1
|
Xie R, Lee YY, Xie P, Tan CP, Wang Y, Zhang Z. Immobilization of Lipase from Thermomyces Lanuginosus and Its Glycerolysis Ability in Diacylglycerol Preparation. Molecules 2024; 29:4141. [PMID: 39274989 PMCID: PMC11397512 DOI: 10.3390/molecules29174141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
In the glycerolysis process for diacylglycerol (DAG) preparation, free lipases suffer from poor stability and the inability to be reused. To address this, a cost-effective immobilized lipase preparation was developed by cross-linking macroporous resin with poly (ethylene glycol) diglycidyl ether (PEGDGE) followed by lipase adsorption. The selected immobilization conditions were identified as pH 7.0, 35 °C, cross-linking agent concentration 2.0%, cross-linking time 4 h, lipase amount 5 mg/g of support, and adsorption time 4 h. Enzymatic properties of the immobilized lipase were analyzed, revealing enhanced pH stability, thermal stability, storage stability, and operational stability post-immobilization. The conditions for immobilized enzyme-catalyzed glycerolysis to produce DAG were selected, demonstrating the broad applicability of the immobilized lipase. The immobilized lipase catalyzed glycerolysis reactions using various oils as substrates, with DAG content in the products ranging between 35 and 45%, demonstrating broad applicability. Additionally, the changes during the repeated use of the immobilized lipase were characterized, showing that mechanical damage, lipase leakage, and alterations in the secondary structure of the lipase protein contributed to the decline in catalytic activity over time. These findings provide valuable insights for the industrial application of lipase.
Collapse
Affiliation(s)
- Rui Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Pengkai Xie
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Zhong H, Jin J, Zhou Q, Zhang Y, Zheng M. Construction of a Pickering interfacial biocatalysis system in skim milk and enzymatic transesterification for enhancement of flavor and quality. J Dairy Sci 2024:S0022-0302(24)00974-3. [PMID: 38945261 DOI: 10.3168/jds.2024-25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
Despite considerable research efforts, lipase catalysis in a fluid milk system with aqueous multi-component mixtures containing multiple microphases, remains challenging. Pickering interfacial biocatalysis (PIB) platforms are typically fabricated with organic solvents/lipids and water. Whether a PIB with excellent catalytic performance can be constructed in complex milk mixtures remains unknown. Here, we challenged PIB with skim milk, and a small amount of flaxseed oil, and phytosterols as a model system for transesterification and lipolysis to enhance quality and flavor. The amino-modified mesoporous silica spheres (MSS-N) were employed as an emulsifier and carrier of lipase AYS (AYS@MSS-N). The conversion of phytosterol esters reached 75.5% at 1.5 h and prepared phytosterol ester-fortified milk with a content of 1.0 g/100 mL. The relative conversion rate remained above 70% after 6 cycles. In addition, the fortified milk showed an intensified and favorable effect on sensory traits through volatile flavor composition analysis. The findings provide a versatile alternative for PIB applications in complex environments, i.e., milk, which might inspire a new bioprocess strategy for dairy products.
Collapse
Affiliation(s)
- Huaying Zhong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Jing Jin
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Qi Zhou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yufei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
3
|
Ding W, Liu C, Huang C, Zhang X, Chi X, Wang T, Guo Q, Wang C. The Formation of D-Allulose 3-Epimerase Hybrid Nanoflowers and Co-Immobilization on Resins for Improved Enzyme Activity, Stability, and Processability. Int J Mol Sci 2024; 25:6361. [PMID: 38928068 PMCID: PMC11203923 DOI: 10.3390/ijms25126361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As a low-calorie sugar, D-allulose is produced from D-fructose catalyzed by D-allulose 3-epimerase (DAE). Here, to improve the catalytic activity, stability, and processability of DAE, we reported a novel method by forming organic-inorganic hybrid nanoflowers (NF-DAEs) and co-immobilizing them on resins to form composites (Re-NF-DAEs). NF-DAEs were prepared by combining DAE with metal ions (Co2+, Cu2+, Zn2+, Ca2+, Ni2+, Fe2+, and Fe3+) in PBS buffer, and were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. All of the NF-DAEs showed higher catalytic activities than free DAE, and the NF-DAE with Ni2+ (NF-DAE-Ni) reached the highest relative activity of 218%. The NF-DAEs improved the thermal stability of DAE, and the longest half-life reached 228 min for NF-DAE-Co compared with 105 min for the free DAE at 55 °C. To further improve the recycling performance of the NF-DAEs in practical applications, we combined resins and NF-DAEs to form Re-NF-DAEs. Resins and NF-DAEs co-effected the performance of the composites, and ReA (LXTE-606 neutral hydrophobic epoxy-based polypropylene macroreticular resins)-based composites (ReA-NF-DAEs) exhibited outstanding relative activities, thermal stabilities, storage stabilities, and processabilities. The ReA-NF-DAEs were able to be reused to catalyze the conversion from D-fructose to D-allulose, and kept more than 60% of their activities after eight cycles.
Collapse
Affiliation(s)
- Wentao Ding
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chensa Liu
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Chi Huang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Xin Zhang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Xinyi Chi
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Tong Wang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
| | - Qingbin Guo
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changlu Wang
- School of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (W.D.); (C.L.); (C.H.); (X.Z.); (X.C.); (T.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Ming J, Sun Y, Chen Y, Wang Q, Li J. Novel Lipase Reactor based on Discontinuous Interfaces in Hydrogel-Organogel Hybrid Gel: A Preliminary Exploration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2113-2123. [PMID: 36688519 DOI: 10.1021/acs.jafc.2c07472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
According to the "interfacial activation" mechanism, constructing a sufficient interface is the key strategy for lipase-catalytic system designing. Based on the "infinite interface in finite three-dimensional space" logic, in the current study, poly(N,N-dimethylacrylamide) (PDMA)-polybutyl methacrylate (PBMA) hybrid gels were prepared by a two-step crosslinking strategy, subsequently constructed as lipase-interfacial catalytic systems. The results confirm that the PDMA-PBMA hybrid gels with "networks in pores" structures could swell both the aqueous phase and organic phase. The balance between water swelling and isooctane swelling, hybrid gel space (height control), and the lipase entry manner significantly affect the interface construction and consequently the catalytic efficiency. The enzyme-substrate contact rate affected by swelling leads to three catalytic stages. Considering the spatial barrier and distribution of lipases, a potential high-performance lipase reactor can be assembled from small-size, lamellar-like, and porous hybrid gels. The reactors also show good time storage and low temperature tolerance.
Collapse
Affiliation(s)
- Jian Ming
- College of Food Science, Southwest University, Chongqing400715, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing400715, People's Republic of China
| | - Yueru Sun
- College of Food Science, Southwest University, Chongqing400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing400715, People's Republic of China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing400715, People's Republic of China
| | - Jinlong Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing100048, People's Republic of China
| |
Collapse
|
5
|
Saratale RG, Cho SK, Bharagava RN, Patel AK, Varjani S, Mulla SI, Kim DS, Bhatia SK, Ferreira LFR, Shin HS, Saratale GD. A critical review on biomass-based sustainable biorefineries using nanobiocatalysts: Opportunities, challenges, and future perspectives. BIORESOURCE TECHNOLOGY 2022; 363:127926. [PMID: 36100182 DOI: 10.1016/j.biortech.2022.127926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Biocatalysts, including live microbial cells/enzymes, have been considered a predominant and advantageous tool for effectively transforming biomass into biofuels and valued biochemicals. However, high production costs, separation, and reusability limit its practical application. Immobilization of single and multi-enzymes by employing different nano-supports have gained massive attention because of its elevated exterior domain and high enzymatic performance. Application of nanobiocatalyst can overcome the drawbacks mainly, stability and reusability, thus reflecting the importance of biomass-based biorefinery to make it profitable and sustainable. This review provides an in-depth, comprehensive analysis of nanobiocatalysts systems concerning nano supports and biocatalytic performance characteristics. Furthermore, the effects of nanobiocatalyst on waste biomass to biofuel and valued bioproducts in the biorefinery approach and their critical assessment are discussed. Lastly, this review elaborates commercialization and market outlooks of the bioconversion process using nanobiocatalyst, followed by different strategies to overcome the limitations and future research directions on nanobiocatalytic-based industrial bioprocesses.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560 064, India
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE, Brazil
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| |
Collapse
|
6
|
Ma X, Chen Z, Han J, Zhou Y, Lin F, Li C, Wang L, Wang Y. Fabrication of immobilized bromelain using cobalt phosphate material prepared in deep eutectic solvent as carrier. Colloids Surf B Biointerfaces 2021; 210:112251. [PMID: 34894600 DOI: 10.1016/j.colsurfb.2021.112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
The aim of the present work is to fabricate immobilized bromelain based on the specific interaction between the cobalt ions of carrier and the inherent cysteines contained in bromelain molecules. The cobalt phosphate material was prepared as solid support by using choline chloride (ChCl)/betaine-glycerol deep eutectic solvent (DES) as solvent and template for the first time. The Co-P material with lamellate-based structure obtained in the ChCl-glycerol DES at the Co/P ratio of 3:2 showed the best performance for the immobilization of bromelain. The specific interaction between Co2+ and bromelain promoted the aggregation of lamellar Co-P, forming flower-like Co-P@bromelain particles. Under the optimum immobilization conditions, the specific enzyme activity of the immobilized enzyme reached the maximum of 71244 U/g. Compared with Co3(PO4)2 prepared in water system, the obtained Co-P@bromelain using the Co-P material synthesized in the ChCl-glycerol DES as carrier exhibited excellent structure stability. In addition, the immobilized Co-P@bromelain also showed higher catalytic efficiency than free bromelain.
Collapse
Affiliation(s)
- Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Zhili Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
7
|
Salvi HM, Yadav GD. Organic-inorganic epoxide hydrolase hybrid nanoflowers with enhanced catalytic activity: Hydrolysis of styrene oxide to 1-phenyl-1,2-ethanediol. J Biotechnol 2021; 341:113-120. [PMID: 34536457 DOI: 10.1016/j.jbiotec.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023]
Abstract
Epoxide hydrolases are ubiquitous in nature and are utilized to catalyze the cofactor-independent hydrolysis of epoxides to their corresponding diols. These enzymes have tremendous potential and have been applied in the synthesis of bulk and fine chemical industry and utilized as chiral building blocks. Herein, we report a green, facile, and economical method for immobilization of epoxide hydrolase based on biomimetic mineralization. The organic-inorganic hybrid nanoflowers have received tremendous attention due to their higher catalytic activity and stability. The nanoflowers were synthesized, with the organic component being enzyme epoxide hydrolase and the inorganic component being Ca2+ ions. A unique hierarchical flower-like spherical structure with hundreds of spiked petals was observed. The synthesized nanoflowers were applied for styrene oxide hydrolysis, producing 1-phenyl-1,2-ethanediol. Further, the factors influencing the morphology, catalytic activity, and stability studies were performed to study the activity recovery of the synthesized organic-inorganic hybrid epoxide hydrolase nanoflowers. The findings will have interesting applications.
Collapse
Affiliation(s)
- Harshada M Salvi
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India.
| | - Ganapati D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India.
| |
Collapse
|
8
|
Abstract
The market for industrial enzymes has witnessed constant growth, which is currently around 7% a year, projected to reach $10.5 billion in 2024. Lipases are hydrolase enzymes naturally responsible for triglyceride hydrolysis. They are the most expansively used industrial biocatalysts, with wide application in a broad range of industries. However, these biocatalytic processes are usually limited by the low stability of the enzyme, the half-life time, and the processes required to solve these problems are complex and lack application feasibility at the industrial scale. Emerging technologies create new materials for enzyme carriers and sophisticate the well-known immobilization principles to produce more robust, eco-friendlier, and cheaper biocatalysts. Therefore, this review discusses the trending studies and industrial applications of the materials and protocols for lipase immobilization, analyzing their advantages and disadvantages. Finally, it summarizes the current challenges and potential alternatives for lipases at the industrial level.
Collapse
|
9
|
Badoei-Dalfard A, Tahami A, Karami Z. Lipase immobilization on glutaraldehyde activated graphene oxide/chitosan/cellulose acetate electrospun nanofibrous membranes and its application on the synthesis of benzyl acetate. Colloids Surf B Biointerfaces 2021; 209:112151. [PMID: 34687974 DOI: 10.1016/j.colsurfb.2021.112151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
In this research, lipase Km12 was immobilized on the glutaraldehyde-activated graphene oxide/chitosan/cellulose acetate nanofibers (GO/Chit/CA NFs) prepared by the electrospinning method. This immobilized lipase exhibited a higher activity value than the free lipase in the acidic pH region. This enzyme showed a 10 °C shift in the maximum temperature activity. Results displayed that the Vmax value of NFs-lipase was 0.64 µmol/min, while it was gained 0.405 µmol/min for the free lipase. The activity of NFs-lipase was reserved 100% after 10 min maintaining at 60 °C, in which the free lipase only kept 75% of its original activity. Moreover, a 20% enhancement in the lipase activity was observed for NFs-lipase after 180 min of incubation at 60 °C, compared to the free enzyme. Reusability studies exhibited that the immobilized lipase well-kept 80% of its original activity after 10 cycles of reusing. Results displayed that 14% of the protein was leaked from NFs-lipase at the same condition. Transesterification results indicated that the free lipase exhibited 65% and 85% conversation level of benzyl acetate after 12 and 24 h of incubation. Besides, the immobilized lipase showed 80% and 95% conversation level at the same condition. These results indicated the high performance of free and immobilized lipase in the production of benzyl acetate for applications in the perfume and cosmetic industries.
Collapse
Affiliation(s)
- Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Arefeh Tahami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Karami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
10
|
Mohammadi-Mahani H, Badoei-dalfard A, Karami Z. Synthesis and characterization of cross-linked lipase-metal hybrid nanoflowers on graphene oxide with increasing the enzymatic stability and reusability. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Highly enhanced activity and stability via affinity induced immobilization β-glucosidase from Aspergillus niger onto amino-based silica for the biotransformation of ginsenoside Rb1. J Chromatogr A 2021; 1653:462388. [PMID: 34280789 DOI: 10.1016/j.chroma.2021.462388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023]
Abstract
In this study, an enzyme immobilization method for the effective biotransformation of ginsenoside Rb1 to impart activity and stability was developed. Using a hydrolase enzyme model, β-glucosidase from Aspergillus niger, immobilization within chemically affinity-linked amino-based silica provided an immobilization efficiency 5.86-fold higher than that of free enzyme. Compared with the free enzyme, the immobilized enzyme functioned optimally at a wider pH range and had higher thermostability. The optimum pH for the free and immobilized enzymes was 5.5. The optimal reaction temperature of the immobilized enzyme was 45 °C, which was 5 °C higher than that of the free enzyme. The Michaelis constant (Km) values before and after immobilization were 0.482 mmol•L-1 and 0.387 mmol•L-1, respectively. The catalytic rate (Kcat) for the immobilized and free enzymes was 22.269 mmol•L-1and 8.800 mmol•L-1, respectively, and the catalytic efficiency (Kcat/Km) activity of the immobilized enzyme was 3.30-fold higher than that of the free enzyme. The immobilized enzyme could preserve 97 % of the activity after 45 cycles of repeated use. The high catalytic activity and significant operational stability are beneficial for industrial applications.
Collapse
|
12
|
Arana-Peña S, Rios NS, Carballares D, Gonçalves LR, Fernandez-Lafuente R. Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. J Biotechnol 2020; 323:189-202. [PMID: 32861701 DOI: 10.1016/j.jbiotec.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
In this study, the factors affecting lipase adsorption onto SiO2 nanoparticles including SiO2 nanoparticles amounts (8, 19 and 30 mg/mL), lipase concentrations (30, 90 and 150 μg/mL), adsorption temperatures (5, 20 and 35 °C) and adsorption times (1, 12.5 and 24 h) were optimized using central composite design. The optimal conditions were determined as a SiO2 nanoparticles amount of 8.5-14 mg/ml, a lipase concentration of 106-116 μg/mL, an adsorption temperature of 20 °C and an adsorption time of 12.5 h, which resulted in a specific activity and immobilization efficiency of 20,000 (U/g protein) and 60 %, respectively. The lipase adsorbed under optimal conditions (SiO2-lipase) was entrapped in a PVA/Alg hydrogel, successfully. FESEM and FTIR confirmed the two-step method of lipase immobilization. The entrapped SiO2-lipase retained 76.5 % of its initial activity after 30 days of storage at 4 °C while adsorbed and free lipase retained only 43.4 % and 13.7 %, respectively. SiO2-lipase activity decreased to 34.43 % after 10 cycles of use, while the entrapped SiO2-lipase retained about 64.59 % of its initial activity. Compared to free lipase, the Km values increased and decreased for SiO2-lipase and entrapped SiO2-lipase, respectively. Vmax value increased for both SiO2-lipase and entrapped SiO2-lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
14
|
Zhang J, Dai Y, Jiang B, Zhang T, Chen J. Dual-enzyme co-immobilization for the one-pot production of glucose 6-phosphate from maltodextrin. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Li Y, Wu H, Su Z. Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Zhou XJ, Zhu CT, Hu Y, You S, Wu FA, Wang J. A novel microfluidic aqueous two-phase system with immobilized enzyme enhances cyanidin-3-O-glucoside content in red pigments from mulberry fruits. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Abstract
Over the past two decades, phenol oxidases, particularly laccases and tyrosinases, have been extensively used for the removal of numerous pollutants in wastewaters due to their broad substrate specificity and their ability to use readily accessible molecular oxygen as the essential cofactor. As for other enzymes, immobilisation of laccases and tyrosinases has been shown to improve the performance and efficiency of the biocatalysts in solution. Several reviews have addressed the enzyme immobilisation techniques and the application of phenol oxidases to decontaminate wastewaters. This paper offers an overview of the recent publications, mainly from 2012 onwards, on the various immobilisation techniques applied to laccases and tyrosinases to induce and/or increase the performance of the biocatalysts. In this paper, the emphasis is on the efficiencies achieved, in terms of structural modifications, stability and resistance to extreme conditions (pH, temperature, inhibitors, etc.), reactivity, reusability, and broad substrate specificity, particularly for application in bioremediation processes. The advantages and disadvantages of several enzyme immobilisation techniques are also discussed. The relevance and effectiveness of the immobilisation techniques with respect to wastewater decontamination are critically assessed. A perspective on the future directions for large-scale application of the phenol oxidases in immobilised forms is provided.
Collapse
|
18
|
Nematian T, Shakeri A, Salehi Z, Saboury AA. Lipase immobilized on functionalized superparamagnetic few-layer graphene oxide as an efficient nanobiocatalyst for biodiesel production from Chlorella vulgaris bio-oil. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:57. [PMID: 32206090 PMCID: PMC7082915 DOI: 10.1186/s13068-020-01688-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/25/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Microalgae, due to its well-recognized advantages have gained renewed interest as potentially good feedstock for biodiesel. Production of fatty acid methyl esters (FAMEs) as a type of biodiesel was carried out from Chlorella vulgaris bio-oil. Biodiesel was produced in the presence of nano-biocatalysts composed of immobilized lipase on functionalized superparamagnetic few-layer graphene oxide via a transesterification reaction. A hybrid of few-layer graphene oxide and Fe3O4 (MGO) was prepared and characterized. The MGO was functionalized with 3-aminopropyl triethoxysilane (MGO-AP) as well as with a couple of AP and glutaraldehyde (MGO-AP-GA). The Rhizopus oryzae lipase (ROL) was immobilized on MGO and MGO-AP using electrostatic interactions as well as on MGO-AP-GA using covalent bonding. The supports, MGO, MGO-AP, and MGO-AP-GA, as well as nano-biocatalyst, ROL/MGO, ROL/MGO-AP, and ROL/MGO-AP-GA, were characterized using FESEM, VSM, FTIR, and XRD. The few-layer graphene oxide was characterized using AFM and the surface charge of supports was evaluated with the zeta potential technique. The nano-biocatalysts assay was performed with an evaluation of kinetic parameters, loading capacity, relative activity, time-course thermal stability, and storage stability. Biodiesel production was carried out in the presence of nano-biocatalysts and their reusability was evaluated in 5 cycles of transesterification reaction. RESULTS The AFM analysis confirmed the few-layer structure of graphene oxide and VSM also confirmed that all supports were superparamagnetic. The maximum loading of ROL (70.2%) was related to MGO-AP-GA. The highest biodiesel conversion of 71.19% achieved in the presence of ROL/MGO-AP-GA. Furthermore, this nano-biocatalyst could maintain 58.77% of its catalytic performance after 5 cycles of the transesterification reaction and was the best catalyst in the case of reusability. CONCLUSIONS In this study, the synthesized nano-biocatalyst based on bare and functionalized magnetic graphene oxide was applied and optimized in the process of converting microalgae bio-oil to biodiesel for the first time and compared with bare lipase immobilized on magnetic nanoparticles. Results showed that the loading capacity, kinetic parameters, thermal stability, and storage stability improved by the functionalization of MGO. The biocatalysts, which were prepared via covalent bonding immobilization of enzyme generally, showed better characteristics.
Collapse
Affiliation(s)
- Tahereh Nematian
- Department of Applied Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Shakeri
- Department of Applied Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Zeinab Salehi
- Department of Biotechnology Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Wang J, Yu S, Feng F, Lu L. Simultaneous purification and immobilization of laccase on magnetic zeolitic imidazolate frameworks: Recyclable biocatalysts with enhanced stability for dye decolorization. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107285] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Hu Y, Sun Y. Autonomous motion of immobilized enzyme on Janus particles significantly facilitates enzymatic reactions. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Chatzikonstantinou AV, Gkantzou E, Thomou E, Chalmpes N, Lyra KM, Kontogianni VG, Spyrou K, Patila M, Gournis D, Stamatis H. Enzymatic Conversion of Oleuropein to Hydroxytyrosol Using Immobilized β-Glucosidase on Porous Carbon Cuboids. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1166. [PMID: 31416273 PMCID: PMC6724098 DOI: 10.3390/nano9081166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
Abstract
In the present study, we developed novel β-glucosidase-based nano-biocatalysts for the bioconversion of oleuropein to hydroxytyrosol. Using non-covalent or covalent immobilization approaches, β-glucosidases from almonds and Thermotoga maritima were attached for the first time on oxidized and non-oxidized porous carbon cuboids (PCC). Various methods were used for the characterization of the bio-nanoconjugates, such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and fluorescence spectroscopy. The oxidation state of the nanο-support and the immobilization procedure play a key role for the immobilization efficiency or the catalytic activity of the immobilized β-glucosidases. The nano-biocatalysts were successfully used for the hydrolysis of oleuropein, which leads to the formation of its bioactive derivative, hydroxytyrosol (up to 2.4 g L-1), which is a phenolic compound with numerous health benefits. The bio-nanoconjugates exhibited high thermal and operational stability (up to 240 hours of repeated use), which indicated that they are efficient tools for various bio-transformations.
Collapse
Affiliation(s)
- Alexandra V Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Elena Gkantzou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni Thomou
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Kyriaki-Marina Lyra
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki G Kontogianni
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece.
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
22
|
Wan D, Yan C, Zhang Q. Facile and Rapid Synthesis of Hollow Magnetic Mesoporous Polydopamine Nanoflowers with Tunable Pore Structures for Lipase Immobilization: Green Production of Biodiesel. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dewei Wan
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Xi’an 710072, China
| | - Chaoren Yan
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Xi’an 710072, China
| | - Qiuyu Zhang
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Xi’an 710072, China
| |
Collapse
|
23
|
Yang RL, Zhao XJ, Wu TT, Bilal M, Wang ZY, Luo HZ, Yang WJ. A novel and highly regioselective biocatalytic approach to acetylation of helicid by using whole-cell biocatalysts in organic solvents. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Chemical, physical, and biological coordination: An interplay between materials and enzymes as potential platforms for immobilization. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Shen JW, Qi JM, Zhang XJ, Liu ZQ, Zheng YG. Efficient Resolution of cis-(±)-Dimethyl 1-Acetylpiperidine-2,3-dicarboxylate by Covalently Immobilized Mutant Candida antarctica Lipase B in Batch and Semicontinuous Modes. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jiang-Wei Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jia-Mei Qi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|