1
|
Serrano-Blanco S, Zan R, Harvey AP, Velasquez-Orta SB. Intensified microalgae production and development of microbial communities on suspended carriers and municipal wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122717. [PMID: 39383762 DOI: 10.1016/j.jenvman.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
Wastewater represents an alternative source of nutrients in which to grow microalgae, whilst improving the quality of the wastewater, and reducing the downstream treatment required. However, commercialisation of microalgal cultures for such duties faces a number of challenges, predominantly high cost and low productivity. Suspended-solid reactors (ssPBR) can reduce the operational costs, while promoting attached and suspended microalgae growth. In the present study, a novel approach was developed by integrating microalgal wastewater treatment with carrier systems to favour the growth of both attached and suspended cells of T. obliquus. This study found that T. obliquus was able to uptake nutrients from municipal wastewater, achieving removals of 99.3-99.9 % NH3-N, 54.5-88.5 % PO43- and 92.8-94.5 % DTC. The addition of a 12.5 % volumetric fill ratio of carriers in ssPBRs produced higher microalgal cell productivity (1.2·106 ± 2.5·105 cell ml-1 d-1) than the control (4.3·105 ± 2.8·105 cell ml-1 d-1). MinION nanopore sequencing was conducted to assess the impact of microalgal and carrier treatment on wastewater bacterial communities. It was found not only that bacterial communities had changed after the treatment but also the ones attached differed from the ones suspended. Untreated wastewater was characterised by the abundance of sewer bacteria genera such as Aliarcobacter and Arcobacter, whilst, after treatment, microbial communities were characterised by the presence of photosynthetic freshwater (Limnococcus, Stanieria) and bioremediation-like bacteria genera (Pseudomonas, Rheinheimera). In conclusion, the addition of 12.5 % fill carrier ratio increased microalgal productivity, while stimulating changes in the algal microbiome, and creating distinctly different populations in the free and attached environments.
Collapse
Affiliation(s)
| | - Rixia Zan
- Newcastle University, School of Engineering, Cassie Building, Newcastle Upon Tyne, UK
| | - Adam P Harvey
- Newcastle University, School of Engineering, Merz Court, Newcastle Upon Tyne, UK
| | | |
Collapse
|
2
|
Gong L, Ma X, Zhang S, Guo C, Zhou J, Zhao Y. The effect of initial inoculation amount of microalgae on synergistic purification of biogas slurry. ENVIRONMENTAL TECHNOLOGY 2024; 45:4346-4358. [PMID: 37746747 DOI: 10.1080/09593330.2023.2250545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/05/2023] [Indexed: 09/26/2023]
Abstract
In this study, Chlorella and Scenedesmus were inoculated in biogas slurry medium with initial inoculum (OD680) of 0.05, 0.1, 0.2, and 0.3, respectively, and 5% CO2 was continuously injected. The study aimed to examine the carbon sequestration capacity of Chlorella and Scenedesmus, as well as the effectiveness of removing pollutants such as TN, TP, and COD in biogas slurry medium. Additionally, an economic efficiency analysis of energy consumption was conducted. The group with an initial inoculum (OD680) of 0.3 for both types of microalgae exhibited better tolerance to pollutants, entered the logarithmic growth stage earlier, promoted nutrient removal, achieved higher energy efficiency, and reduced carbon emissions compared to the other groups. The highest carbon sequestration rates were 18.03% for Chlorella and 11.05% for Scenedesmus. Furthermore, Chlorella demonstrated corresponding nutrient removal efficiencies of 83.03% for TN, 99.84% for TP, and 90.06% for COD, while Scenedesmus exhibited removal efficiencies of 66.35% for TN, 98.74% for TP, and 77.71% for COD. The highest energy efficiency for pollutants and CO2 removal rates for Chlorella were 49.51 ± 2.20 and 9.91 ± 0.44 USD-1, respectively. In conclusion, the findings demonstrate the feasibility of using microalgae for simultaneous purification of biogas and biogas slurry.
Collapse
Affiliation(s)
- Lei Gong
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xiaofan Ma
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Shijun Zhang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Chunqian Guo
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Jun Zhou
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Yuhang Zhao
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
3
|
Kumar A, Mishra S, Singh NK, Yadav M, Padhiyar H, Christian J, Kumar R. Ensuring carbon neutrality via algae-based wastewater treatment systems: Progress and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121182. [PMID: 38772237 DOI: 10.1016/j.jenvman.2024.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
The emergence of algal biorefineries has garnered considerable attention to researchers owing to their potential to ensure carbon neutrality via mitigation of atmospheric greenhouse gases. Algae-derived biofuels, characterized by their carbon-neutral nature, stand poised to play a pivotal role in advancing sustainable development initiatives aimed at enhancing environmental and societal well-being. In this context, algae-based wastewater treatment systems are greatly appreciated for their efficacy in nutrient removal and simultaneous bioenergy generation. These systems leverage the growth of algae species on wastewater nutrients-including carbon, nitrogen, and phosphorus-alongside carbon dioxide, thus facilitating a multifaceted approach to pollution remediation. This review seeks to delve into the realization of carbon neutrality through algae-mediated wastewater treatment approaches. Through a comprehensive analysis, this review scrutinizes the trajectory of algae-based wastewater treatment via bibliometric analysis. It subsequently examines the case studies and empirical insights pertaining to algae cultivation, treatment performance analysis, cost and life cycle analyses, and the implementation of optimization methodologies rooted in artificial intelligence and machine learning algorithms for algae-based wastewater treatment systems. By synthesizing these diverse perspectives, this study aims to offer valuable insights for the development of future engineering applications predicated on an in-depth understanding of carbon neutrality within the framework of circular economy paradigms.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Saurabh Mishra
- Institute of Water Science and Technology, Hohai University, Nanjing China, 210098, China.
| | - Nitin Kumar Singh
- Department of Chemical Engineering, Marwadi University, Rajkot, Gujarat, India.
| | - Manish Yadav
- Central Mine Planning and Design Institute Limite, Bhubaneswar, India.
| | | | - Johnson Christian
- Environment Audit Cell, R. D. Gardi Educational Campus, Rajkot, Gujarat, India.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O P Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
4
|
Najeeb MI, Ahmad MD, Anjum AA, Maqbool A, Ali MA, Nawaz M, Ali T, Manzoor R. Distribution, screening and biochemical characterization of indigenous microalgae for bio-mass and bio-energy production potential from three districts of Pakistan. BRAZ J BIOL 2024; 84:e261698. [DOI: 10.1590/1519-6984.261698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Trend of biofuel production from microalgal triacylglycerols is enhancing, because this substrate is a good sustainable and advantageous alternative to oil and gas fuel. In the present study, indigenous micro algal isolates were screened from water (n=30) and soil (n=30) samples collected from three districts of Punjab, Pakistan to evaluate their biofuel production potential. The samples were inoculated on BG – 11 agar medium plates by incubating at room temperature of 25°C providing 1000 lux for 16h light cycle followed by 8h of dark cycle for 15 d. Water samples were found to be rich in microalgae and 65.33% microalgae (49 isolates) were isolated from Faisalabad district. On the basis of microscopic morphology microalgal isolates (n=180) were selected and subjected to lipid detection by Nile red staining assay. Nile red positive isolates (n=23) were processed for biochemical (lipid, protein and carbohydrates) characterization. AIN63 isolate showed higher lipids (17.4%) content as detected by micro vanillin assay. Algal isolate AIN128 showed best protein contents (42.91%) detected by Bradford assay and AIN172 isolate showed higher carbohydrate contents (73.83%) as detected by anthrone assay. The selected algal isolates were also analyzed by Fourier transform infrared (FTIR) spectroscopy for confirmation of carbohydrate, protein and lipid analysis. These indigenous algae have the potential for in-vitro biofuel production from agricultural waste.
Collapse
Affiliation(s)
- M. I. Najeeb
- University of Veterinary and Animal Sciences, Pakistan
| | - M.-D. Ahmad
- University of Veterinary and Animal Sciences, Pakistan
| | - A. A. Anjum
- University of Veterinary and Animal Sciences, Pakistan
| | - A. Maqbool
- University of Veterinary and Animal Sciences, Pakistan
| | - M. A. Ali
- University of Veterinary and Animal Sciences, Pakistan
| | - M. Nawaz
- University of Veterinary and Animal Sciences, Pakistan
| | - T. Ali
- University of Veterinary and Animal Sciences, Pakistan
| | - R. Manzoor
- University of Veterinary and Animal Sciences, Pakistan
| |
Collapse
|
5
|
High cell density culture of Neochloris oleoabundans in novel horizontal thin-layer algal reactor: effects of localized aeration, nitrate concentration and mixing frequency. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Wang P, Shao Y, Geng Y, Mushtaq R, Yang W, Li M, Sun X, Wang H, Chen G. Advanced treatment of secondary effluent from wastewater treatment plant by a newly isolated microalga Desmodesmus sp. SNN1. Front Microbiol 2023; 14:1111468. [PMID: 36778876 PMCID: PMC9909749 DOI: 10.3389/fmicb.2023.1111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Secondary effluents contain considerable amounts of nitrogen and phosphorous, which if dumped untreated can cause eutrophication of the receiving water bodies. Microalgae can remove these nutrients and other pollutants from the wastewater effluents and play an effective role in the secondary effluent treatment. In this study, six microalgae strains (SNN1, SNN2, SNN3, SNN4, SNS1, and SNS2) were isolated and screened from the water and mud of Yingxue Lake of Shandong Jianzhu University, and their efficiencies for the removal of COD, NH4 +-N, TN, and TP in the secondary effluent were assessed. By comparing the growth performances and nutrient removal ability of algal strains in domestic sewage, we found that SNN1 (identified and named as Desmodesmus sp. SNN1) has the highest efficiency for biomass accumulation and sewage purification. Hence, the algal strain SNN1 was selected for further screening and optimization experiments. The strain showed higher biomass yield and better nutrient removal rate when the pH of secondary effluent was 9.0 and the initial inoculum concentration (optical density at 680 nm) of algal strain was 0.4. After 12 days of treatment, the concentrations of COD, NH4 +-N, TN, and TP in the secondary effluent were 31.79, 0.008, 8.631, and 0.069 mg/L, respectively. Therefore, SNN1 with the removal rates of 52.69% (COD), 99.99% (NH4 +-N), 89.09% (TN), and 94.64% (TP) displayed its high potential in nutrient removal. In addition, it also yielded 5.30 mg/L of chlorophyll a and 168.33 mg/L of lipids. These results demonstrated that this strain exhibited an effective treatment capacity for secondary effluent and microalgal oil production. This study is helpful to provide a strategy for the resource utilization of secondary effluent and the conservation of freshwater resources required by microalgae culture.
Collapse
Affiliation(s)
- Pengchong Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China,School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yahui Shao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Yun Geng
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Rubina Mushtaq
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China,Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Wenlong Yang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Mei Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xiuqin Sun
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China,Hongbo Wang,
| | - Gao Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China,Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China,*Correspondence: Gao Chen,
| |
Collapse
|
7
|
Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho SH, Elsamahy T, Li S, El-Sheekh MM, Schagerl M, Kornaros M, Sun J. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100205. [PMID: 36247722 PMCID: PMC9557874 DOI: 10.1016/j.ese.2022.100205] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
The rapid expansion of both the global economy and the human population has led to a shortage of water resources suitable for direct human consumption. As a result, water remediation will inexorably become the primary focus on a global scale. Microalgae can be grown in various types of wastewaters (WW). They have a high potential to remove contaminants from the effluents of industries and urban areas. This review focuses on recent advances on WW remediation through microalgae cultivation. Attention has already been paid to microalgae-based wastewater treatment (WWT) due to its low energy requirements, the strong ability of microalgae to thrive under diverse environmental conditions, and the potential to transform WW nutrients into high-value compounds. It turned out that microalgae-based WWT is an economical and sustainable solution. Moreover, different types of toxins are removed by microalgae through biosorption, bioaccumulation, and biodegradation processes. Examples are toxins from agricultural runoffs and textile and pharmaceutical industrial effluents. Microalgae have the potential to mitigate carbon dioxide and make use of the micronutrients that are present in the effluents. This review paper highlights the application of microalgae in WW remediation and the remediation of diverse types of pollutants commonly present in WW through different mechanisms, simultaneous resource recovery, and efficient microalgae-based co-culturing systems along with bottlenecks and prospects.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Corresponding author. Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Hassan Ramadan
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt
| | - Reham Eltawab
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Corresponding author.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | | | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Corresponding author.
| |
Collapse
|
8
|
Ghaffar I, Deepanraj B, Sundar LS, Vo DVN, Saikumar A, Hussain A. A review on the sustainable procurement of microalgal biomass from wastewaters for the production of biofuels. CHEMOSPHERE 2023; 311:137094. [PMID: 36334745 DOI: 10.1016/j.chemosphere.2022.137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The feasibility of microalgal biomass as one of the most promising and renewable sources for the production of biofuels is being studied extensively. Microalgal biomass can be cultivated under photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic cultivation conditions. Photoautotrophic cultivation is the most common way of microalgal biomass production. Under mixotrophic cultivation, microalgae can utilize both organic carbon and CO2 simultaneously. Mixotrophic cultivation depicts higher biomass productivity as compared to photoautotrophic cultivation. It is evident from the literature that mixotrophic cultivation yields higher quantities of polyunsaturated fatty acids as compared to that photoautotrophic cultivation. In this context, for economical biomass production, the organic carbon of industrial wastewaters can be valorized for the mixotrophic cultivation of microalgae. Following the way, contaminants' load of wastewaters can be reduced while concomitantly producing highly productive microalgal biomass. This review focuses on different aspects covering the sustainable cultivation of different microalgal species in different types of wastewaters.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| | - Lingala Syam Sundar
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Algam Saikumar
- Department of Aeronautical Engineering, MLR Institute of Technology, Hyderabad, Telangana, India
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
9
|
Jothibasu K, Muniraj I, Jayakumar T, Ray B, Dhar D, Karthikeyan S, Rakesh S. Impact of microalgal cell wall biology on downstream processing and nutrient removal for fuels and value-added products. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
López-Pacheco IY, Rodas-Zuluaga LI, Cuellar-Bermudez SP, Hidalgo-Vázquez E, Molina-Vazquez A, Araújo RG, Martínez-Ruiz M, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation. Mar Drugs 2022; 20:md20100601. [PMID: 36286425 PMCID: PMC9605595 DOI: 10.3390/md20100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Microalgae and cyanobacteria are photosynthetic microorganisms’ sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.
Collapse
Affiliation(s)
- Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | | | | | | | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (D.B.); (H.M.N.I.); (R.P.-S.)
| |
Collapse
|
11
|
Singh V, Mishra V. Evaluation of the effects of input variables on the growth of two microalgae classes during wastewater treatment. WATER RESEARCH 2022; 213:118165. [PMID: 35183015 DOI: 10.1016/j.watres.2022.118165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment carried out by microalgae is usually affected by the type of algal strain and the combination of cultivation parameters provided during the process. Every microalga strain has a different tolerance level towards cultivation parameters, including temperature, pH, light intensity, CO2 content, initial inoculum level, pretreatment method, reactor type and nutrient concentration in wastewater. Therefore, it is vital to supply the right combination of cultivation parameters to increase the wastewater treatment efficiency and biomass productivity of different microalgae classes. In the current investigation, the decision tree was used to analyse the dataset of class Trebouxiophyceae and Chlorophyceae. Various combinations of cultivation parameters were determined to enhance their performance in wastewater treatment. Nine combinations of cultivation parameters leading to high biomass production and eleven combinations each for high nitrogen removal efficiency and high phosphorus removal efficiency for class Trebouxiophyceae were detected by decision tree models. Similarly, eleven combinations for high biomass production, nine for high nitrogen removal efficiency, and eight for high phosphorus removal efficiency were detected for class Chlorophyceae. The results obtained through decision tree analysis can provide the optimum conditions of cultivation parameters, saving time in designing new experiments for treating wastewater at a large scale.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India.
| |
Collapse
|
12
|
Melo JM, Ribeiro MR, Telles TS, Amaral HF, Andrade DS. Microalgae cultivation in wastewater from agricultural industries to benefit next generation of bioremediation: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22708-22720. [PMID: 34797540 DOI: 10.1007/s11356-021-17427-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to provide a bibliometric analysis and mapping of existing scientific papers, focusing on microalgae cultivation coupled with biomass production and bioremediation of wastewater from agricultural industries, including cassava, dairy, and coffee. Using the Web of Science (WoS) database for the period 1996-2021, a search was performed using a keyword strategy, aiming at segregating the papers in groups. For the first search step, the keywords "wastewater treatment", AND "microalgae", AND "cassava" OR "dairy" OR "coffee" were used, resulting in 59 papers. For the second step, the keywords "wastewater treatment" AND "biomass productivity" AND "microalgae" AND "economic viability" OR "environmental impacts" were used, which resulted in 34 articles. In these papers, keywords such as "carbon dioxide biofixation" and "removal of nutrients by the production of biomass by microalgae" followed by "environmental and economic impacts" were highlighted. Some of these papers presented an analysis of the economic feasibility of the process, which reveal the state-of-the-art setup required to make the cultivation of microalgae economically viable. Researches focusing on the efficiency of microalgae biomass harvesting are needed to improve the integration of microalgae production in industrial eco-parks using wastewater to achieve the global goal of bioremediation and clean alternatives for renewable energy generation.
Collapse
Affiliation(s)
- Jessica Muniz Melo
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rod Celso Garcia Cid, km 375, P. O. Box 1030, Londrina, Paraná, Zip Code 86047-902, Brazil
| | - Marina Ronchesel Ribeiro
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rod Celso Garcia Cid, km 375, P. O. Box 1030, Londrina, Paraná, Zip Code 86047-902, Brazil
| | - Tiago Santos Telles
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rod Celso Garcia Cid, km 375, P. O. Box 1030, Londrina, Paraná, Zip Code 86047-902, Brazil
| | | | - Diva Souza Andrade
- Instituto de Desenvolvimento Rural do Paraná - IAPAR-EMATER, Rod Celso Garcia Cid, km 375, P. O. Box 1030, Londrina, Paraná, Zip Code 86047-902, Brazil.
| |
Collapse
|
13
|
Sharma R, Mishra A, Pant D, Malaviya P. Recent advances in microalgae-based remediation of industrial and non-industrial wastewaters with simultaneous recovery of value-added products. BIORESOURCE TECHNOLOGY 2022; 344:126129. [PMID: 34655783 DOI: 10.1016/j.biortech.2021.126129] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The ability of microalgae to grow in a broad spectrum of wastewaters manifests great potentials for removing contaminants from effluents of industries and urban areas. Since the post-treatment microalgae biomass is also a significant source of high-value products, microalgae-based wastewater treatment is an economical and sustainable solution to wastewater management. Adding more value, the integration of microalgae with living/non-living materials looks more promising. Microalgae-based treatment technology has certain limitations like high operational costs, problematic harvesting, large land requirements, and hindrance in photosynthesis due to turbid wastewater. These challenges need to be essentially addressed to achieve enhanced wastewater remediation. This review has highlighted the potential applications of microalgae in contaminant removal from wastewaters, simultaneous resource recovery, efficient microalgae-based hybrid systems along with bottlenecks and prospects. This state-of-the-art article will edify the role of microalgae in wastewater remediation, biomass valorization for bio-based products, and present numerous possibilities in strengthening the circular bioeconomy.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Science, University of Jammu, Jammu-180006, Jammu and Kashmir, India
| | - Arti Mishra
- Amity Institute of Microbial Technology, Amity University, Noida-201303, Uttar Pradesh, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Piyush Malaviya
- Department of Environmental Science, University of Jammu, Jammu-180006, Jammu and Kashmir, India.
| |
Collapse
|
14
|
P S, F C I, M B, C C. C. vulgaris growth batch tests using winery waste digestate as promising raw material for biodiesel and stearin production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:266-272. [PMID: 34717214 DOI: 10.1016/j.wasman.2021.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The recovery of high added value compound from waste stream is fundamental to keep biotechnological processes sustainable. In this study, anaerobic digestion of two highly produced organic waste was integrated with microalgae-based processes both to treat liquid digestate and recover high value compounds. Chlorella vulgaris growth was assessed for lipids accumulation and subsequent recovery, using two types of digestate: organic waste and sewage sludge digestate (DIG-OFMSW) and wine lees digestate (DIG-WL). Growth tests were carried out in batch mode and results showed a slightly higher final biomass concentration from DIG-WL (1.36 ± 0.09 g l-1) compared to DIG-OFMSW (1.05 ± 0.13 g l-1) and a clearly different lipids accumulation yield (28.86 ± 0.05% in DIG-WL compared to 6.1 ± 0.2% of DIG-OFMSW, on total solids). Lipid characterization showed a high oleic acid accumulation (69.52 ± 0.50%w/w in DIG-WL) that positively influence biodiesel properties and a low linolenic acids content (below 0.30%w/w) that comply with European law EN14214 for biodiesel (linolenic acid content lower than 12%w/w). In addition, due to the high concentration of palmitic and stearic acids detected at the end of test, this oil can be used as new substrate to produce stearin, normally produced from palm oil.
Collapse
Affiliation(s)
- Scarponi P
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - Izzo F C
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - Bravi M
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Cavinato C
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| |
Collapse
|
15
|
Chlorella vulgaris and Arthrospira platensis growth in a continuous membrane photobioreactor using industrial winery wastewater. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Musetsho P, Renuka N, Guldhe A, Singh P, Pillay K, Rawat I, Bux F. Valorization of poultry litter using Acutodesmus obliquus and its integrated application for lipids and fertilizer production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149018. [PMID: 34274677 DOI: 10.1016/j.scitotenv.2021.149018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are recognized as potential candidates for resource recovery from wastewater and projected for biorefinery models. This study was undertaken to evaluate the potential of poultry litter and municipal wastewater as nutrient and water sources, for the cultivation of Acutodesmus obliquus for lipids production for biodiesel application. The efficacy of lipid extracted biomass (LEA) as fertilizer for mung bean crops was also assessed in microcosm. A. obliquus cultivation in acid pre-treated poultry litter extract (PPLE) showed maximum biomass production of 1.90 g L-1, which was 74.67% and 12.61% higher than the raw poultry litter extract (RPPE) and BG11 respectively. Higher NO3-N, NH3-N, and PO4-P removal of 79.51%, 81.82%, and 80.52% respectively were observed in PPLE as compared to RPLE treatment. The highest biomass (140.36 mg L-1 d-1), lipids (38.49 mg L-1 d-1), and carbohydrates (49.55 mg L-1 d-1) productivities were observed in the PPLE medium. The application of LEA as a fertilizer for mung bean crops showed improvement in plant growth and soil microbial activity. A maximum increase in organic carbon (59.5%) and dehydrogenase activity (130.8%) was observed in LEA amended soil which was significantly higher than chemical fertilizer (CF) control in 30 days. Whilst plant fresh weight and leaf chlorophyll in the LEA amended soil was comparable to whole algal biomass (WA) and CF control. The strategy developed could be a basis for sustainable biorefinery for the valorization of wastewater for the production of microalgae-derived biofuel and byproducts for agricultural application.
Collapse
Affiliation(s)
- Pfano Musetsho
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Abhishek Guldhe
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa; Amity Institute of Biotechnology, Amity University, Mumbai 410206, India
| | - Poonam Singh
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Kriveshin Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
17
|
Wang Z, Hao L, Ren Z, Lin CSK, Li Y. Metabolic profiling identified phosphatidylcholin as potential biomarker in boosting lipid accumulation in multiple microalgae. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Zhu Q, Wu L, Li G, Li X, Zhao C, Du C, Wang F, Li W, Zhang L. A novel of transforming wastewater pollution into resources for desertification control by sand-consolidating cyanobacteria, Scytonema javanicum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13861-13872. [PMID: 33200387 DOI: 10.1007/s11356-020-11553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Cultivation of desert cyanobacteria in wastewater can lead to the optimal redistribution of regional resources and is likely to solve two global problems, i.e., wastewater pollution and desertification. However, the potential of using wastewater instead of traditional artificial culture media to cultivate sand-consolidating cyanobacteria for desert management is not well understood. This study compares undistilled and distilled wastewater with an artificial culture medium (BG110) to explore the potential of wastewater as a replacement culture medium for Scytonema javanicum. The results show that the photosynthetic activity (Fv/Fm) of S. javanicum was inhibited in the undistilled wastewater and was lower than that in distilled water and the culture medium. The lowest Chl-a concentration and the highest concentration in BG110 were found in distilled wastewater. However, there was no difference in the biomass (dry weight) between the undistilled wastewater and BG110 at the end of the experiment. After long-term dry storage of the biomass collected after cultivation, there was no difference in the photosynthetic recovery between S. javanicum cultivated in undistilled wastewater and that cultivated in BG110. Accordingly, although wastewater depressed the Chl-a content, it did not affect the biomass accumulation and subsequent photosynthetic recovery after long-term storage. The results reveal the significant potential of cultivating sand-consolidating cyanobacterium in wastewater and using this technology as a new nutrient redistribution method in human settlements and desert areas.
Collapse
Affiliation(s)
- Qiuheng Zhu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Guowen Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Zhao
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caili Du
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fan Wang
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lieyu Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
20
|
Kumar A. Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-020-00221-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry. Processes (Basel) 2020. [DOI: 10.3390/pr8111458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Microalgae are photoautotrophic microorganisms capable of producing compounds with potential bioenergetic applications as an alternative energy source due to the imminent exhaustion of fossil fuels, their impact on the environment, and the constant population increase. The mass cultivation of these microorganisms requires high concentrations of nutrients, which is not profitable if analytical grade culture media are used. A viable alternative is the use of agro-industrial wastewater, due to the metabolic flexibility of these microorganisms and their ability to take advantage of the nutrients present in these substrates. For the reasons mentioned above, the effect of the cultivation in wastewater from cheese processing on the growth parameters and biomass composition of Scenedesmus sp. was evaluated, and its nutrient removal capacity determined. A high lipid concentration was obtained in the cultures with the dairy effluent (507.81 ± 19.09 mg g−1) compared to the standard culture medium, while the growth parameters remained similar to the control medium. Scenedesmus sp. achieved high percentages of nutrient assimilation of the wastewater used (88.41% and 97.07% for nitrogen and phosphorus, respectively). With the results obtained, the feasibility of cultivating microalgae in agro-industrial wastewater as an alternative culture medium that induces the accumulation of compounds with potential bioenergetic applications was verified.
Collapse
|
22
|
Chen BL, Mhuantong W, Ho SH, Chang JS, Zhao XQ, Bai FW. Genome sequencing, assembly, and annotation of the self-flocculating microalga Scenedesmus obliquus AS-6-11. BMC Genomics 2020; 21:743. [PMID: 33109102 PMCID: PMC7590803 DOI: 10.1186/s12864-020-07142-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scenedesmus obliquus belongs to green microalgae and is widely used in aquaculture as feed, which is also explored for lipid production and bioremediation. However, genomic studies of this microalga have been very limited. Cell self-flocculation of microalgal cells can be used as a simple and economic method for harvesting biomass, and it is of great importance to perform genome-scale studies for the self-flocculating S. obliquus strains to promote their biotechnological applications. RESULTS We employed the Pacific Biosciences sequencing platform for sequencing the genome of the self-flocculating microalga S. obliquus AS-6-11, and used the MECAT software for de novo genome assembly. The estimated genome size of S. obliquus AS-6-11 is 172.3 Mbp with an N50 of 94,410 bp, and 31,964 protein-coding genes were identified. Gene Ontology (GO) and KEGG pathway analyses revealed 65 GO terms and 428 biosynthetic pathways. Comparing to the genome sequences of the well-studied green microalgae Chlamydomonas reinhardtii, Chlorella variabilis, Volvox carteri and Micractinium conductrix, the genome of S. obliquus AS-6-11 encodes more unique proteins, including one gene that encodes D-mannose binding lectin. Genes encoding the glycosylphosphatidylinositol (GPI)-anchored cell wall proteins, and proteins with fasciclin domains that are commonly found in cell wall proteins might be responsible for the self-flocculating phenotype, and were analyzed in detail. Four genes encoding both GPI-anchored cell wall proteins and fasciclin domain proteins are the most interesting targets for further studies. CONCLUSIONS The genome sequence of the self-flocculating microalgal S. obliquus AS-6-11 was annotated and analyzed. To our best knowledge, this is the first report on the in-depth annotation of the S. obliquus genome, and the results will facilitate functional genomic studies and metabolic engineering of this important microalga. The comparative genomic analysis here also provides new insights into the evolution of green microalgae. Furthermore, identification of the potential genes encoding self-flocculating proteins will benefit studies on the molecular mechanism underlying this phenotype for its better control and biotechnological applications as well.
Collapse
Affiliation(s)
- Bai-Ling Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung City, Taiwan.,Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung City, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
23
|
Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, Valdez-Ojeda R, Toledano-Thompson T, Tovar-Gálvez LR, López-Adrián S, Chairez I. Efficient production of fatty acid methyl esters by a wastewater-isolated microalgae-yeast co-culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28490-28499. [PMID: 31845266 DOI: 10.1007/s11356-019-07286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Improving the competitiveness of biodiesel production by microalgae cultures requires the application of several strategies to obtain a high content of lipids, rapid biomass growth and a capacity to adapt to different kinds of environment, with the aim of using non-renewable nutrient sources. Therefore, the use of an individual indigenous microalgae strain or a consortium from natural or anthropogenic sites is now considered an alternative for biofuel production. This study examined the temporal behaviour of secondary metabolites produced by a native microalgae and yeast consortium isolated from wastewater, which was characterized by a genetic identification method based on the MiSeq system. The predominant species in the consortium was Scenedesmus obliquus, representing 68% of the organisms. In addition, the consortium contained a number of yeast species, including Candida pimensis (43%), Arthroderma vanbreuseghemii (23%), Diaporthe aspalathi/Diaporthe meridionalis (25%) and Hericium americanum (3%). This indigenous co-culture of microalgae and yeast showed biomass productivity of 0.06 g l-1 day-1, with a content of 30% (w/w) carbohydrates, 4% (w/w) proteins and 55% (w/w) lipids. Transesterification of the extracted lipids produced fatty acid methyl esters (FAMEs), which were analysed by gas chromatography (GC). The FAMEs included methyl pentadecanoate (1.90%), cis-10-pentanedecanoic acid methyl ester (1.36%), methyl palmitate (2.64%), methyl palmitoleate (21.36%), methyl oleate (64.95%), methyl linolenate (3.83%) and methyl linolelaidate (3.95%). This composition was relevant for biodiesel production based on the co-culture of indigenous microalgae and yeast consortia.
Collapse
Affiliation(s)
- Jessica K Suastes-Rivas
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico
| | - Raúl Hernández-Altamirano
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico.
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico.
| | - Violeta Y Mena-Cervantes
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico
| | - Ruby Valdez-Ojeda
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C, Merida, Yucatán, Mexico
| | - Tanit Toledano-Thompson
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C, Merida, Yucatán, Mexico
| | - Luis R Tovar-Gálvez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), 30 de junio de 1520 s/n, La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Silvia López-Adrián
- Facultad de Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Merida, Yucatán, Mexico
| | - Isaac Chairez
- Departamento de Bioprocesos, Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
| |
Collapse
|
24
|
González-Camejo J, Barat R, Aguado D, Ferrer J. Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to treat effluent from an anaerobic membrane bioreactor. WATER RESEARCH 2020; 169:115238. [PMID: 31707179 DOI: 10.1016/j.watres.2019.115238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
A membrane photobioreactor (MPBR) plant was operated continuously for 3 years to evaluate the separate effects of different factors, including: biomass and hydraulic retention times (BRT, HRT), light path (Lp), nitrification rate (NOxR), nutrient loading rates (NLR, PLR) and others. The overall effect of all these parameters which influence MPBR performance had not previously been assessed. The multivariate projection approach chosen for this study provided a good description of the collected data and facilitated their visualisation and interpretation. Forty variables used to control and assess MPBR performance were evaluated during three years of continuous outdoor operation by means of principal component analysis (PCA) and partial least squares (PLS) analysis. The PCA identified the photobioreactor (PBR) light path as the factor with the largest influence on data variability. Other important factors were: nitrogen and phosphorus recovery rates (NRR, PRR), biomass productivity (BP), optical density of 680 nm (OD680), ammonium and phosphorus effluent concentration (NH4, P), HRT, BRT, air flow rate (Fair) and nitrogen and phosphorus loading rates (NLR and PLR). The MPBR performance could be adequately estimated by a PLS model based on all the recorded variables, but this estimation worsened appreciably when only the controlled variables (Lp, Fair, HRT and BRT) were used as predictors, which underlines the importance of the non-controlled variables on MPBR performance. The microalgae cultivation process could thus only be partially controlled by the design and operating variables. A high nitrification rate was found to be inadvisable, since it showed an inverse correlation with NRR. In this respect, temperature and microalgae biomass concentration appeared to be the main factors to mitigate nitrifying bacteria activity.
Collapse
Affiliation(s)
- J González-Camejo
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient, IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain.
| | - R Barat
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient, IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain
| | - D Aguado
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient, IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain
| | - J Ferrer
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient, IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
25
|
Winterburn J. Editorial – bioprocess development. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
González-Camejo J, Aparicio S, Ruano MV, Borrás L, Barat R, Ferrer J. Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. BIORESOURCE TECHNOLOGY 2019; 290:121788. [PMID: 31326649 DOI: 10.1016/j.biortech.2019.121788] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Two outdoor photobioreactors were operated to evaluate the effect of variable ambient temperature on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Four experiments were carried out in different seasons, maintaining the temperature-controlled PBR at around 25 °C (by either heating or cooling), while the temperature in the non-temperature-controlled PBR was allowed to vary with the ambient conditions. Temperatures in the range of 15-30 °C had no significant effect on the microalgae cultivation performance. However, when the temperature rose to 30-35 °C microalgae viability was significantly reduced. Sudden temperature rises triggered AOB growth in the indigenous microalgae culture, which worsened microalgae performance, especially when AOB activity made the system ammonium-limited. Microalgae activity could be recovered after a short temperature peak over 30 °C once the temperature dropped, but stopped when the temperature was maintained around 28-30 °C for several days.
Collapse
Affiliation(s)
- J González-Camejo
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain.
| | - S Aparicio
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - M V Ruano
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - L Borrás
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - R Barat
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - J Ferrer
- CALAGUA - Unidad Mixta UV-UPV, Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient - IIAMA, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|