1
|
Lhamo P, Mahanty B. Dynamic Model Selection and Optimal Batch Design for Polyhydroxyalkanoate (PHA) Production by Cupriavidus necator. Appl Biochem Biotechnol 2024; 196:2630-2651. [PMID: 37610515 DOI: 10.1007/s12010-023-04683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Mathematical modelling of microbial polyhydroxyalkanoates (PHAs) production is essential to develop optimal bioprocess design. Though the use of mathematical models in PHA production has increased over the years, the selection of kinetics and model identification strategies from experimental data remains largely heuristic. In this study, PHA production from Cupriavidus necator utilizing sucrose and urea was modelled using a parametric discretization approach. Product formation kinetics and relevant parameters were established from urea-free experimental sets, followed by the selection of growth models from a batch containing both sucrose and urea. Logistic growth and Luedeking-Piret model for PHA production was selected based on regression coefficient (R2: 0.941), adjusted R2 (0.930) and AICc values (-42.764). Model fitness was further assessed through cross-validation, confidence interval and sensitivity analysis of the parameters. Model-based optimal batch startup policy, incorporating multi-objective desirability, suggests an accumulation of 2.030 g l-1 of PHA at the end of 120 h. The modelling framework applied in this study can be used not only to avoid over-parameterization and identifiability issues but can also be adopted to design optimal batch startup policies.
Collapse
Affiliation(s)
- Pema Lhamo
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, 641114, India
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, 641114, India.
| |
Collapse
|
2
|
Wang J, Huang J, Liu S. The production, recovery, and valorization of polyhydroxybutyrate (PHB) based on circular bioeconomy. Biotechnol Adv 2024; 72:108340. [PMID: 38537879 DOI: 10.1016/j.biotechadv.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| |
Collapse
|
3
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
4
|
Psaki O, Athanasoulia IGI, Giannoulis A, Briassoulis D, Koutinas A, Ladakis D. Fermentation development using fruit waste derived mixed sugars for poly(3-hydroxybutyrate) production and property evaluation. BIORESOURCE TECHNOLOGY 2023; 382:129077. [PMID: 37088428 DOI: 10.1016/j.biortech.2023.129077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Free sugars from fruit wastes were evaluated for the production of poly(3-hydroxybutyrate) (PHB) in Paraburkholderia sacchari fed-batch bioreactor fermentations. Different initial sugar concentration, carbon to inorganic phosphorus (C/IP) ratio, IP addition during feeding and volumetric oxygen transfer coefficient (kLa) were evaluated to promote PHB production. The highest intracellular PHB accumulation (66.6%), PHB concentration (108.3 g/L), productivity (3.28 g/L/h) and yield (0.33 g/g) were achieved at 40 g/L initial sugars, C/IP 26.5, 202.6 h-1kLa value and 20% IP supplementation in the feeding solution. The effect of different cell's harvesting time on PHB properties showed no influence in weight average molecular weight and thermal properties. The harvest time influenced the tensile strength that was reduced from 28.7 MPa at 22 h to 13.3 MPa at 36 h. The elongation at break and Young's modulus were in the range 3.6-14.8% and 830-2000 MPa, respectively.
Collapse
Affiliation(s)
- Olga Psaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Ioanna-Georgia I Athanasoulia
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Anastasios Giannoulis
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Demetres Briassoulis
- Laboratory of Farm Structures, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
5
|
Optimization of Growth Conditions to Enhance PHA Production by Cupriavidus necator. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accumulation of polyhydroxyalkanoates (PHAs) by microorganisms usually occurs in response to environmental stress conditions. Therefore, it is advantageous to choose two-step cultivation. The first phase is aimed at maximizing biomass production, and only in the second phase, after setting the suitable conditions, PHA production starts. The aim of this work was to optimize the composition of the minimal propagation medium used for biomass production of Cupriavidus necator DSM 545 using the response surface methodology (RSM). Based on the results from the search for optimization limits, the glucose concentration, the ammonium sulfate concentration and the phosphate buffer molarity were chosen as independent variables. The optimal values were found as follows: the glucose concentration 10.8 g/L; the ammonium sulfate concentration 0.95 g/L; and the phosphate buffer molarity 60.2 mmol/L. The predicted biomass concentration was 4.54 g/L, and the verified value was at 4.84 g/L. Although this work was primarily focused on determining the optimal composition of the propagation medium, we also evaluated the optimal composition of the production medium and found that the optimal glucose concentration was 6.7 g/L; the ammonium sulfate concentration 0.60 g/L; and the phosphate buffer molarity 20 mmol/L. The predicted PHB yield was 54.7% (w/w) of dry biomass, and the verified value was 49.1%.
Collapse
|
6
|
Lhamo P, Mahanty B. Structural Variability, Implementational Irregularities in Mathematical Modelling of Polyhydroxyalkanoates (PHAs) Production– a State of the Art Review. Biotechnol Bioeng 2022; 119:3079-3095. [DOI: 10.1002/bit.28213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and SciencesCoimbatore641114Tamil NaduIndia
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and SciencesCoimbatore641114Tamil NaduIndia
| |
Collapse
|
7
|
Parroquin Gonzalez M, Winterburn J. Enhanced biosynthesis of polyhydroxyalkanoates by continuous feeding of volatile fatty acids in Haloferax mediterranei. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Facilitating the industrial transition to microbial and microalgal factories through mechanistic modelling within the Industry 4.0 paradigm. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Muthuraj R, Valerio O, Mekonnen TH. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. Int J Biol Macromol 2021; 187:422-440. [PMID: 34324901 DOI: 10.1016/j.ijbiomac.2021.07.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing renewable resource-based plastics with complete biodegradability and a minimal carbon footprint can open new opportunities to effectively manage the end-of-life plastics waste and achieve a low carbon society. Polyhydroxyalkanoates (PHAs) are biobased and biodegradable thermoplastic polyesters that accumulate in microorganisms (e.g., bacterial, microalgal, and fungal species) as insoluble and inert intracellular inclusion. The PHAs recovery from microorganisms, which typically involves cell lysis, extraction, and purification, provides high molecular weight and purified polyesters that can be compounded and processed using conventional plastics converting equipment. The physio-chemical, thermal, and mechanical properties of the PHAs are comparable to traditional synthetic polymers such as polypropylene and polyethylene. As a result, it has attracted substantial applications interest in packaging, personal care, coatings, agricultural and biomedical uses. However, PHAs have certain performance limitations (e.g. slow crystallization), and substantially more expensive than many other polymers. As such, more research and development is required to enable them for extensive use. This review provides a critical review of the recent progress achieved in PHAs production using different microorganisms, downstream processing, material properties, processing avenues, recycling, aerobic and anaerobic biodegradation, and applications.
Collapse
Affiliation(s)
- Rajendran Muthuraj
- Worn Again Technologies Ltd, Bio City, Pennyfoot St, NG1 1GF Nottingham, Nottinghamshire, United Kingdom
| | - Oscar Valerio
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción, Chile
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.
| |
Collapse
|
10
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|