1
|
Zhang L, Zhang Z, Xing C, Yu A, Yu J, Chen P. Aromatic Amino Acid-Dependent Surface Assembly of Amphiphilic Peptides for One-Step Graphite Exfoliation and Graphene Functionalization. J Phys Chem Lett 2024; 15:6611-6620. [PMID: 38888261 DOI: 10.1021/acs.jpclett.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Amphiphilic peptides show great potential for exfoliating graphite and functionalizing graphene. However, the variety of amino acids complicates our understanding of the underlying mechanisms. In this study, we designed four peptides (C6W1, C6W2, C6W4, and C6W6) with different amounts of aromatic tryptophan amino acids and two additional peptides (C6F4 and C6Y4) by substituting tryptophan with aromatic phenylalanine or tyrosine. This allowed us to investigate the processes and mechanisms of graphite exfoliation and graphene functionalization. Using experimental and computational methods, we discovered that peptides containing tryptophan demonstrated higher exfoliation efficiency and increased tryptophan content further improved this efficiency, resulting in more peptide-functionalized graphene layers. Significantly, the primary driving force for the surface-assisted assembly of peptides on graphite is the π-π stacking interaction between the aromatic ring contributed by aromatic amino acids and the hexagonal rings of the graphite surface. This interaction leads to a layer-by-layer exfoliation mechanism. Our research offers valuable insights into peptide design strategies for one-step graphite exfoliation and graphene functionalization in aqueous environments.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Zhining Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Cheng Xing
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Jingmou Yu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
2
|
Zhao T, Shu T, Lang J, Cui Z, Li P, Wang S. An Fe-organic framework/arginine-glycine-aspartate peptide-modified sensor for electrochemically detecting nitric oxide released from living cells. Biomater Sci 2023; 11:7579-7587. [PMID: 37772672 DOI: 10.1039/d3bm00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Nitric oxide (NO) is a crucial cell-signaling molecule utilized in numerous physiological and pathological processes. Monitoring cellular levels of NO requires a sensor with sufficient sensitivity, transient recording capability, and biocompatibility. Owing to the large surface area and high catalytic activity of the metal-organic framework, Fe-BTC was used for the modification of screen-printed electrodes (SPEs). This study investigates the electrochemical sensing of NO on modified SPEs. Additionally, the introduction of a cell-adhesive molecule, arginine-glycine-aspartate peptide (RGD), considerably improved the cytocompatibility, resulting in superior cell attachment and growth on the SPE. The Fe-BTC/RGD-modified SPE (Fe-BTC/RGD/SPE) exhibited electrocatalytic NO oxidation at 0.8 V, demonstrating a linear response with a detection limit of 11.88 nM over a wide concentration range (0.17-47.37 μM) and a response time of approximately 0.9 s. Subsequently, the as-obtained Fe-BTC/RGD/SPE was successfully utilized for the real-time detection of NO released from human endothelial cells cultured on the electrode. Therefore, the study undertaken shows remarkable potential of Fe-BTC/RGD/SPE for practical applications in biological processes and clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ting Shu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Jinrong Lang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ziyu Cui
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Ping Li
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Shi Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, PR China.
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, PR China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, PR China
| |
Collapse
|
3
|
Peptide-modified substrate enhances cell migration and migrasome formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112495. [PMID: 34857281 DOI: 10.1016/j.msec.2021.112495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are cell-to-cell communication tools. Migrasomes are recently discovered microscale EVs formed at the rear ends of migrating cells, and thus are suggested to be involved in communicating with neighboring cells. In cell culture, peptide scaffolds on substrates have been used to demonstrate cellular function for regenerative medicine. In this study, we evaluated peptide scaffolds, including cell penetrating, virus fusion, and integrin-binding peptides, for their potential to enable the formation of migrasome-like vesicles. Through structural and functional analyses, we confirmed that the EVs formed on these peptide-modified substrates were migrasomes. We further noted that the peptide interface comprising cell-penetrating peptides (pVEC and R9) and virus fusion peptide (SIV) have superior properties for enabling cell migration and migrasome formation than fibronectin protein, integrin-binding peptide (RGD), or bare substrate. This is the first report of migrasome formation on peptide-modified substrates. Additionally, the combination of 95% RGD and 5% pVEC peptides provided a functional interface for effective migrasome formation and desorption of cells from the substrate via a simple ethylenediaminetetraacetic acid treatment. These results provide a functional substrate for the enhancement of migrasome formation and functional analysis.
Collapse
|