2
|
Ferreira-Sgobbi R, de Figueiredo RM, Frias AT, Matthiesen M, Batistela MF, Falconi-Sobrinho LL, Vilela-Costa HH, Sá SI, Lovick TA, Zangrossi H, Coimbra NC. Panic-like responses of female Wistar rats confronted by Bothrops alternatus pit vipers, or exposure to acute hypoxia: Effect of oestrous cycle. Eur J Neurosci 2021; 55:32-48. [PMID: 34850475 DOI: 10.1111/ejn.15548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 02/02/2023]
Abstract
Anxiety-related diseases are more than twice as common in women than in men, and in women, symptoms may be exacerbated during the late luteal phase of the menstrual cycle. Despite this, most research into the underlying mechanisms, which drives drug development, have been carried out using male animals. In an effort to redress this imbalance, we compared responses of male and female Wistar rats during exposure to two unconditioned threatening stimuli that evoke panic-related defensive behaviours: confrontation with a predator (Bothrops alternatus) and acute exposure to hypoxia (7% O2 ). Threatened by venomous snake, male and female rats initially displayed defensive attention, risk assessment, and cautious interaction with the snake, progressing to defensive immobility to overt escape. Both males and females displayed higher levels of risk assessment but less interaction with the predator. They also spent more time in the burrow, displaying inhibitory avoidance, and more time engaged in defensive attention, and non-oriented escape behaviour. In females, anxiety-like behaviour was most pronounced in the oestrous and proestrus phases whereas panic-like behaviour was more pronounced during the dioestrus phase, particularly during late dioestrus. Acute hypoxia evoked panic-like behaviour (undirected jumping) in both sexes, but in females, responsiveness in late dioestrus was significantly greater than at other stages of the cycle. The results reveal that females respond in a qualitatively similar manner to males during exposure to naturally occurring threatening stimuli, but the responses of females is oestrous cycle dependent with a significant exacerbation of panic-like behaviour in the late dioestrus phase.
Collapse
Affiliation(s)
- Renata Ferreira-Sgobbi
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Department of Psychology, Division of Psychobiology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Rebeca Machado de Figueiredo
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| | - Alana Tercino Frias
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Melina Matthiesen
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Fitipaldi Batistela
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| | - Heloísa Helena Vilela-Costa
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil
| | - Susana Isabel Sá
- Unidade de Anatomia, Departamento de Biomedicina, Faculdade de Medicina da Universidade de Porto, Porto, Portugal
| | - Thelma Anderson Lovick
- Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hélio Zangrossi
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil.,Behaviour of Snakes Division-MEDUSA Project, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil.,Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Neville V, Mounty J, Benato L, Hunter K, Mendl M, Paul ES. Pet rat welfare in the United Kingdom: The good, the bad and the ugly. Vet Rec 2021; 189:e559. [PMID: 34101201 DOI: 10.1002/vetr.559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND To date, despite the substantial literature investigating how rats prefer to be kept in captivity, no research has been conducted to assess the housing, husbandry and health of pet rats. METHODS To better understand the United Kingdom's pet rat population and the welfare issues they face, we conducted an online survey of pet rat owners. The survey included questions about the owner and their opinions about pet rats, and about their rats' health, husbandry and housing. RESULTS The results, from 677 complete responses, highlighted areas of rat care that were "good", "bad" and "ugly" (i.e. likely to be highly detrimental to welfare). The good was that many rats were provided with a social companion and enrichment; the bad was that we could not be certain whether rats had a sufficiently nutritious diet or sufficient opportunities to explore or adequate nesting substrate; and the ugly included cases of exposure of rats to predator species within the home and a generally high prevalence of disease. CONCLUSIONS We conclude that there is much cause for concern about the welfare of pet rats in the United Kingdom.
Collapse
Affiliation(s)
- Vikki Neville
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Jessica Mounty
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Livia Benato
- Bristol Veterinary School, University of Bristol, Bristol, UK.,City Vets, Exeter, UK
| | | | - Michael Mendl
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | | |
Collapse
|
4
|
Horváth G, Martín J, López P, Herczeg G. Ain’t going down without a fight: state-and environment-dependence of antipredator defensive aggressive personalities in Carpetan rock lizard. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02922-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Aggression is one of the most frequently studied behavioural traits across a wide range of taxa; however, most studies evaluate aggressive behaviour in a social context, in which aggressive interactions between conspecifics are motivated by resource control (offensive or social aggression). However, in an antipredator context, the primary role of aggression is defence (defensive or antipredator aggression). Although the neuroendocrinology of antipredator aggression is often studied in domesticated and laboratory animals, how environment and individual state affect this behavioural trait in the wild is largely unknown. Here, by conducting a manipulative experiment, we tested whether (i) consistent between-individual differences (i.e. animal personality) are present in antipredator aggression in adult male Carpetan rock lizards (Iberolacerta cyreni) and (ii) short-term environmental changes (presence vs. absence of predator cues) and differences in individual state (body length, head size, hind limb length) affect individual mean behaviour (i.e. behavioural type). We found moderate-high repeatability in antipredator aggression (willingness to bite a human), indicating the presence of animal personality in this behavioural trait. Lizards were on average more defensive in the presence of predator cues; furthermore, short-legged males showed higher antipredator aggression than long-legged males in the presence of predator cues, probably as an attempt to balance their decreased escape speed. Larger (~ older) males were more defensive than smaller ones, probably due to their increased fighting ability. We conclude that antipredator aggression is an important part of an individual’s behavioural repertoire and its expression is driven by both environmental situation and individual state.
Significance statement
Antipredator/defensive aggression is not the primary antipredatory response; however, when other ways of escape are not possible, actually hurting the predator could be the only way of survival. While this behaviour obviously has substantial effects on fitness, it is severely understudied compared to social/offensive aggression. In a manipulative experiment, we found that there are consistent between-individual differences in antipredator aggression (i.e. willingness to bite during handling) of adult male Carpetan rock lizards (Iberolacerta cyreni), supporting the presence of animal personality and suggesting that this behavioural trait might respond to natural selection. Furthermore, short-term environmental variation (i.e. presence vs. absence of predator cues) in interaction with individual state affected antipredator aggression of individuals, emphasising the ecological and evolutionary relevance of this behaviour.
Collapse
|
5
|
Moore NLT, Altman DE, Gauchan S, Genovese RF. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure. Stress 2016; 19:295-302. [PMID: 27295201 DOI: 10.1080/10253890.2016.1191465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.
Collapse
Affiliation(s)
- Nicole L T Moore
- a Military Psychiatry Branch , Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Daniel E Altman
- a Military Psychiatry Branch , Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Sangeeta Gauchan
- a Military Psychiatry Branch , Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Raymond F Genovese
- a Military Psychiatry Branch , Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring , MD , USA
| |
Collapse
|
6
|
Paternal calorie restriction prior to conception alters anxiety-like behavior of the adult rat progeny. Psychoneuroendocrinology 2016; 64:1-11. [PMID: 26571216 DOI: 10.1016/j.psyneuen.2015.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 11/22/2022]
Abstract
The maternal environment influences a broad range of phenotypic outcomes for offspring, with anxiety-like behavior being particularly susceptible to maternal environmental perturbations. Much less is known regarding paternal environmental influences. To investigate this, adult male rats were exposed to 25% calorie restriction (CR) or glucocorticoid elevation (CORT; 200 μg/ml of corticosterone in drinking water) for ∼ 6 weeks prior to breeding. Elevated plus maze (EPM), open field (OF), predator odor (cat urine), and acoustic startle/pre-pulse inhibition (AS/PPI) were characterised in the adult male offspring. Plasma concentrations of corticotrophin-releasing hormone (CRF), adrenocorticotropin hormone (ACTH), and serum leptin were characterised in both sires and offspring. Maternal care received by litters was additionally observed. Expectedly, CR and CORT treatment attenuated weight gain, whilst only CR induced anxiolytic behavior in the EPM. The adult offspring sired by CR males also demonstrated a reduction in weight gain, food intake and serum leptin levels when compared to controls. Moreover, CR offspring demonstrated an anxiolytic-like profile in the EPM and OF, enhanced habituation to the AS pulse, reduced PPI, but no alteration to predator odor induced defensiveness compared to control. CORT offspring failed to demonstrate any behavioral differences from controls, however, exhibited a trend towards reduced ACTH and leptin concentration. Collectively, the results indicate that a reduction in calories in males prior to conception can affect the behavior of adult offspring. The phenotypic transmission of CR experiences from fathers to the progeny could potentially be mediated epigenetically. The role of glucocorticoid elevation and maternal care are also discussed.
Collapse
|
10
|
Chen SWC, Shemyakin A, Wiedenmayer CP. The role of the amygdala and olfaction in unconditioned fear in developing rats. J Neurosci 2006; 26:233-40. [PMID: 16399692 PMCID: PMC6674335 DOI: 10.1523/jneurosci.2890-05.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early in ontogeny, young rats must be able to detect dangerous stimuli and to exhibit appropriate defensive behaviors. Different nuclei of the amygdala mediate unconditioned and conditioned fear responses to threat in adult rats. The aim of this study was to determine the role of the amygdala in unlearned fear behavior in young rats. When exposed to an unfamiliar adult male rat, preweaning rat pups freeze, with peak levels on postnatal day 14 and declining levels on day 18. Pups were made anosmic to block olfactory input to the amygdala, and amygdala activation was assessed by quantifying the neuronal marker c-fos. Anosmic pups did not freeze in the presence of the male rat and had decreased c-fos expression in the medial amygdala on day 14 and in the medial and lateral amygdala on day 18. However, the decrease in freezing between days 14 and 18 was not associated with a decrease in c-fos expression in the medial amygdala. The medial and lateral amygdala were then inactivated by local muscimol infusion on day 14. Muscimol infusion into the medial amygdala decreased freezing to the male rat but not to a loud noise, whereas infusion into the lateral amygdala blocked freezing to a loud noise but not to the male. These findings indicate that different nuclei of the amygdala process sensory information of different modalities, mediate unconditioned freezing, and may be involved in developmental changes in the fear response in young rats.
Collapse
Affiliation(s)
- Sean W C Chen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
11
|
Midzyanovskaya IS, Shatskova AB, Sarkisova KY, van Luijtelaar G, Tuomisto L, Kuznetsova GD. Convulsive and nonconvulsive epilepsy in rats: effects on behavioral response to novelty stress. Epilepsy Behav 2005; 6:543-51. [PMID: 15907748 DOI: 10.1016/j.yebeh.2005.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/28/2005] [Accepted: 03/01/2005] [Indexed: 02/03/2023]
Abstract
Behavioral response to a new environment of Wistar and WAG/Rij rats with absence and/or audiogenic seizures (AGSs) was investigated. Behavior was observed in open-field (OF) and light-dark choice (LD) tests. Correlations of test performance with seizure parameters were evaluated. AGS-susceptible Wistar rats exhibited reduced exploration (rearing) in both tests and a tendency toward hyperlocomotion in the OF test. Genetically absence-epileptic WAG/Rij rats demonstrated agitation (increased vertical/horizontal locomotion, enhanced defecation/urination) in the LD test, whereas they exhibited reduced exploration, increased grooming, and hyperlocomotion in the OF test. Anxiety level, as estimated by grooming time in the OF test and latency to first "risk assessment" in the LD test, correlated positively with the propensity for absence seizures in WAG/Rij rats not susceptible to AGSs. It can be concluded that the behavioral response to novelty stress in epileptic subjects depends on the type and severity of seizures.
Collapse
Affiliation(s)
- I S Midzyanovskaya
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|