vigo, Instituto Español de Oceanografía-CSIC, 36390 Vigo, Galicia, Spain
| | - Roberto Bermúdez
- Grupo de Investigación en Patología Animal (GAPAVET), Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Galicia, Spain
| | - Josep Rotllant
- Laboratorio de Biotecnología Acuática, Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello, 6, CP 36208 Vigo, Galicia, Spain
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain; Servicio de Análisis (SICIM), Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello, 6, CP 36208 Vigo, Galicia, Spain
| |
Collapse
|
2
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|
3
|
Estévez N, Fuciños C, Rodríguez-Sanz A, Rúa ML. Development and sensory test of a dairy product with ACE inhibitory and antioxidant peptides produced at a pilot plant scale. Food Chem 2022; 394:133459. [PMID: 35752122 DOI: 10.1016/j.foodchem.2022.133459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
Abstract
A scale-up process was carried out to obtain potent bioactive peptides from whey protein through a simple hydrolysis process. The scale-up was satisfactory, with results similar to those obtained at lab scale: a fraction of peptides < 1 kDa with ACE inhibitory activity of 18.44 ± 2.47 μg/mL, a DPPH value of 69.40 ± 0.44%, and an ORAC value of 3.37 ± 0.03 μmol TE/mg protein. The peptide sequences responsible for the ACE inhibitory activity were also similar to those identified at lab scale: PM, LL, LF, HFKG and PT. The hydrolysate was used as a functional ingredient in a low-fat yoghurt. The consumer sensory taste panel found no significant difference (p > 0.05) between the bitterness of the control and the functional yoghurt, and about 50% of consumers would buy it. The hydrolysate maintained its bioactivities for 4 months at -20 °C (after thawing and pasteurisation), and for 1 week in yoghurt at 4 °C.
Collapse
Affiliation(s)
- Natalia Estévez
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain.
| | - Clara Fuciños
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain.
| | - Andrea Rodríguez-Sanz
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| | - María L Rúa
- Departamento de Química Analítica e Alimentaria, Universidade de Vigo, Laboratorio de Bioquímica, 32004 Ourense, Spain
| |
Collapse
|
4
|
Unraveling the Chemosensory Characteristics of Typical Chinese Commercial Rice Vinegars with Multiple Strategies. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Effect of Ultrasonic Pulses on the Functional Properties of Stickwater. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Large volumes of waste are generated in the processing operations of the fishing industry. These effluents contain potentially useful proteins. However, it is necessary to concentrate them for utilization. The stickwater (SW) resulting from this operation was subjected to a protein-fractionation step, pH adjustment (acid + alkaline) and ultrasonic pulsing in order to aid in hydrolysis and evaluate its functional and nutritional properties. The protein fractions, as well as the protein hydrolysates present in the tail water, had a chemical composition of 54.85 ± 4.21 and 74.81 ± 3.89 protein (%), 0.8 ± 0.1 and 0.2 ± 0.015 fat (%), 7.21 ± 0.67% ash (%), respectively. The increase in low-molecular-weight peptides results in an increase in free-radical scavenging activity. However, the increase in ferric-reducing antioxidant power may be due to the HCl treatment performed by the company. An increase in the functional properties of the samples treated with ultrasonic pulses was observed. Therefore, the chemical, nutritional and functional characteristics of stickwater suggest its potential use as a food additive.
Collapse
|
6
|
Kaewsahnguan T, Noitang S, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A. A novel angiotensin I-converting enzyme inhibitory peptide derived from the trypsin hydrolysates of salmon bone proteins. PLoS One 2021; 16:e0256595. [PMID: 34473745 PMCID: PMC8412326 DOI: 10.1371/journal.pone.0256595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
When fish are processed, fish bone becomes a key component of the waste, but to date very few researchers have sought to use fish bone to prepare protein hydrolysates as a means of adding value to the final product. This study, therefore, examines the potential of salmon bone, through an analysis of the benefits of its constituent components, namely fat, moisture, protein, and ash. In particular, the study seeks to optimize the process of enzymatic hydrolysis of salmon bone with trypsin in order to produce angiotensin-I converting enzyme (ACE) inhibitory peptides making use of response surface methodology in combination with central composite design (CCD). Optimum hydrolysis conditions concerning DH (degree of hydrolysis) and ACE-inhibitory activity were initially determined using the response surface model. Having thus determined which of the salmon bone protein hydrolysates (SBPH) offered the greatest level of ACE-inhibitory activity, these SBPH were duly selected to undergo ultrafiltration for further fractionation. It was found that the greatest ACE-inhibitory activity was achieved by the SBPH fraction which had a molecular weight lower than 0.65 kDa. This fraction underwent further purification using RP-HPLC, revealing that the F7 fraction offered the best ACE-inhibitory activity. For ACE inhibition, the ideal peptide in the context of the F7 fraction comprised eight amino acids: Phe-Cys-Leu-Tyr-Glu-Leu-Ala-Arg (FCLYELAR), while analysis of the Lineweaver-Burk plot revealed that the FCLYELAR peptide can serve as an uncompetitive ACE inhibitor. An examination of the molecular docking process showed that the FCLYELAR peptide was primarily able to provide ACE-inhibitory qualities as a consequence of the hydrogen bond interactions taking place between ACE and the peptide. Furthermore, upon isolation form the SBPH, the ACE-inhibitory peptide demonstrated ACE-inhibitory capabilities in vitro, underlining its potential for applications in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Thanakrit Kaewsahnguan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Sajee Noitang
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
7
|
Valcarcel J, Fraguas J, Hermida-Merino C, Hermida-Merino D, Piñeiro MM, Vázquez JA. Production and Physicochemical Characterization of Gelatin and Collagen Hydrolysates from Turbot Skin Waste Generated by Aquaculture Activities. Mar Drugs 2021; 19:491. [PMID: 34564153 PMCID: PMC8465087 DOI: 10.3390/md19090491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Rising trends in fish filleting are increasing the amount of processing by-products, such as skins of turbot, a flatfish of high commercial value. In line with circular economy principles, we propose the valorization of turbot skins through a two-step process: initial gelatin extraction described for the first time in turbot, followed by hydrolysis of the remaining solids to produce collagen hydrolysates. We assayed several methods for gelatin extraction, finding differences in gelatin properties depending on chemical treatment and temperature. Of all methods, the application of NaOH, sulfuric, and citric acids at 22 °C results in the highest gel strength (177 g), storage and loss moduli, and gel stability. We found no relation between mechanical properties and content of pyrrolidine amino acids, but the best performing gelatin displays higher structural integrity, with less than 30% of the material below 100 kDa. Collagen hydrolysis was more efficient with papain than alcalase, leading to a greater reduction in Mw of the hydrolysates, which contain a higher proportion of essential amino acids than gelatin and show high in vitro anti-hypertensive activity. These results highlight the suitability of turbot skin by-products as a source of gelatin and the potential of collagen hydrolysates as a functional food and feed ingredient.
Collapse
Affiliation(s)
- Jesus Valcarcel
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.F.); (J.A.V.)
| | - Javier Fraguas
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.F.); (J.A.V.)
| | - Carolina Hermida-Merino
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - Daniel Hermida-Merino
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, BP220, F38043 Grenoble, France;
| | - Manuel M. Piñeiro
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.F.); (J.A.V.)
| |
Collapse
|
8
|
Vázquez JA, Hermida-Merino C, Hermida-Merino D, Piñeiro MM, Johansen J, Sotelo CG, Pérez-Martín RI, Valcarcel J. Characterization of Gelatin and Hydrolysates from Valorization of Farmed Salmon Skin By-Products. Polymers (Basel) 2021; 13:polym13162828. [PMID: 34451367 PMCID: PMC8398820 DOI: 10.3390/polym13162828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
Salmon processing commonly involves the skinning of fish, generating by-products that need to be handled. Such skin residues may represent valuable raw materials from a valorization perspective, mainly due to their collagen content. With this approach, we propose in the present work the extraction of gelatin from farmed salmon and further valorization of the remaining residue through hydrolysis. Use of different chemical treatments prior to thermal extraction of gelatin results in a consistent yield of around 5%, but considerable differences in rheological properties. As expected from a cold-water species, salmon gelatin produces rather weak gels, ranging from 0 to 98 g Bloom. Nevertheless, the best performing gelatins show considerable structural integrity, assessed by gel permeation chromatography with light scattering detection for the first time on salmon gelatin. Finally, proteolysis of skin residues with Alcalase for 4 h maximizes digestibility and antihypertensive activity of the resulting hydrolysates, accompanied by the sharpest reduction in molecular weight and higher content of essential amino acids. These results indicate the possibility of tuning salmon gelatin properties through changes in chemical treatment conditions, and completing the valorization cycle through production of bioactive and nutritious hydrolysates.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Pontevedra, Spain;
- Correspondence:
| | - Carolina Hermida-Merino
- CINBIO, Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, CP36310 Vigo, Pontevedra, Spain; (C.H.-M.); (M.M.P.)
| | - Daniel Hermida-Merino
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF, CS 40220, F38043 Grenoble, France;
| | - Manuel M. Piñeiro
- CINBIO, Departamento de Física Aplicada, Facultad de Ciencias, Universidade de Vigo, CP36310 Vigo, Pontevedra, Spain; (C.H.-M.); (M.M.P.)
| | - Johan Johansen
- Norwegian Institute of Bioeconomy (NIBIO), Torggården, Kudalsveien 6, NO-8027 Bodø, Norway;
| | - Carmen G. Sotelo
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Pontevedra, Spain; (C.G.S.); (R.I.P.-M.)
| | - Ricardo I. Pérez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Pontevedra, Spain; (C.G.S.); (R.I.P.-M.)
| | - Jesus Valcarcel
- Group of Recycling and Valorization of Waste Materials (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, CP36208 Vigo, Pontevedra, Spain;
| |
Collapse
|
9
|
Venugopal V. Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.611835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The seafood industry generates large volumes of waste. These include processing discards consisting of shell, head, bones intestine, fin, skin, voluminous amounts of wastewater discharged as effluents, and low-value under-utilized fish, which are caught as by-catch of commercial fishing operations. The discards, effluents, and by-catch are rich in nutrients including proteins, amino acids, lipids containing good proportions of polyunsaturated fatty acids (PUFA), carotenoids, and minerals. The seafood waste is, therefore, responsible for loss of nutrients and serious environmental hazards. It is important that the waste is subjected to secondary processing and valorization to address the problems. Although chemical processes are available for waste treatment, most of these processes have inherent weaknesses. Biological treatments, however, are environmentally friendly, safe, and cost-effective. Biological treatments are based on bioconversion processes, which help with the recovery of valuable ingredients from by-catch, processing discards, and effluents, without losing their inherent bioactivities. Major bioconversion processes make use of microbial fermentations or actions of exogenously added enzymes on the waste components. Recent developments in algal biotechnology offer novel processes for biotransformation of nutrients as single cell proteins, which can be used as feedstock for the recovery of valuable ingredients and also biofuel. Bioconversion options in conjunction with a bio-refinery approach have potential for eco-friendly and economical management of seafood waste that can support sustainable seafood production.
Collapse
|
10
|
Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteins are one of the primary building blocks that have significant functional properties to be applied in food and pharmaceutical industries. Proteins could be beneficial in their concentrated products or isolates, of which membrane-based filtration methods such as ultrafiltration (UF) encompass application in broad spectra of protein sources. More importantly, selective enrichment by UF is of immense interest due to the presence of antinutrients that may dominate their perspicuous bioactivities. UF process is primarily obstructed by concentration polarization and fouling; in turn, a trade-off between productivity and selectivity emerges, especially when pure isolates are an ultimate goal. Several factors such as operating conditions and membrane equipment could leverage those pervasive contributions; therefore, UF protocols should be optimized for each unique protein mixture and mode of configuration. For instance, employing charged UF membranes or combining UF membranes with electrodialysis enables efficient separation of proteins with a similar molecular weight, which is hard to achieve by the conventional UF membrane. Meanwhile, some proposed strategies, such as utilizing ultrasonic waves, tuning operating conditions, and modifying membrane surfaces, can effectively mitigate fouling issues. A plethora of advancements in UF, from their membrane material modification to the arrangement of new configurations, contribute to the quest to actualize promising potentials of protein separation by UF, and they are reviewed in this paper.
Collapse
|
11
|
Du B, Deng G, Zaman F, Ma H, Li X, Chen J, Li T, Huang Y. Antioxidant cuttlefish collagen hydrolysate against ethyl carbamate-induced oxidative damage. RSC Adv 2021; 11:2337-2345. [PMID: 35424200 PMCID: PMC8693707 DOI: 10.1039/d0ra08487e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
Ethyl carbamate (EC) has been associated with the generation of reactive oxygen species (ROS) and depletion of glutathione (GSH), leading to a decline in cell viability. In this study, we found that the cuttlefish collagen hydrolysate (CCH) exhibited high antioxidant activity in scavenging hydroxyl radicals (IC50 = 0.697 mg mL-1), which was also effective in combating EC-induced oxidative damage in liver hepatocellular carcinoma HepG2 cells. The expression of genes related to oxidative stress response could be regulated by CCH to mitigate EC-induced oxidative stress. Pathway analysis confirmed that the protective ability of CCH could be related to ferroptosis and glutathione metabolism. Therefore, CCH could reduce the decline in cell viability by alleviating GSH depletion, and prevent EC-induced oxidative damage. Moreover, protective effect of CCH could be realized by upregulating the heme oxygenase-1 to achieve the preventation of cell sensitization. Considering these effects, CCH has potential for use in food to prevent oxidative stress.
Collapse
Affiliation(s)
- Bowei Du
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Guiya Deng
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Hui Ma
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| | - Xuejuan Li
- Rongcheng Lanrun Biological Technology Co., Ltd Rongcheng 264309 People's Republic of China
| | - Jialiang Chen
- Department of Graduate School, Beijing University of Chinese Medicine Beijing 100029 People's Republic of China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University New York NY 10027 USA
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology Beijing 100029 People's Republic of China
| |
Collapse
|
12
|
Vázquez JA, Fraguas J, González P, Serra J, Valcarcel J. Optimal Recovery of Valuable Biomaterials, Chondroitin Sulfate and Bioapatites, from Central Skeleton Wastes of Blue Shark. Polymers (Basel) 2020; 12:polym12112613. [PMID: 33172009 PMCID: PMC7694617 DOI: 10.3390/polym12112613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
The industrial filleting of blue shark (Prionace glauca) led to the generation of a large number of central skeletons of low interest to fishmeal plants handling such wastes. In this context, the present study describes the optimization of the hydrolysis process (pH 8.35, T 58 °C, 1% (v/w) of alcalase and t = 4 h) to produce chondroitin sulfate (CS) together with the recovery of bioapatites. Then, that hydrolysate was chemically treated with an optimal alkaline-hydroalcoholic-saline solution (0.48 M of NaOH, 1.07 volumes of EtOH and 2.5 g/L of NaCl) and finally purified by ultrafiltration-diafiltration (30 kDa) to obtain glycosaminoglycan with a purity of 97% and a productive yield of 2.8% (w/w of skeleton). The size of the biopolymer (CS) was of 58 kDa with prevalence of 6S-GalNAc sulfation (4S/6S ratio of 0.25), 12% of GlcA 2S-GalNAc 6S and 6% of non-sulfated disaccharides. Crude bioapatites were purified by pyrolysis and FT-Raman and XRD techniques confirm the presence of hydroxyapatite [Ca5(PO4)3(OH)], with a molar mass of 502.3 g/mol, embedded in the organic matrix of the skeleton. The mineralized tissues of blue shark are promising marine sources for the extraction of high value biomaterials with clinical application in bone and tissue regeneration and are still completely unexplored.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain;
- Correspondence: (J.A.V.); (J.V.); Tel.: +34-986-231-930 (J.A.V.); Fax: +34-986-292-762 (J.V.)
| | - Javier Fraguas
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain;
| | - Pío González
- New Materials Group, Department of Applied Physics, Campus Lagoas-Marcosende, University of Vigo, IISGS, MTI, 36310 Vigo, Spain; (P.G.); (J.S.)
| | - Julia Serra
- New Materials Group, Department of Applied Physics, Campus Lagoas-Marcosende, University of Vigo, IISGS, MTI, 36310 Vigo, Spain; (P.G.); (J.S.)
| | - Jesus Valcarcel
- Group of Recycling and Valorisation of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello, 6. Vigo, 36208 Galicia, Spain;
- Correspondence: (J.A.V.); (J.V.); Tel.: +34-986-231-930 (J.A.V.); Fax: +34-986-292-762 (J.V.)
| |
Collapse
|
13
|
Valcarcel J, Sanz N, Vázquez JA. Optimization of the Enzymatic Protein Hydrolysis of By-Products from Seabream ( Sparus aurata) and Seabass ( Dicentrarchus labrax), Chemical and Functional Characterization. Foods 2020; 9:E1503. [PMID: 33092225 PMCID: PMC7589672 DOI: 10.3390/foods9101503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023] Open
Abstract
Valorization of seabass and seabream by-products is becoming increasingly relevant, as marketing of these species moves from selling whole fish to filleting for convenience products. With this aim, we optimized for the first time the production of fish protein hydrolysates (FPH) by enzymatic hydrolysis from filleting by-products of these commercially relevant aquaculture species, isolating fish oil at the same time. On the whole, both fish yielded similar amounts of protein, but frames and trimmings (FT) were the best source, followed by heads and viscera. In vitro antioxidant and antihypertensive activities showed similar figures for both species, placing FPHs from FT as the most active. Molecular weights ranged from 1381 to 2023 Da, corresponding to the lowest values of FT, in line with the higher hydrolysis degrees observed. All FPHs reached high digestibility (>86%) and displayed an excellent amino acid profile in terms of essential amino acids and flavor, making them suitable as food additives and supplements.
Collapse
Affiliation(s)
- Jesus Valcarcel
- Marine Biotechnology and Bioprocesses Group, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (N.S.); (J.A.V.)
- Recycling and Valorisation of Waste Materials Laboratory (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Noelia Sanz
- Marine Biotechnology and Bioprocesses Group, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (N.S.); (J.A.V.)
- Food Biochemistry Laboratory, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - José Antonio Vázquez
- Marine Biotechnology and Bioprocesses Group, Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (N.S.); (J.A.V.)
- Recycling and Valorisation of Waste Materials Laboratory (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| |
Collapse
|
14
|
Optimal Production of Protein Hydrolysates from Monkfish By-Products: Chemical Features and Associated Biological Activities. Molecules 2020; 25:molecules25184068. [PMID: 32899910 PMCID: PMC7570475 DOI: 10.3390/molecules25184068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of this work was the recovery of protein substrates from monkfish waste (heads and viscera) generated in the on-board processing of this species. Initially, the effect of pH, temperature, and protease concentration was studied on mixtures of a 1:1 ratio (w/v) of monkfish heads/water. The optimal conditions of proteolytic digestion were established at 57.4 °C, pH 8.31, [Alcalase] = 0.05% (v/w) for 3 h of hydrolysis. Later on, a set of hydrolysis at 5L-pH-stat reactor were run under the aforementioned conditions, confirming the validity of the optimization studies for the head and viscera of monkfish. Regarding the chemical properties of the fish protein hydrolysates (FPH), the yield of digestion was higher than 90% in both cases and the degrees of hydrolysis and the soluble protein content were not especially large (<20% and <45 g/L, respectively). In vitro digestibility was higher than 90% and the percentage of essential amino acids ranged from 40 to 42%. Antioxidant activities were higher in viscera FPH, and antihypertensive ability was superior in head FPH. The values of number average molecular weights (Mn) of monkfish hydrolysates were 600 Da in the viscera and 947 Da in the head. The peptide size distribution, obtained by size-exclusion chromatography, indicated that the largest presence of peptides below 1000 Da and 200 Da was observed in the viscera FPH.
Collapse
|
15
|
Fractionation of Protein Hydrolysates of Fish Waste Using Membrane Ultrafiltration: Investigation of Antibacterial and Antioxidant Activities. Probiotics Antimicrob Proteins 2020; 11:1015-1022. [PMID: 30415461 DOI: 10.1007/s12602-018-9483-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, yellowfin tuna (Thunnus albacores) viscera were hydrolyzed with protamex to obtain hydrolysate that is separated by a membrane ultrafiltration into four molecular size fractions (< 3, 3-10, 10-30, and 30 kDa <). Antibacterial and antioxidant properties of the resulting hydrolysates and membrane fractions were characterized, and results showed that the lowermost molecular weight fraction (< 3 kDa) had significantly the highest (P < 0.05) percentage of bacteria inhibition against Gram-positive (Listeria and Staphylococcus) and Gram-negative (E. coli and Pseudomonas) pathogenic and fish spoilage-associated microorganisms and scavenging activity against DPPH and ABTS radical and ferric reducing antioxidant power among the fractionated enzymatic hydrolysates. These results suggest that the protein hydrolysate derived from yellowfin tuna by-products and its peptide fractions could be used as an antimicrobial and antioxidant ingredient in both nutraceutical applications and functional food.
Collapse
|
16
|
Vázquez JA, Rodríguez-Amado I, Sotelo CG, Sanz N, Pérez-Martín RI, Valcárcel J. Production, Characterization, and Bioactivity of Fish Protein Hydrolysates from Aquaculture Turbot ( Scophthalmus maximus) Wastes. Biomolecules 2020; 10:biom10020310. [PMID: 32075329 PMCID: PMC7072122 DOI: 10.3390/biom10020310] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
The valorization of wastes generated in the processing of farmed fish is currently an issue of extreme relevance for the industry, aiming to accomplish the objectives of circular bioeconomy. In the present report, turbot (Scophthalmus maximus) by-products were subjected to Alcalase hydrolysis under the optimal conditions initially defined by response surface methodology. All the fish protein hydrolysates (FPHs) showed a high yield of digestion (>83%), very remarkable degrees of hydrolysis (30–37%), high content of soluble protein (>62 g/L), an excellent profile of amino acids, and almost total in vitro digestibility (higher than 92%). Antioxidant and antihypertensive activities were analyzed in all cases, viscera hydrolysates being the most active. The range of average molecular weights (Mw) of turbot hydrolysates varied from 1200 to 1669 Da, and peptide size distribution showed that the hydrolysate of viscera had the highest content of peptides above 1000 Da and below 200 Da.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, Spain; (C.G.S.); (N.S.); (R.I.P.-M.); (J.V.)
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain
- Correspondence: ; Tel.: +34-986-231930
| | - Isabel Rodríguez-Amado
- Department of Life Sciences of the International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal;
| | - Carmen G. Sotelo
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, Spain; (C.G.S.); (N.S.); (R.I.P.-M.); (J.V.)
- Laboratorio de Bioquímica de Alimentos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain
| | - Noelia Sanz
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, Spain; (C.G.S.); (N.S.); (R.I.P.-M.); (J.V.)
- Laboratorio de Bioquímica de Alimentos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain
| | - Ricardo I. Pérez-Martín
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, Spain; (C.G.S.); (N.S.); (R.I.P.-M.); (J.V.)
- Laboratorio de Bioquímica de Alimentos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain
| | - Jesus Valcárcel
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, Spain; (C.G.S.); (N.S.); (R.I.P.-M.); (J.V.)
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, 36208 Vigo, Galicia, Spain
| |
Collapse
|
17
|
Valorization of Aquaculture By-Products of Salmonids to Produce Enzymatic Hydrolysates: Process Optimization, Chemical Characterization and Evaluation of Bioactives. Mar Drugs 2019; 17:md17120676. [PMID: 31801228 PMCID: PMC6950744 DOI: 10.3390/md17120676] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
In the present manuscript, various by-products (heads, trimmings, and frames) generated from salmonids (rainbow trout and salmon) processing were evaluated as substrates for the production of fish protein hydrolysates (FPHs), potentially adequate as protein ingredients of aquaculture feeds. Initially, enzymatic conditions of hydrolysis were optimized using second order rotatable designs and multivariable statistical analysis. The optimal conditions for the Alcalase hydrolysis of heads were 0.1% (v/w) of enzyme concentration, pH 8.27, 56.2°C, ratio (Solid:Liquid = 1:1), 3 h of hydrolysis, and agitation of 200 rpm for rainbow trout and 0.2% (v/w) of enzyme, pH 8.98, 64.2 °C, 200 rpm, 3 h of hydrolysis, and S:L = 1:1 for salmon. These conditions obtained at 100 mL-reactor scale were then validated at 5L-reactor scale. The hydrolytic capacity of Alcalase and the protein quality of FPHs were excellent in terms of digestion of wastes (Vdig > 84%), high degrees of hydrolysis (Hm > 30%), high concentration of soluble protein (Prs > 48 g/L), good balance of amino acids, and almost full in vitro digestibility (Dig > 93%). Fish oils were recovered from wastes jointly with FPHs and bioactive properties of hydrolysates (antioxidant and antihypertensive) were also determined. The salmon FPHs from trimmings + frames (TF) showed the higher protein content in comparison to the rest of FPHs from salmonids. Average molecular weights of salmonid-FPHs ranged from 1.4 to 2.0 kDa and the peptide sizes distribution indicated that hydrolysates of rainbow trout heads and salmon TF led to the highest percentages of small peptides (0-500 Da).
Collapse
|
18
|
Vázquez JA, Fraguas J, Novoa-Carballal R, Reis RL, Pérez-Martín RI, Valcarcel J. Optimal isolation and characterisation of chondroitin sulfate from rabbit fish (Chimaera monstrosa). Carbohydr Polym 2019; 210:302-313. [DOI: 10.1016/j.carbpol.2019.01.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
|
19
|
|
20
|
Vázquez JA, Meduíña A, Durán AI, Nogueira M, Fernández-Compás A, Pérez-Martín RI, Rodríguez-Amado I. Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Mar Drugs 2019; 17:E139. [PMID: 30818811 PMCID: PMC6470541 DOI: 10.3390/md17030139] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The objective of this report was to investigate the isolation and recovery of different biocompounds and bioproducts from wastes (skins and heads) that were obtained from five species discarded by fishing fleets (megrim, hake, boarfish, grenadier, and Atlantic horse mackerel). Based on chemical treatments, enzymatic hydrolysis, and bacterial fermentation, we have isolated and produced gelatinous solutions, oils that are rich in omega-3, fish protein hydrolysates (FPHs) with antioxidant and antihypertensive activities, and peptones. FPHs showed degrees of hydrolysis higher than 13%, with soluble protein concentrations greater than 27 g/L and in vitro digestibilities superior to 90%. Additionally, amino acids compositions were always valuable and bioactivities were, in some cases, remarkable. Peptones that were obtained from FPHs of skin and the heads were demonstrated to be a viable alternative to expensive commercial ones indicated for the production of biomass, lactic acid, and pediocin SA-1 from Pediococcus acidilactici.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Araceli Meduíña
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Ana I Durán
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Margarita Nogueira
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Andrea Fernández-Compás
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N°1 Escollera Norte, Mar del Plata C.C.175-7600, Argentina.
| | - Ricardo I Pérez-Martín
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Bioquímica de Alimentos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Isabel Rodríguez-Amado
- Departamento de Química Analítica y Alimentaria, Universidad de Vigo, Campus As Lagoas s/n, 32004 Ourense, España.
| |
Collapse
|
21
|
Suárez‐Jiménez GM, Burgos‐Hernández A, Torres‐Arreola W, López‐Saiz CM, Velázquez Contreras CA, Ezquerra‐Brauer JM. Bioactive peptides from collagen hydrolysates from squid (
Dosidicus gigas
) by‐products fractionated by ultrafiltration. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- G. Miroslava Suárez‐Jiménez
- Departamento de Investigación y Posgrado en Alimentos Universidad de Sonora Apartado Postal 1658 Hermosillo Sonora Mexico
| | - Armando Burgos‐Hernández
- Departamento de Investigación y Posgrado en Alimentos Universidad de Sonora Apartado Postal 1658 Hermosillo Sonora Mexico
| | - Wilfrido Torres‐Arreola
- Departamento de Investigación y Posgrado en Alimentos Universidad de Sonora Apartado Postal 1658 Hermosillo Sonora Mexico
| | - Carmen M. López‐Saiz
- Departamento de Investigación y Posgrado en Alimentos Universidad de Sonora Apartado Postal 1658 Hermosillo Sonora Mexico
| | | | - J. Marina Ezquerra‐Brauer
- Departamento de Investigación y Posgrado en Alimentos Universidad de Sonora Apartado Postal 1658 Hermosillo Sonora Mexico
| |
Collapse
|
22
|
Isolation and Chemical Characterization of Chondroitin Sulfate from Cartilage By-Products of Blackmouth Catshark ( Galeus melastomus). Mar Drugs 2018; 16:md16100344. [PMID: 30241332 PMCID: PMC6213352 DOI: 10.3390/md16100344] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan actively researched for pharmaceutical, nutraceutical and tissue engineering applications. CS extracted from marine animals displays different features from common terrestrial sources, resulting in distinct properties, such as anti-viral and anti-metastatic. Therefore, exploration of undescribed marine species holds potential to expand the possibilities of currently-known CS. Accordingly, we have studied for the first time the production and characterization of CS from blackmouth catshark (Galeus melastomus), a shark species commonly discarded as by-catch. The process of CS purification consists of cartilage hydrolysis with alcalase, followed by two different chemical treatments and ending with membrane purification. All steps were optimized by response surface methodology. According to this, the best conditions for cartilage proteolysis were established at 52.9 °C and pH = 7.31. Subsequent purification by either alkaline treatment or hydroalcoholic alkaline precipitation yielded CS with purities of 81.2%, 82.3% and 97.4% respectively, after 30-kDa membrane separation. The molecular weight of CS obtained ranges 53–66 kDa, depending on the conditions. Sulfation profiles were similar for all materials, with dominant CS-C (GlcA-GalNAc6S) units (55%), followed by 23–24% of CS-A (GlcA-GalNAc4S), a substantial amount (15–16%) of CS-D (GlcA2S-GalNAc6S) and less than 7% of other disulfated and unsulfated disaccharides.
Collapse
|
23
|
Abejón R, Belleville M, Sanchez-Marcano J, Garea A, Irabien A. Optimal design of industrial scale continuous process for fractionation by membrane technologies of protein hydrolysate derived from fish wastes. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Magadum DB, Yadav GD. Fermentative production, purification of inulinase from Aspergillus terreus MTCC 6324 and its application for hydrolysis of sucrose. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Premkumar J, Thottiam Vasudevan R. Bioingredients: functional properties and health impacts. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Zamora-Sillero J, Ramos P, Monserrat JM, Prentice C. Evaluation of the Antioxidant Activity In Vitro and in Hippocampal HT-22 Cells System of Protein Hydrolysates of Common Carp (Cyprinus carpio) By-Product. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1390027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Juan Zamora-Sillero
- Laboratório de Tecnologia de Alimentos, Escola de Química de Alimentos (EQA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Programa de Pós-Graduação em Aquicultura, FURG, Rio Grande, RS, Brasil
| | - Patrícia Ramos
- Instituto de Ciências Biológicas (ICB), FURG, Rio Grande, RS, Brasil
| | - José María Monserrat
- Instituto de Ciências Biológicas (ICB), FURG, Rio Grande, RS, Brasil
- Programa de Pós-Graduação em Aquicultura, FURG, Rio Grande, RS, Brasil
| | - Carlos Prentice
- Laboratório de Tecnologia de Alimentos, Escola de Química de Alimentos (EQA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Programa de Pós-Graduação em Aquicultura, FURG, Rio Grande, RS, Brasil
| |
Collapse
|
27
|
The use of a micro- and ultrafiltration cascade system for the recovery of protein, fat, and purified marinating brine from brine used for herring marination. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Production of Fish Protein Hydrolysates from Scyliorhinus canicula Discards with Antihypertensive and Antioxidant Activities by Enzymatic Hydrolysis and Mathematical Optimization Using Response Surface Methodology. Mar Drugs 2017; 15:md15100306. [PMID: 28994711 PMCID: PMC5666414 DOI: 10.3390/md15100306] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 11/17/2022] Open
Abstract
Fish discards are of major concern in new EU policies. Alternatives for the management of the new biomass that has to be landed is compulsory. The production of bioactive compounds from fish protein hydrolysates (FPH) has been explored in recent years. However, the viability of Scyliorhinus canicula discards, which might account for up to 90-100% of captures in mixed trawler, gillnet, and longline industrial fisheries, to produce FPH from the muscle with bioactivities has still not been studied in terms of the optimization of the experimental conditions to enhance its production. The effect of pH and temperature on the hydrolysis of the S.canicula muscle was mediated by three commercial proteases using response surface methodology. Temperatures of 64.6 °C and 60.8 °C and pHs of 9.40 and 8.90 were established as the best hydrolysis conditions for Alcalase and Esperase, respectively. Optimization of the best conditions for the maximization of antihypertensive and antioxidant activities was performed. Higher Angiotensin-converting enzyme (ACE) activity was found with Esperase. The pH optimum and temperature optimum for antioxidants were 55 °C/pH8.0 for ABTS/DPPH-Esperase, 63.1 °C/pH9.0 for DPPH-Alcalase, and 55 °C/pH9.0 for ABTS-Alcalase. No hydrolysis was detected when using Protamex.
Collapse
|
29
|
Ha NC, Hien DM, Thuy NT, Nguyen LT, Devkota L. Enzymatic Hydrolysis of Catfish (Pangasius hypophthalmus) By-Product: Kinetic Analysis of Key Process Parameters and Characteristics of the Hydrolysates Obtained. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1376027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nguyen Cong Ha
- Faculty of Agriculture and Applied Biology, Can Tho University (CTU), Can Tho City, Vietnam
| | - Dang Minh Hien
- Faculty of Agriculture and Applied Biology, Can Tho University (CTU), Can Tho City, Vietnam
| | - Nguyen Thi Thuy
- Faculty of Agriculture and Applied Biology, Can Tho University (CTU), Can Tho City, Vietnam
| | - Loc Thai Nguyen
- Food Engineering and Bioprocess Technology, Asian Institute of Technology (AIT), Pathumthani, Thailand
| | - Lavaraj Devkota
- Food Engineering and Bioprocess Technology, Asian Institute of Technology (AIT), Pathumthani, Thailand
| |
Collapse
|
30
|
Trincone A. Enzymatic Processes in Marine Biotechnology. Mar Drugs 2017; 15:E93. [PMID: 28346336 PMCID: PMC5408239 DOI: 10.3390/md15040093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|
31
|
Chai TT, Law YC, Wong FC, Kim SK. Enzyme-Assisted Discovery of Antioxidant Peptides from Edible Marine Invertebrates: A Review. Mar Drugs 2017; 15:E42. [PMID: 28212329 PMCID: PMC5334622 DOI: 10.3390/md15020042] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/11/2022] Open
Abstract
Marine invertebrates, such as oysters, mussels, clams, scallop, jellyfishes, squids, prawns, sea cucumbers and sea squirts, are consumed as foods. These edible marine invertebrates are sources of potent bioactive peptides. The last two decades have seen a surge of interest in the discovery of antioxidant peptides from edible marine invertebrates. Enzymatic hydrolysis is an efficient strategy commonly used for releasing antioxidant peptides from food proteins. A growing number of antioxidant peptide sequences have been identified from the enzymatic hydrolysates of edible marine invertebrates. Antioxidant peptides have potential applications in food, pharmaceuticals and cosmetics. In this review, we first give a brief overview of the current state of progress of antioxidant peptide research, with special attention to marine antioxidant peptides. We then focus on 22 investigations which identified 32 antioxidant peptides from enzymatic hydrolysates of edible marine invertebrates. Strategies adopted by various research groups in the purification and identification of the antioxidant peptides will be summarized. Structural characteristic of the peptide sequences in relation to their antioxidant activities will be reviewed. Potential applications of the peptide sequences and future research prospects will also be discussed.
Collapse
Affiliation(s)
- Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
- Centre for Bio-diversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
| | - Yew-Chye Law
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
- Centre for Bio-diversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.
| | - Se-Kwon Kim
- Department of Marine Bio-Convergence Science, Pukyong National University, 48513 Busan, Korea.
- Institute for Life Science of Seogo (ILSS), Kolmar Korea Co, 137-876 Seoul, Korea.
| |
Collapse
|
32
|
Abejón R, Abejón A, Garea A, Tsuru T, Irabien A, Belleville MP, Sanchez-Marcano J. In Silico Evaluation of Ultrafiltration and Nanofiltration Membrane Cascades for Continuous Fractionation of Protein Hydrolysate from Tuna Processing Byproduct. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Abejón
- Institut Européen
des Membranes (IEM), ENSCM, UM, CNRS - Université de Montpellier,
CC 047, Place Eugène Bataillon, 34095 Montpellier, France
- Department
of Chemical Engineering, Hiroshima University, 1-4-1 Kagayami-yama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - A. Abejón
- Departamento
de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - A. Garea
- Departamento
de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - T. Tsuru
- Department
of Chemical Engineering, Hiroshima University, 1-4-1 Kagayami-yama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - A. Irabien
- Departamento
de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - M. P. Belleville
- Institut Européen
des Membranes (IEM), ENSCM, UM, CNRS - Université de Montpellier,
CC 047, Place Eugène Bataillon, 34095 Montpellier, France
| | - J. Sanchez-Marcano
- Institut Européen
des Membranes (IEM), ENSCM, UM, CNRS - Université de Montpellier,
CC 047, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
33
|
Lemes AC, Sala L, Ores JDC, Braga ARC, Egea MB, Fernandes KF. A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste. Int J Mol Sci 2016; 17:E950. [PMID: 27322241 PMCID: PMC4926483 DOI: 10.3390/ijms17060950] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 12/27/2022] Open
Abstract
Bioactive peptides are considered the new generation of biologically active regulators that not only prevent the mechanism of oxidation and microbial degradation in foods but also enhanced the treatment of various diseases and disorders, thus increasing quality of life. This review article emphasizes recent advances in bioactive peptide technology, such as: (i) new strategies for transforming bioactive peptides from residual waste into added-value products; (ii) nanotechnology for the encapsulation, protection and release of controlled peptides; and (iii) use of techniques of large-scale recovery and purification of peptides aiming at future applications to pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ailton Cesar Lemes
- Federal University of Rio Grande, Chemistry and Food School, Rio Grande 96201-900, Brazil.
| | - Luisa Sala
- Federal University of Rio Grande, Chemistry and Food School, Rio Grande 96201-900, Brazil.
| | - Joana da Costa Ores
- Federal University of Rio Grande, Chemistry and Food School, Rio Grande 96201-900, Brazil.
| | | | - Mariana Buranelo Egea
- Federal Institute of Education, Science and Technology Goiano, Campus Rio Verde, Rio Verde 75901-970, Brazil.
| | - Kátia Flávia Fernandes
- Federal University of Goiás, Institute of Biological Sciences II, Goiânia 74001-970, Brazil.
| |
Collapse
|
34
|
Feng S, Limwachiranon J, Luo Z, Shi X, Ru Q. Preparation and purification of angiotensin-converting enzyme inhibitory peptides from hydrolysate of shrimp (Litopenaeus vannamei
) shell waste. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simin Feng
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Xudan Shi
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agro-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Qiaomei Ru
- Hangzhou Wanxiang Polytechnic; Hangzhou 310023 China
| |
Collapse
|
35
|
Size-exclusion HPLC as a sensitive and calibrationless method for complex peptide mixtures quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1006:71-79. [DOI: 10.1016/j.jchromb.2015.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/23/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
|
36
|
Vázquez JA, Blanco M, Fraguas J, Pastrana L, Pérez-Martín R. Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chem 2015; 198:28-35. [PMID: 26769501 DOI: 10.1016/j.foodchem.2015.10.087] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/03/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
Abstract
The goal of the present work was to optimise the different environmental friendly processes involved in the extraction and purification of chondroitin sulphate (CS) from Prionace glauca head wastes. The experimental development was based on second order rotatable designs and evaluated by response surface methodology combined with a previous kinetic approach. The sequential stages optimised were: (1) the enzymatic hydrolysis of head cartilage catalysed by alcalase (55.7 °C/pH 8.2); (2) the chemical treatment of enzyme hydrolysates by means of alkaline-hydroalcoholic saline solutions (NaOH: 0.54 M, EtOH: 1.17 v, NaCl: 2.5%) to end the protein hydrolysis and to precipitate and selectively redissolve CS versus the peptidic material and (3) the selective purification and concentration of CS and the concomitant protein permeation of extracts which were obtained from previous treatment using ultrafiltration and diafiltration (UF-DF) technologies at two different cut-offs.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), C/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain.
| | - María Blanco
- Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC), C/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain
| | - Javier Fraguas
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigacións Mariñas (IIM-CSIC), C/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain; Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC), C/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain
| | - Lorenzo Pastrana
- Laboratorio de Bioquímica, Departamento de Química Analítica y Alimentaria, Facultad de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense 32004, Galicia, Spain
| | - Ricardo Pérez-Martín
- Grupo de Bioquímica de Alimentos, Instituto de Investigacións Mariñas (IIM-CSIC), C/Eduardo Cabello, 6, Vigo 36208, Galicia, Spain
| |
Collapse
|
37
|
Osman A, Gringer N, Svendsen T, Yuan L, Hosseini SV, Baron CP, Undeland I. Quantification of biomolecules in herring ( Clupea harengus ) industry processing waters and their recovery using electroflocculation and ultrafiltration. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Blanco M, Fraguas J, Sotelo CG, Pérez-Martín RI, Vázquez JA. Production of Chondroitin Sulphate from Head, Skeleton and Fins of Scyliorhinus canicula By-Products by Combination of Enzymatic, Chemical Precipitation and Ultrafiltration Methodologies. Mar Drugs 2015; 13:3287-308. [PMID: 26023837 PMCID: PMC4483629 DOI: 10.3390/md13063287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/13/2015] [Indexed: 11/24/2022] Open
Abstract
This study illustrates the optimisation of the experimental conditions of three sequential steps for chondroitin sulphate (CS) recovery from three cartilaginous materials of Scyliorhinus canicula by-products. Optimum conditions of temperature and pH were first obtained for alcalase proteolysis of head cartilage (58 °C/pH 8.5/0.1% (v/w)/10 h of hydrolysis). Then, similar optimal conditions were observed for skeletons and fin materials. Enzymatic hydrolysates were subsequently treated with a combination of alkaline hydroalcoholic saline solutions in order to improve the protein hydrolysis and the selective precipitation of CS. Ranges of 0.53–0.64 M (NaOH) and 1.14–1.20 volumes (EtOH) were the levels for optimal chemical treatment depending on the cartilage origin. Finally, selective purification and concentration of CS and protein elimination of samples obtained from chemical treatment, was assessed by a combination of ultrafiltration and diafiltration (UF-DF) techniques at 30 kDa.
Collapse
Affiliation(s)
- María Blanco
- Marine Research Institute (IIM-CSIC), Eduardo Cabello, 6. Vigo, Galicia 36208, Spain.
| | - Javier Fraguas
- Marine Research Institute (IIM-CSIC), Eduardo Cabello, 6. Vigo, Galicia 36208, Spain.
| | - Carmen G Sotelo
- Marine Research Institute (IIM-CSIC), Eduardo Cabello, 6. Vigo, Galicia 36208, Spain.
| | | | - José Antonio Vázquez
- Marine Research Institute (IIM-CSIC), Eduardo Cabello, 6. Vigo, Galicia 36208, Spain.
| |
Collapse
|
39
|
Hamed I, Özogul F, Özogul Y, Regenstein JM. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12136] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Imen Hamed
- Biotechnology Centre; Cukurova Univ; Adana Turkey
| | - Fatih Özogul
- Dept. of Seafood Processing Technology, Faculty of Fisheries; Cukurova Univ; Adana Turkey
| | - Yesim Özogul
- Dept. of Seafood Processing Technology, Faculty of Fisheries; Cukurova Univ; Adana Turkey
| | | |
Collapse
|
40
|
|
41
|
Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chem 2015; 168:115-23. [DOI: 10.1016/j.foodchem.2014.07.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/07/2014] [Accepted: 07/06/2014] [Indexed: 12/25/2022]
|
42
|
Recovery of Astaxanthin from Shrimp Cooking Wastewater: Optimization of Astaxanthin Extraction by Response Surface Methodology and Kinetic Studies. FOOD BIOPROCESS TECH 2014. [DOI: 10.1007/s11947-014-1403-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Chen M, Liu L, Chen X. Preparative isolation and analysis of alcohol dehydrogenase inhibitors fromGlycyrrhiza uralensisroot using ultrafiltration combined with high-performance liquid chromatography and high-speed countercurrent chromatography. J Sep Sci 2014; 37:1546-51. [DOI: 10.1002/jssc.201400051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Miao Chen
- School of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Liangliang Liu
- School of Chemistry and Chemical Engineering; Central South University; Changsha China
| | - Xiaoqing Chen
- School of Chemistry and Chemical Engineering; Central South University; Changsha China
- Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization; Changsha China
| |
Collapse
|
44
|
Identification of the major ACE-inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate from cuttlefish wastewater. Mar Drugs 2014; 12:1390-405. [PMID: 24619242 PMCID: PMC3967217 DOI: 10.3390/md12031390] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 01/15/2023] Open
Abstract
The aim of this work was the purification and identification of the major angiotensin converting enzyme (ACE) inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate recovered from a cuttlefish industrial manufacturing effluent. This process consisted on the ultrafiltration of cuttlefish softening wastewater, with a 10 kDa cut-off membrane, followed by the hydrolysis with alcalase of the retained fraction. Alcalase produced ACE inhibitors reaching the highest activity (IC50 = 76.8 ± 15.2 μg mL−1) after 8 h of proteolysis. Sequential ultrafiltration of the 8 h hydrolysate with molecular weight cut-off (MWCO) membranes of 10 and 1 kDa resulted in the increased activity of each permeate, with a final IC50 value of 58.4 ± 4.6 μg mL−1. Permeate containing peptides lower than 1 kDa was separated by reversed-phase high performance liquid chromatography (RP-HPLC). Four fractions (A–D) with potent ACE inhibitory activity were isolated and their main peptides identified using high performance liquid chromatography coupled to an electrospray ion trap Fourier transform ion cyclotron resonance-mass spectrometer (HPLC-ESI-IT-FTICR) followed by comparison with databases and de novo sequencing. The amino acid sequences of the identified peptides contained at least one hydrophobic and/or a proline together with positively charged residues in at least one of the three C-terminal positions. The IC50 values of the fractions ranged from 1.92 to 8.83 μg mL−1, however this study fails to identify which of these peptides are ultimately responsible for the potent antihypertensive activity of these fractions.
Collapse
|