1
|
Mapfumo P, Reichel LS, André T, Hoeppener S, Rudolph LK, Traeger A. Optimizing Biocompatibility and Gene Delivery with DMAEA and DMAEAm: A Niacin-Derived Copolymer Approach. Biomacromolecules 2024; 25:4749-4761. [PMID: 38963401 PMCID: PMC11323007 DOI: 10.1021/acs.biomac.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Gene therapy is pivotal in nanomedicine, offering a versatile approach to disease treatment. This study aims to achieve an optimal balance between biocompatibility and efficacy, which is a common challenge in the field. A copolymer library is synthesized, incorporating niacin-derived monomers 2-acrylamidoethyl nicotinate (AAEN) or 2-(acryloyloxy)ethyl nicotinate (AEN) with N,N-(dimethylamino)ethyl acrylamide (DMAEAm) or hydrolysis-labile N,N-(dimethylamino)ethyl acrylate (DMAEA). Evaluation of the polymers' cytotoxicity profiles reveals that an increase in AAEN or DMAEA molar ratios correlates with improved biocompatibility. Remarkably, an increase in AAEN in both DMAEA and DMAEAm copolymers demonstrated enhanced transfection efficiencies of plasmid DNA in HEK293T cells. Additionally, the top-performing polymers demonstrate promising gene expression in challenging-to-transfect cells (THP-1 and Jurkat cells) and show no significant effect on modulating immune response induction in ex vivo treated murine monocytes. Overall, the best performing candidates exhibit an optimal balance between biocompatibility and efficacy, showcasing potential advancements in gene therapy.
Collapse
Affiliation(s)
- Prosper
P. Mapfumo
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
| | - Liên S. Reichel
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
| | - Thomas André
- Leibniz
Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Stephanie Hoeppener
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| | | | - Anja Traeger
- Institute
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, Jena 07743, Germany
- Jena
Center for Soft Matter (JCSM), Friedrich
Schiller University Jena, Philosophenweg 7, Jena 07743, Germany
| |
Collapse
|
2
|
Shokouhi AR, Chen Y, Yoh HZ, Murayama T, Suu K, Morikawa Y, Brenker J, Alan T, Voelcker NH, Elnathan R. Electroactive nanoinjection platform for intracellular delivery and gene silencing. J Nanobiotechnology 2023; 21:273. [PMID: 37592297 PMCID: PMC10433684 DOI: 10.1186/s12951-023-02056-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Nanoinjection-the process of intracellular delivery using vertically configured nanostructures-is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell's intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. RESULTS Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells' viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. CONCLUSIONS We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing.
Collapse
Affiliation(s)
- Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Jason Brenker
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Melbourne, VIC, 3216, Australia.
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Melbourne, VIC, 3216, Australia.
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC, 3216, Australia.
| |
Collapse
|
3
|
Bae SJ, Im DJ. Safe and efficient RNA and DNA introduction into cells using digital electroporation system. Bioelectrochemistry 2022; 148:108268. [PMID: 36155386 DOI: 10.1016/j.bioelechem.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
We systematically compared the delivery and expression efficiencies according to cell types (plant and animal cells) and genetic materials (RNA and DNA) to deliver RNA using a digital electroporation system. Despite the significantly lower RNA delivery in Chlamydomoans reinhartii than DNA delivery due to RNA secondary structure and cell wall, the expression/delivery ratio of RNA was significantly higher than that of DNA (up to 90%), confirming the generally known fact that RNA is more favorable for expression than DNA. On the other hand, in K562 cells, the difference in RNA and DNA delivery efficiency was negligible. Therefore, structural differences between DNA and RNA affect delivery efficiency differently depending on the cell type. RNA delivery efficiency of K562 cells was high, but expression efficiency was much lower than that of microalgae. According to the proposed strategy, compatibility between K562 cells and the nucleic acids used in this study is presumed to be one of the reasons for this low expression efficiency. Gene regulation by delivering small interfering RNA (siRNA) was demonstrated in K562 cells, confirming the feasibility of the digital electroporation system for RNA interference (RNAi) research as a safe and efficient delivery system.
Collapse
Affiliation(s)
- Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, (48513) 45, Yongso-ro, Nam-Gu, Busan, South Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, (48513) 45, Yongso-ro, Nam-Gu, Busan, South Korea.
| |
Collapse
|
4
|
Chen Y, Yoh HZ, Shokouhi AR, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Role of actin cytoskeleton in cargo delivery mediated by vertically aligned silicon nanotubes. J Nanobiotechnology 2022; 20:406. [PMID: 36076230 PMCID: PMC9461134 DOI: 10.1186/s12951-022-01618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Nanofabrication technologies have been recently applied to the development of engineered nano–bio interfaces for manipulating complex cellular processes. In particular, vertically configurated nanostructures such as nanoneedles (NNs) have been adopted for a variety of biological applications such as mechanotransduction, biosensing, and intracellular delivery. Despite their success in delivering a diverse range of biomolecules into cells, the mechanisms for NN-mediated cargo transport remain to be elucidated. Recent studies have suggested that cytoskeletal elements are involved in generating a tight and functional cell–NN interface that can influence cargo delivery. In this study, by inhibiting actin dynamics using two drugs—cytochalasin D (Cyto D) and jasplakinolide (Jas), we demonstrate that the actin cytoskeleton plays an important role in mRNA delivery mediated by silicon nanotubes (SiNTs). Specifically, actin inhibition 12 h before SiNT-cellular interfacing (pre-interface treatment) significantly dampens mRNA delivery (with efficiencies dropping to 17.2% for Cyto D and 33.1% for Jas) into mouse fibroblast GPE86 cells, compared to that of untreated controls (86.9%). However, actin inhibition initiated 2 h after the establishment of GPE86 cell–SiNT interface (post-interface treatment), has negligible impact on mRNA transfection, maintaining > 80% efficiency for both Cyto D and Jas treatment groups. The results contribute to understanding potential mechanisms involved in NN-mediated intracellular delivery, providing insights into strategic design of cell–nano interfacing under temporal control for improved effectiveness.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
| | - Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia. .,Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia. .,INM-Leibnitz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia. .,Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Geelong, VIC, 3216, Australia.
| |
Collapse
|
5
|
Kurita H, Nihonyanagi H, Watanabe Y, Sugano K, Shinozaki R, Kishikawa K, Numano R, Takashima K. Mechanistic studies of gene delivery into mammalian cells by electrical short-circuiting via an aqueous droplet in dielectric oil. PLoS One 2020; 15:e0243361. [PMID: 33275626 PMCID: PMC7717561 DOI: 10.1371/journal.pone.0243361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
We have developed a novel methodology for the delivery of cell-impermeable molecules, based on electrical short-circuiting via a water droplet in dielectric oil. When a cell suspension droplet is placed between a pair of electrodes with an intense DC electric field, droplet bouncing and droplet deformation, which results in an instantaneous short-circuit, can be induced, depending on the electric field strength. We have demonstrated successful transfection of various mammalian cells using the short-circuiting; however, the molecular mechanism remains to be elucidated. In this study, flow cytometric assays were performed with Jurkat cells. An aqueous droplet containing Jurkat cells and plasmids carrying fluorescent proteins was treated with droplet bouncing or short-circuiting. The short-circuiting resulted in sufficient cell viability and fluorescent protein expression after 24 hours’ incubation. In contrast, droplet bouncing did not result in successful gene transfection. Transient membrane pore formation was investigated by uptake of a cell-impermeable fluorescence dye YO-PRO-1 and the influx of calcium ions. As a result, short-circuiting increased YO-PRO-1 fluorescence intensity and intracellular calcium ion concentration, but droplet bouncing did not. We also investigated the contribution of endocytosis to the transfection. The pre-treatment of cells with endocytosis inhibitors decreased the efficiency of gene transfection in a concentration-dependent manner. Besides, the use of pH-sensitive dye conjugates indicated the formation of an acidic environment in the endosomes after the short-circuiting. Endocytosis is a possible mechanism for the intracellular delivery of exogenous DNA.
Collapse
Affiliation(s)
- Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- * E-mail:
| | - Hirohito Nihonyanagi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuki Watanabe
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kenta Sugano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Ryuto Shinozaki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kenta Kishikawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rika Numano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kazunori Takashima
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
6
|
Yang SH, Im DJ. Effect of Deformation on Droplet Contact Charge Electrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10379-10386. [PMID: 32787128 DOI: 10.1021/acs.langmuir.0c01465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of deformation on the droplet contact charge electrophoresis (CCEP) was investigated for consistent droplet movement control. Through systematic experiments and numerical simulations, it has been found that overcharging by deformation is up to about 130% of the sphere and is mainly driven by the concentration of the electric field near the tip of the droplet rather than an increase in the surface area. Dimensional analysis revealed a consistent droplet CCEP motion with the electric capillary number range of 0.01-0.09. We also found that the dimensionless droplet charge follows a universal curve proportional to the electric capillary number, regardless of the droplet size, and the weak dependence on the droplet size shown in the experimental results is due to hydrodynamic effects, not electrostatic ones. Changes in droplet velocity distribution with droplet size and the electric capillary number were also investigated. Using the perfect conductor theory and Stokes law, we derived an analytical relationship between the droplet center velocity and the electric capillary number and analyzed the experimental results based on this relationship. This study implies that if proper hydrodynamic correction is applied, the droplet CCEP and its deformation effect can be explained by a perfect conductor theory.
Collapse
Affiliation(s)
- Seok Hwan Yang
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, South Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513, South Korea
| |
Collapse
|
7
|
Kumari M, Liu CH, Wu WC. Oligochitosan modified albumin as plasmid DNA delivery vector: Endocytic trafficking, polyplex fate, in vivo compatibility. Int J Biol Macromol 2020; 142:492-502. [DOI: 10.1016/j.ijbiomac.2019.09.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
|
8
|
Tay A, Melosh N. Transfection with Nanostructure Electro‐Injection is Minimally Perturbative. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andy Tay
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Nicholas Melosh
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| |
Collapse
|
9
|
Hadi A, Rastgoo A, Haghighipour N, Bolhassani A, Asgari F, Soleymani S. Enhanced gene delivery in tumor cells using chemical carriers and mechanical loadings. PLoS One 2018; 13:e0209199. [PMID: 30592721 PMCID: PMC6310266 DOI: 10.1371/journal.pone.0209199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 11/18/2022] Open
Abstract
Intracellular delivery of DNA is considered a challenge in biological research and treatment of diseases. The previously reported transfection rate by commercially available transfection reagents in cancer cell lines, such as the mouse lung tumor cell line (TC-1), is very low. The purpose of this study is to introduce and optimize an efficient gene transfection method by mechanical approaches. The combinatory transfection effect of mechanical treatments and conventional chemical carriers is also investigated on a formerly reported hard-to-transfect cell line (TC-1). To study the effect of mechanical loadings on transfection rate, TC-1 tumor cells are subjected to uniaxial cyclic stretch, equiaxial cyclic stretch, and shear stress. The TurboFect transfection reagent is exerted for chemical transfection purposes. The pEGFP-N1 vector encoding the green fluorescent protein (GFP) expression is utilized to determine gene delivery into the cells. The results show a significant DNA delivery rate (by ~30%) in mechanically transfected cells compared to the samples that were transfected with chemical carriers. Moreover, the simultaneous treatment of TC-1 tumor cells with chemical carriers and mechanical loadings significantly increases the gene transfection rate up to ~ 63% after 24 h post-transfection. Our results suggest that the simultaneous use of mechanical loading and chemical reagent can be a promising approach in delivering cargoes into cells with low transfection potentials and lead to efficient cancer treatments.
Collapse
Affiliation(s)
- Amin Hadi
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Abbas Rastgoo
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Asgari
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Sepehr Soleymani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Kim YH, Kwon SG, Bae SJ, Park SJ, Im DJ. Optimization of the droplet electroporation method for wild type Chlamydomonas reinhardtii transformation. Bioelectrochemistry 2018; 126:29-37. [PMID: 30472569 DOI: 10.1016/j.bioelechem.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
We performed the transformation of a wild type Chlamydomonas reinhardtii by optimizing previously developed droplet EP method. For more effective and faster optimization, we used DNA dying fluorescent molecule (Yo-Pro-1) for finding optimal EP conditions instead of using protein expression based evaluation method. By examining wider range of electrical parameter space together with the analysis of total current flow of EP process, we found optimal EP conditions. The obtained optimal EP conditions were verified by CFP transgene expression experiments. By applying the optimal EP conditions to the transformation of C. reinhardtii, we obtained transformants and analyzed them using PCR. Finally, implications and future work are discussed.
Collapse
Affiliation(s)
- Yeong Hun Kim
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-Ro, Nam-Gu, Busan 48547, South Korea
| | - Sang Gu Kwon
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-Ro, Nam-Gu, Busan 48547, South Korea
| | - Seo Jun Bae
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-Ro, Nam-Gu, Busan 48547, South Korea
| | - Sung Jin Park
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-Ro, Nam-Gu, Busan 48547, South Korea
| | - Do Jin Im
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-Ro, Nam-Gu, Busan 48547, South Korea.
| |
Collapse
|
11
|
Kim YH, Im DJ. Control of the culture conditions of Chlamydomonas reinhardtii for efficient delivery of exogenous materials in electroporation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK. Droplet microfluidics for synthetic biology. LAB ON A CHIP 2017; 17:3388-3400. [PMID: 28820204 DOI: 10.1039/c7lc00576h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.
Collapse
Affiliation(s)
- Philip C Gach
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, California 94608, USA
| | | | | | | | | |
Collapse
|