1
|
Zhou Z“Z, Si Y, Zhang J, Chen K, George A, Kim S, Zhou L, Liu X“M. A Dual-Payload Antibody-Drug Conjugate Targeting CD276/B7-H3 Elicits Cytotoxicity and Immune Activation in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3848-3863. [PMID: 39186778 PMCID: PMC11565169 DOI: 10.1158/0008-5472.can-23-4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and heterogeneous disease that often relapses following treatment with standard radiotherapies and cytotoxic chemotherapies. Combination therapies have potential for treating refractory metastatic TNBC. In this study, we aimed to develop an antibody-drug conjugate with dual payloads (DualADC) as a chemoimmunotherapy for TNBC. The overexpression of an immune checkpoint transmembrane CD276 (also known as B7-H3) was associated with angiogenesis, metastasis, and immune tolerance in more than 60% of patients with TNBC. Development of a mAb capable of targeting the extracellular domain of surface CD276 enabled delivery of payloads to tumors, and a platform was established for concurrent conjugation of a traditional cytotoxic payload and an immunoregulating Toll-like receptor 7/8 agonist to the CD276 mAb. The DualADC effectively killed multiple TNBC subtypes, significantly enhanced immune functions in the tumor microenvironment, and reduced tumor burden by up to 90% to 100% in animal studies. Single-cell RNA sequencing, multiplex cytokine analysis, and histology elucidated the impact of treatment on tumor cells and the immune landscape. This study suggests that the developed DualADC could represent a promising targeted chemoimmunotherapy for TNBC. Significance: An anti-CD276 monoclonal antibody conjugated with both a cytotoxic drug and an immune boosting reagent effectively targets triple-negative breast cancer by inducing tumor cell death and stimulating immune cell infiltration.
Collapse
Affiliation(s)
- Zhuoxin “Zora” Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Ashley George
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Zhang J, Zhou Z(Z, Chen K, Kim S, Cho IS, Varadkar T, Baker H, Cho JH, Zhou L, Liu X(M. A CD276-Targeted Antibody-Drug Conjugate to Treat Non-Small Lung Cancer (NSCLC). Cells 2023; 12:2393. [PMID: 37830607 PMCID: PMC10572050 DOI: 10.3390/cells12192393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) patients, accounting for approximately 85% of lung cancer cases, are usually diagnosed in advanced stages. Traditional surgical resection and radiotherapy have very limited clinical benefits. The objective of this study was to develop and evaluate a targeted therapy, antibody-drug conjugate (ADC), for NSCLC treatment. Specifically, the CD276 receptor was evaluated and confirmed as an ideal surface target of NSCLC in the immunohistochemistry (IHC) staining of seventy-three patient tumor microarrays and western blotting analysis of eight cell lines. Our anti-CD276 monoclonal antibody (mAb) with cross-activity to both human and mouse receptors showed high surface binding, effective drug delivery and tumor-specific targeting in flow cytometry, confocal microscopy, and in vivo imaging system analysis. The ADC constructed with our CD276 mAb and payload monomethyl auristatin F (MMAF) showed high anti-NSCLC cytotoxicity to multiple lines and effective anti-tumor efficacy in both immunocompromised and immunocompetent NSCLC xenograft mouse models. The brief mechanism study revealed the integration of cell proliferation inhibition and immune cell reactivation in tumor microenvironments. The toxicity study did not detect off-target immune toxicity or peripheral toxicity. Altogether, this study suggested that anti-CD276 ADC could be a promising candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Zhuoxin (Zora) Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Irene Soohyun Cho
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Hailey Baker
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Ju Hwan Cho
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Si Y, Chen K, Ngo HG, Guan JS, Totoro A, Zhou Z, Kim S, Kim T, Zhou L, Liu X. Targeted EV to Deliver Chemotherapy to Treat Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:146. [PMID: 35057042 PMCID: PMC8781632 DOI: 10.3390/pharmaceutics14010146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are heterogeneous and metastatic, and targeted therapy is highly needed for TNBC treatment. Recent studies showed that extracellular vesicles (EV) have great potential to deliver therapies to treat cancers. This study aimed to develop and evaluate a natural compound, verrucarin A (Ver-A), delivered by targeted EV, to treat TNBC. First, the surface expression of epidermal growth factor receptor (EGFR) and CD47 were confirmed with immunohistochemistry (IHC) staining of patient tissue microarray, flow cytometry and Western blotting. EVs were isolated from HEK 293F culture and surface tagged with anti-EGFR/CD47 mAbs to construct mAb-EV. The flow cytometry, confocal imaging and live-animal In Vivo Imaging System (IVIS) demonstrated that mAb-EV could effectively target TNBC and deliver the drug. The drug Ver-A, with dosage-dependent high cytotoxicity to TNBC cells, was packed in mAb-EV. The anti-TNBC efficacy study showed that Ver-A blocked tumor growth in both 4T1 xenografted immunocompetent mouse models and TNBC patient-derived xenograft models with minimal side effects. This study demonstrated that the targeted mAb-EV-Ver-A had great potential to treat TNBCs.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Jia Shiung Guan
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Zhuoxin Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| | - Seulhee Kim
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Taehyun Kim
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA; (J.S.G.); (S.K.); (T.K.)
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (K.C.); (H.G.N.); (A.T.); (Z.Z.); (L.Z.)
| |
Collapse
|
4
|
Di Marco F, Berger T, Esser-Skala W, Rapp E, Regl C, Huber CG. Simultaneous Monitoring of Monoclonal Antibody Variants by Strong Cation-Exchange Chromatography Hyphenated to Mass Spectrometry to Assess Quality Attributes of Rituximab-Based Biotherapeutics. Int J Mol Sci 2021; 22:9072. [PMID: 34445776 PMCID: PMC8396523 DOI: 10.3390/ijms22169072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Different manufacturing processes and storage conditions of biotherapeutics can lead to a significant variability in drug products arising from chemical and enzymatic post-translational modifications (PTMs), resulting in the co-existence of a plethora of proteoforms with different physicochemical properties. To unravel the heterogeneity of these proteoforms, novel approaches employing strong cation-exchange (SCX) high-performance liquid chromatography (HPLC) hyphenated to mass spectrometry (MS) using a pH gradient of volatile salts have been developed in recent years. Here, we apply an established SCX-HPLC-MS method to characterize and compare two rituximab-based biotherapeutics, the originator MabThera® and its Indian copy product Reditux™. The study assessed molecular differences between the two drug products in terms of C-terminal lysine variants, glycosylation patterns, and other basic and acidic variants. Overall, MabThera® and Reditux™ displayed differences at the molecular level. MabThera® showed a higher degree of galactosylated and sialylated glycoforms, while Reditux™ showed increased levels of oligomannose and afucosylated glycoforms. Moreover, the two drug products showed differences in terms of basic variants such as C-terminal lysine and N-terminal truncation, present in Reditux™ but not in MabThera®. This study demonstrates the capability of this fast SCX-HPLC-MS approach to compare different drug products and simultaneously assess some of their quality attributes.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Thomas Berger
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Wolfgang Esser-Skala
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Department of Biosciences, Computational Systems Biology Group, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestraße 20—ZENIT, 39120 Magdeburg, Germany;
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Christof Regl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria; (F.D.M.); (T.B.); (W.E.-S.); (C.R.)
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Si Y, Zhang Y, Guan JS, Ngo HG, Totoro A, Singh AP, Chen K, Xu Y, Yang ES, Zhou L, Liu R, Liu X(M. Anti-CD47 Monoclonal Antibody-Drug Conjugate: A Targeted Therapy to Treat Triple-Negative Breast Cancers. Vaccines (Basel) 2021; 9:882. [PMID: 34452008 PMCID: PMC8402537 DOI: 10.3390/vaccines9080882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) are frequently recurrent due to the development of drug resistance post chemotherapy. Both the existing literature and our study found that surface receptor CD47 (cluster of differentiation 47) was upregulated in chemotherapy-treated TNBC cells. The goal of this study was to develop a monoclonal antibody (mAb)-based targeting strategy to treat TNBC after standard treatment. Specifically, a new mAb that targets the extracellular domain of receptor CD47 was developed using hybridoma technology and produced in fed-batch culture. Flow cytometry, confocal microscopy, and in vivo imaging system (IVIS) showed that the anti-CD47 mAb effectively targeted human and mouse TNBC cells and xenograft models with high specificity. The antibody-drug conjugate (ADC) carrying mertansine was constructed and demonstrated higher potency with reduced IC50 in TNBC cells than did the free drug and significantly inhibited tumor growth post gemcitabine treatment in MDA-MB-231 xenograft NSG model. Finally, whole blood analysis indicated that the anti-CD47 mAb had no general immune toxicity, flow cytometry analysis of lymph nodes revealed an increase of CD69+ NK, CD11c+ DC, and CD4+ T cells, and IHC staining showed tumoral infiltration of macrophage in the 4T1 xenograft BALB/cJ model. This study demonstrated that targeting CD47 with ADC has great potential to treat TNBCs as a targeted therapy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Hanh Giai Ngo
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Angela Totoro
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Ajeet Pal Singh
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
| | - Yuanxin Xu
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham (UAB), 1808 7th Avenue South, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham (UAB), 703 19th Street South, Birmingham, AL 35294, USA;
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham (UAB), 702 20th St., Birmingham, AL 35233, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (Y.Z.); (J.-S.G.); (H.G.N.); (A.T.); (A.P.S.); (K.C.); (L.Z.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), 1824 6th Avenue South, Birmingham, AL 35233, USA
| |
Collapse
|
6
|
Si Y, Kim S, Ou J, Lu Y, Ernst P, Chen K, Whitt J, Carter AM, Markert JM, Bibb JA, Chen H, Zhou L, Jaskula-Sztul R, Liu XM. Anti-SSTR2 antibody-drug conjugate for neuroendocrine tumor therapy. Cancer Gene Ther 2021; 28:799-812. [PMID: 32684623 PMCID: PMC7854894 DOI: 10.1038/s41417-020-0196-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neuroendocrine (NE) tumors include a diverse spectrum of hormone-secreting neoplasms that arise from the endocrine and nervous systems. Current chemo- and radio-therapies have marginal curative benefits. The goal of this study was to develop an innovative antibody-drug conjugate (ADC) to effectively treat NE tumors (NETs). First, we confirmed that somatostatin receptor 2 (SSTR2) is an ideal cancer cell surface target by analyzing 38 patient-derived NET tissues, 33 normal organs, and three NET cell lines. Then, we developed a new monoclonal antibody (mAb, IgG1, and kappa) to target two extracellular domains of SSTR2, which showed strong and specific surface binding to NETs. The ADC was constructed by conjugating the anti-SSTR2 mAb and antimitotic monomethyl auristatin E. In vitro evaluations indicated that the ADC can effectively bind, internalize, release payload, and kill NET cells. Finally, the ADC was evaluated in vivo using a NET xenograft mouse model to assess cancer-specific targeting, tolerated dosage, pharmacokinetics, and antitumor efficacy. The anti-SSTR2 ADC exclusively targeted and killed NET cells with minimal toxicity and high stability in vivo. This study demonstrates that the anti-SSTR2 ADC has a high-therapeutic potential for NET therapy.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jianfa Ou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Yun Lu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Patrick Ernst
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jason Whitt
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
| | - Angela M Carter
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
| | - James M Markert
- Department of Neurosurgery, UAB, 510 20th Street South, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - James A Bibb
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA
| | - Lufang Zhou
- Department of Medicine, UAB, 703 19th Street South, Birmingham, AL, 35294, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, UAB, 1808 7th Avenue South, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
| | - Xiaoguang Margaret Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, UAB, 1824 6th Avenue South, Birmingham, AL, 35233, USA.
| |
Collapse
|
7
|
Chen K, Si Y, Ou J, Guan JS, Kim S, Ernst P, Zhang Y, Zhou L, Han X, Liu X(M. Antibody-Drug Conjugate to Treat Meningiomas. Pharmaceuticals (Basel) 2021; 14:ph14050427. [PMID: 34063284 PMCID: PMC8147502 DOI: 10.3390/ph14050427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Meningiomas are primary tumors of the central nervous system with high recurrence. It has been reported that somatostatin receptor 2 (SSTR2) is highly expressed in most meningiomas, but there is no effective targeted therapy approved to control meningiomas. This study aimed to develop and evaluate an anti-SSTR2 antibody–drug conjugate (ADC) to target and treat meningiomas. The meningioma targeting, circulation stability, toxicity, and anti-tumor efficacy of SSTR2 ADC were evaluated using cell lines and/or an intracranial xenograft mouse model. The flow cytometry analysis showed that the anti-SSTR2 mAb had a high binding rate of >98% to meningioma CH157-MN cells but a low binding rate of <5% to the normal arachnoidal AC07 cells. The In Vivo Imaging System (IVIS) imaging demonstrated that the Cy5.5-labeled ADC targeted and accumulated in meningioma xenograft but not in normal organs. The pharmacokinetics study and histological analysis confirmed the stability and minimal toxicity. In vitro anti-cancer cytotoxicity indicated a high potency of ADC with an IC50 value of <10 nM. In vivo anti-tumor efficacy showed that the anti-SSTR2 ADC with doses of 8 and 16 mg/kg body weight effectively inhibited tumor growth. This study demonstrated that the anti-SSTR2 ADC can target meningioma and reduce the tumor growth.
Collapse
Affiliation(s)
- Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Jianfa Ou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Jia-Shiung Guan
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (P.E.)
| | - Seulhee Kim
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (P.E.)
| | - Ya Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
| | - Lufang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA; (J.-S.G.); (P.E.)
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35294, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (K.C.); (Y.S.); (J.O.); (S.K.); (Y.Z.); (L.Z.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233, USA
- Correspondence: ; Tel.: +1-205-996-1042; Fax: +1-205-996-4701
| |
Collapse
|
8
|
Si Y, Guan J, Xu Y, Chen K, Kim S, Zhou L, Jaskula-Sztul R, Liu XM. Dual-Targeted Extracellular Vesicles to Facilitate Combined Therapies for Neuroendocrine Cancer Treatment. Pharmaceutics 2020; 12:E1079. [PMID: 33187322 PMCID: PMC7696983 DOI: 10.3390/pharmaceutics12111079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Neuroendocrine (NE) cancers arise from cells within the neuroendocrine system. Chemotherapies and endoradiotherapy have been developed, but their clinical efficacy is limited. The objective of this study was to develop a dual-targeted extracellular vesicles (EV)-delivered combined therapies to treat NE cancer. Specifically, we produced EV in stirred-tank bioreactors and surface tagged both anti-somatostatin receptor 2 (SSTR 2) monoclonal antibody (mAb) and anti-C-X-C motif chemokine receptor 4 (CXCR4) mAb to generate mAbs-EV. Both live-cell confocal microscopy imaging and In Vivo Imaging System (IVIS) imaging confirmed that mAbs-EV specifically targeted and accumulated in NE cancer cells and NE tumor xenografts. Then the highly potent natural cytotoxic marine compound verrucarin A (Ver-A) with IC50 of 2.2-2.8 nM and microtubule polymerization inhibitor mertansine (DM1) with IC50 of 3.1-4.2 nM were packed into mAbs-EV. The in vivo maximum tolerated dose study performed in non-tumor-bearing mice indicated minimal systemic toxicity of mAbs-EV-Ver-A/DM1. Finally, the in vivo anticancer efficacy study demonstrated that the SSTR2/CXCR4 dual-targeted EV-Ver-A/DM1 is more effective to inhibit NE tumor growth than the single targeting and single drug. The results from this study could expand the application of EV to targeting deliver the combined potent chemotherapies for cancer treatment.
Collapse
Affiliation(s)
- Yingnan Si
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (J.G.); (Y.X.); (K.C.); (S.K.)
| | - JiaShiung Guan
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (J.G.); (Y.X.); (K.C.); (S.K.)
| | - Yuanxin Xu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (J.G.); (Y.X.); (K.C.); (S.K.)
| | - Kai Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (J.G.); (Y.X.); (K.C.); (S.K.)
| | - Seulhee Kim
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (J.G.); (Y.X.); (K.C.); (S.K.)
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, 703 19th Street South, Birmingham, AL 35294, USA;
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, 1808 7th Avenue South, Birmingham, AL 35294, USA;
| | - X. Margaret Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham, AL 35294, USA; (Y.S.); (J.G.); (Y.X.); (K.C.); (S.K.)
| |
Collapse
|
9
|
Identifying metabolic features and engineering targets for productivity improvement in CHO cells by integrated transcriptomics and genome-scale metabolic model. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|