1
|
Minami SA, Garimella SS, Shah PS. Computational evaluation of light propagation in cylindrical bioreactors for optogenetic mammalian cell cultures. Biotechnol J 2024; 19:e2300071. [PMID: 37877211 DOI: 10.1002/biot.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023]
Abstract
Light-inducible regulation of cellular pathways and gene circuits in mammalian cells is a new frontier in mammalian genetic engineering. Optogenetic mammalian cell cultures, which are light-sensitive engineered cells, utilize light to regulate gene expression and protein activity. As a low-cost, tunable, and reversible input, light is highly adept at spatiotemporal and orthogonal regulation of cellular behavior. However, light is absorbed and scattered as it travels through media and cells, and the applicability of optogenetics in larger mammalian bioreactors has not been determined. In this work, we computationally explore the size limit to which optogenetics can be applied in cylindrical bioreactors at relevant height-to-diameter ratios. We model the propagation of light using the radiative transfer equation and consider changes in reactor volume, absorption coefficient, scattering coefficient, and scattering anisotropy. We observe sufficient light penetration for activation in simulated bioreactors with sizes of up to 80,000 L at maximal cell densities. We performed supporting experiments and found that significant attenuation occurs at the boundaries of the system, but the relative change in intensity distribution within the reactor was consistent with simulation results. We conclude that optogenetics can be applied to bioreactors at an industrial scale and may be a valuable tool for specific biomanufacturing applications.
Collapse
Affiliation(s)
- Shiaki A Minami
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Shruthi S Garimella
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Priya S Shah
- Department of Chemical Engineering, University of California, Davis, California, USA
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| |
Collapse
|
2
|
Cordell WT, Avolio G, Takors R, Pfleger BF. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol 2023; 41:1442-1457. [PMID: 37271589 DOI: 10.1016/j.tibtech.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
If biomanufacturing can become a sustainable route for producing chemicals, it will provide a critical step in reducing greenhouse gas emissions to fight climate change. However, efforts to industrialize microbial synthesis of chemicals have met with varied success, due, in part, to challenges in translating laboratory successes to industrial scale. With a particular focus on Escherichia coli, this review examines the lessons learned when studying microbial physiology and metabolism under conditions that simulate large-scale bioreactors and methods to minimize cellular waste through reduction of maintenance energy, optimizing the stress response and minimizing culture heterogeneity. With general strategies to overcome these challenges, biomanufacturing process scale-up could be de-risked and the time and cost of bringing promising syntheses to market could be reduced.
Collapse
Affiliation(s)
- William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gennaro Avolio
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart 70569, Germany
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Center Advanced Bioenergy and Bioproducts Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
3
|
Weggen JT, Seidel J, Bean R, Wendeler M, Hubbuch J. Kinetic studies and CFD-based reaction modeling for insights into the scalability of ADC conjugation reactions. Front Bioeng Biotechnol 2023; 11:1123842. [PMID: 37082211 PMCID: PMC10111256 DOI: 10.3389/fbioe.2023.1123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
The manufacturing of antibody-drug conjugates (ADCs) involves the addition of a cytotoxic small-molecule linker-drug (= payload) to a solution of functionalized antibodies. For the development of robust conjugation processes, initially small-scale reaction tubes are used which requires a lot of manual handling. Scale-up to larger reaction vessels is often knowledge-driven and scale-comparability is solely assessed based on final product quality which does not account for the dynamics of the reaction. In addition, information about the influence of process parameters, such as stirrer speed, temperature, or payload addition rates, is limited due to high material costs. Given these limitations, there is a need for a modeling-based approach to investigate conjugation scale-up. In this work, both experimental kinetic studies and computational fluid dynamics (CFD) conjugation simulations were performed to understand the influence of scale and mixing parameters. In the experimental part, conjugation kinetics in small-scale reaction tubes with different mixing types were investigated for two ADC systems and compared to larger bench-scale reactions. It was demonstrated that more robust kinetics can be achieved through internal stirrer mixing instead of external mixing devices, such as orbital shakers. In the simulation part, 3D-reactor models were created by coupling CFD-models for three large-scale reaction vessels with a kinetic model for a site-specific conjugation reaction. This enabled to study the kinetics in different vessels, as well as the effect of process parameter variations in silico. Overall, it was found that for this conjugation type sufficient mixing can be achieved at all scales and the studied parameters cause only deviations during the payload addition period. An additional time-scale analysis demonstrated to aid the assessment of mixing effects during ADC process scale-up when mixing times and kinetic rates are known. In summary, this work highlights the benefit of kinetic models for enhanced conjugation process understanding without the need for large-scale experiments.
Collapse
Affiliation(s)
- Jan Tobias Weggen
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janik Seidel
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ryan Bean
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Michaela Wendeler
- Purification Process Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
4
|
Che X, Wu F, Ren H, Li M, Zhang H. Numerical study on the effect of longitudinal vortex generator on semi-dry desulfurization process in 3D spouted beds. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2023.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Canova CT, Inguva PK, Braatz RD. Mechanistic modeling of viral particle production. Biotechnol Bioeng 2023; 120:629-641. [PMID: 36461898 DOI: 10.1002/bit.28296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Viral systems such as wild-type viruses, viral vectors, and virus-like particles are essential components of modern biotechnology and medicine. Despite their importance, the commercial-scale production of viral systems remains highly inefficient for multiple reasons. Computational strategies are a promising avenue for improving process development, optimization, and control, but require a mathematical description of the system. This article reviews mechanistic modeling strategies for the production of viral particles, both at the cellular and bioreactor scales. In many cases, techniques and models from adjacent fields such as epidemiology and wild-type viral infection kinetics can be adapted to construct a suitable process model. These process models can then be employed for various purposes such as in-silico testing of novel process operating strategies and/or advanced process control.
Collapse
Affiliation(s)
- Christopher T Canova
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Pavan K Inguva
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Guo R, Wu F, Che X, Zhang Y, Mao J. Effect of the novel combined internal devices on gas−solid flow behavior in spouted beds. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Ngu V, Fletcher DF, Kavanagh JM, Rafrafi Y, Dumas C, Morchain J, Cockx A. H2 mass transfer – a key factor for efficient biological methanation: Comparison between pilot-scale experimental data, 1D and CFD models. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Computational fluid dynamics modeling of cell cultures in bioreactors and its potential for cultivated meat production—A mini-review. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Cudak M, Rakoczy R. Hydrodynamics of gas-liquid and biophase-gas-liquid systems in stirred tanks of different scales. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Tang R, Cui C, Zhang D, Li D, Li J, Xu X. Experimental and CFD Simulation Study of the Air-Blowing Process of Iodine in Nitric Acid Solution. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruishu Tang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Chang Cui
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dongxiang Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dagang Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jinying Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiyan Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|