1
|
Omidian H, Chowdhury SD, Wilson RL. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024; 10:238. [PMID: 38667657 PMCID: PMC11049258 DOI: 10.3390/gels10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success. It also explores the integration of cutting-edge technologies like 3D bioprinting and biofabrication in constructing complex tissue structures, alongside innovative materials and techniques aimed at enhancing tissue growth and functionality. Through a detailed examination of these efforts, the manuscript sheds light on the potential of hydrogels in advancing regenerative medicine and the necessity for multidisciplinary collaboration to navigate the challenges ahead.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (R.L.W.)
| | | | | |
Collapse
|
2
|
Rachinskaya OA, Melnikova EV, Merkulov VA. FEATURES OF QUALITY CONTROL STRATEGY FOR DRUGS BASED ON VIABLE SKIN CELLS. PHARMACY & PHARMACOLOGY 2023. [DOI: 10.19163/2307-9266-2022-10-6-515-524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aim of the study was to research the international experience in quality assurance of the products based on skin cells in order to identify the features of the quality control strategy in the development, production, as well as during an expert quality assessment as a part of the state registration procedure in the Russian Federation.Materials and methods. The article provides an analysis of the materials presented in the assessment reports of the USA and Japanese regulatory authorities, as well as on the official websites of manufacturers, in review and scientific papers on the study of the structure and properties of tissue-engineered skin analogs.Results. The manufacture of products containing human skin cells is associated with such risks as the possibility of contamination of the preparation with infective agents transmitted by materials of the animal origin, feeder cells, donor cells, or during the manufacturing process; a small amount of biopsy materials; a complexity of a three-dimensional product structure when combining cells with a scaffold; continuity of the manufacture process and a short product expiry date. The raw materials and reagents control, the creation of cell banks, using animal feeder cells only from qualified cell banks, an in-process control and release testing in accordance with the requirements of the finished product specification, make it possible to obtain a preparation with a reproducible quality. The specification should contain information about the identity, safety and potency of the product. For each preparation, the choice of approaches for assessing the quality is individual and depends on its composition and mode of action.Conclusion. The features of the quality control strategy for the drugs based on human skin cells, consist in the implementation of control measures in order to obtain a proper quality of cellular (viability, sterility, identity, potency, et al) and non-cellular (physico-chemical scaffold properties) components or the whole graft (bioburden, barrier properties). The approaches and methods for determining the potency should be selected individually for each product and reflect the number, viability and identity of cells, a proliferative activity and secretable ability of the cellular component.
Collapse
Affiliation(s)
| | - E. V. Melnikova
- Scientific Centre for Expert Evaluation of Medicinal Products
| | - V. A. Merkulov
- Scientific Centre for Expert Evaluation of Medicinal Products
| |
Collapse
|
3
|
Photocatalytic Synthesis of Materials for Regenerative Medicine Using Complex Oxides with β-pyrochlore Structure. Life (Basel) 2023; 13:life13020352. [PMID: 36836711 PMCID: PMC9959904 DOI: 10.3390/life13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Graft copolymerization of methyl methacrylate onto cod collagen was carried out under visible light irradiation (λ = 400-700 nm) at 20-25 °C using the RbTe1.5W0.5O6, CsTeMoO6, and RbNbTeO6 complex oxides with β-pyrochlore structure as photocatalysts. The as-prepared materials were characterized by X-ray diffraction, scanning electron microscopy, and UV-Vis diffuse reflectance spectroscopy. It was also found that RbNbTeO6 with β-pyrochlore structure was not able to photocatalyze the reaction. Enzymatic hydrolysis of the obtained graft copolymers proceeds with the formation of peptides with a molecular weight (MW) of about 20 and 10 kDa. In contrast to collagen, which decomposes predominantly to peptides with MW of about 10 kDa, the ratio of fractions with MW of about 10 kDa and 20 kDa differs much less, their changes are symbatic, and the content of polymers with MW of more than 20 kDa is about 70% after 1 h in the case of graft copolymers. The data obtained indicate that synthetic fragments grafted to the collagen macromolecule do not prevent the hydrolysis of the peptide bonds but change the rate of polymer degradation. This is important for creating network matrix scaffolds based on graft copolymers by cross-linking peptides, which are products of enzymatic hydrolysis.
Collapse
|
4
|
Tyagi M, Guaragni B, Dendi A, Tekleab AM, Motta M, Maheshwari A. Use of Cryoprecipitate in Newborn Infants. NEWBORN (CLARKSVILLE, MD.) 2023; 2:11-18. [PMID: 37206579 PMCID: PMC10193588 DOI: 10.5005/jp-journals-11002-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cryoprecipitate is a transfusion blood product derived from fresh-frozen plasma (FFP), comprised mainly of the insoluble precipitate that gravitates to the bottom of the container when plasma is thawed and refrozen. It is highly enriched in coagulation factors I (fibrinogen), VIII, and XIII; von Willebrand factor (vWF); and fibronectin. In this article, we have reviewed currently available information on the preparation, properties, and clinical importance of cryoprecipitate in treating critically ill neonates. We have searched extensively in the databases PubMed, Embase, and Scopus after short-listing keywords to describe the current relevance of cryoprecipitate.
Collapse
Affiliation(s)
- Manvi Tyagi
- Department of Pediatrics, Augusta University, Georgia, USA
| | - Brunetta Guaragni
- Department of Neonatology and Neonatal Intensive Care, Children’s Hospital, ASST-Spedali Civili, Brescia, Italy
| | - Alvaro Dendi
- Department of Neonatology, Centro Hospitalario Pereira Rossell, Universidad de la República, Montevideo, Uruguay
| | - Atnafu Mekonnen Tekleab
- Department of Pediatrics, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Mario Motta
- Department of Neonatology and Neonatal Intensive Care, Children’s Hospital, ASST-Spedali Civili, Brescia, Italy
| | | |
Collapse
|
5
|
Graft Polymerization of Acrylamide in an Aqueous Dispersion of Collagen in the Presence of Tributylborane. Polymers (Basel) 2022; 14:polym14224900. [PMID: 36433027 PMCID: PMC9698224 DOI: 10.3390/polym14224900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Graft copolymers of collagen and polyacrylamide (PAA) were synthesized in a suspension of acetic acid dispersion of fish collagen and acrylamide (AA) in the presence of tributylborane (TBB). The characteristics of the copolymers were determined using infrared spectroscopy and gel permeation chromatography (GPC). Differences in synthesis temperature between 25 and 60 °C had no significant effect on either proportion of graft polyacrylamide generated or its molecular weight. However, photomicrographs taken with the aid of a scanning electron microscope showed a breakdown of the fibrillar structure of the collagen within the copolymer at synthesis temperatures greater than 25 °C. The mechanical properties of the films and the cytotoxicity of the obtained copolymer samples were studied. The sample of a hybrid copolymer of collagen and PAA obtained at 60 °C has stronger mechanical properties compared to other tested samples. Its low cytotoxicity, when the monomer is removed, makes materials based on it promising in scaffold technologies.
Collapse
|
6
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [PMID: 35909078 DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
7
|
Chasova V, Semenycheva L, Egorikhina M, Charykova I, Linkova D, Rubtsova Y, Fukina D, Koryagin A, Valetova N, Suleimanov E. Cod Gelatin as an Alternative to Cod Collagen in Hybrid Materials for Regenerative Medicine. Macromol Res 2022. [DOI: 10.1007/s13233-022-0017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Mohd Yunus MH, Rashidbenam Z, Fauzi MB, Bt Hj Idrus R, Bin Saim A. Evaluating Feasibility of Human Tissue Engineered Respiratory Epithelium Construct as a Potential Model for Tracheal Mucosal Reconstruction. Molecules 2021; 26:molecules26216724. [PMID: 34771136 PMCID: PMC8587409 DOI: 10.3390/molecules26216724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
The normal function of the airway epithelium is vital for the host’s well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction.
Collapse
Affiliation(s)
- Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-123-137-644
| | - Zahra Rashidbenam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultation Clinic, Ampang Puteri Specialist Hospital, Ampang 68000, Selangor, Malaysia;
| |
Collapse
|
9
|
Egorikhina MN, Bronnikova II, Rubtsova YP, Charykova IN, Bugrova ML, Linkova DD, Aleynik DY. Aspects of In Vitro Biodegradation of Hybrid Fibrin-Collagen Scaffolds. Polymers (Basel) 2021; 13:polym13203470. [PMID: 34685229 PMCID: PMC8539699 DOI: 10.3390/polym13203470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
The success of the regenerative process resulting from the implantation of a scaffold or a tissue-engineered structure into damaged tissues depends on a series of factors, including, crucially, the biodegradability of the implanted materials. The selection of a scaffold with appropriate biodegradation characteristics allows for synchronization of the degradation of the construct with the processes involved in new tissue formation. Thus, it is extremely important to characterize the biodegradation properties of potential scaffold materials at the stage of in vitro studies. We have analyzed the biodegradation of hybrid fibrin–collagen scaffolds in both PBS solution and in trypsin solution and this has enabled us to describe the processes of both their passive and enzymatic degradation. It was found that the specific origin of the collagen used to form part of the hybrid scaffolds could have a significant effect on the nature of the biodegradation process. It was also established, during comparative studies of acellular scaffolds and scaffolds containing stem cells, that the cells, too, make a significant contribution to changes in the biodegradation and structural properties of such scaffolds. The study results also provided evidence indicating the dependency between the pre-cultivation period for the cellular scaffolds and the speed and extent of their subsequent biodegradation. Our discussion of results includes an attempt to explain the mechanisms of the changes found. We hope that the said results will make a significant contribution to the understanding of the processes affecting the differences in the biodegradation properties of hybrid, biopolymer, and hydrogel scaffolds.
Collapse
|
10
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
11
|
Egorikhina MN, Semenycheva LL, Chasova VO, Bronnikova II, Rubtsova YP, Zakharychev EA, Aleynik DY. Changes in the Molecular Characteristics of Bovine and Marine Collagen in the Presence of Proteolytic Enzymes as a Stage Used in Scaffold Formation. Mar Drugs 2021; 19:502. [PMID: 34564164 PMCID: PMC8470260 DOI: 10.3390/md19090502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Biopolymers, in particular collagen and fibrinogen, are the leading materials for use in tissue engineering. When developing technology for scaffold formation, it is important to understand the properties of the source materials as well as the mechanisms that determine the formation of the scaffold structures. Both factors influence the properties of scaffolds to a great extent. Our present work aimed to identify the features of the molecular characteristics of collagens of different species origin and the changes they undergo during the enzymatic hydrolysis used for the process of scaffold formation. For this study, we used the methods of gel-penetrating chromatography, dynamic light scattering, reading IR spectra, and scanning electron microscopy. It was found that cod collagen (CC) and bovine collagen (BC) have different initial molecular weight parameters, and that, during hydrolysis, the majority of either type of protein is hydrolyzed by the proteolytic enzymes within the first minute. The differently sourced collagen samples were also hydrolyzed with the formation of two low molecular fractions: Mw ~ 10 kDa and ~20 kDa. In the case of CC, the microstructure of the final scaffolds contained denser, closely spaced fibrillar areas, while the BC-sourced scaffolds had narrow, short fibrils composed of unbound fibers of hydrolyzed collagen in their structure.
Collapse
Affiliation(s)
- Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Ludmila L. Semenycheva
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Victoria O. Chasova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Irina I. Bronnikova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Yulia P. Rubtsova
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| | - Evgeniy A. Zakharychev
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia; (L.L.S.); (V.O.C.); (E.A.Z.)
| | - Diana Ya. Aleynik
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University, the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), Minin and Pozharsky Square 10/1, 603950 Nizhny Novgorod, Russia; (I.I.B.); (Y.P.R.); (D.Y.A.)
| |
Collapse
|
12
|
Fibrin Glue Implants Seeded with Dental Pulp and Periodontal Ligament Stem Cells for the Repair of Periodontal Bone Defects: A Preclinical Study. Bioengineering (Basel) 2021; 8:bioengineering8060075. [PMID: 34206126 PMCID: PMC8226811 DOI: 10.3390/bioengineering8060075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
A technology to create a cell-seeded fibrin-based implant matching the size and shape of bone defect is required to create an anatomical implant. The aim of the study was to develop a technology of cell-seeded fibrin gel implant creation that has the same shape and size as the bone defect at the site of implantation. Using computed tomography (CT) images, molds representing bone defects were created by 3D printing. The form was filled with fibrin glue and human dental pulp stem cells (DPSC). The viability, set of surface markers and osteogenic differentiation of DPSC grown in fibrin gel along with the clot retraction time were evaluated. In mice, an alveolar bone defect was created. The defect was filled with fibrin gel seeded with mouse DPSC. After 28 days, the bone repair was analyzed with cone beam CT and by histological examination. The proliferation rate, set of surface antigens and osteogenic potential of cells grown inside the scaffold and in 2D conditions did not differ. In mice, both cell-free and mouse DPSC-seeded implants increased the bone tissue volume and vascularization. In mice with cell-seeded gel implants, the bone remodeling process was more prominent than in animals with a cell-free implant. The technology of 3D-printed forms for molding implants can be used to prepare implants using components that are not suitable for 3D printing.
Collapse
|
13
|
Kudłacik-Kramarczyk S, Drabczyk A, Głąb M, Alves-Lima D, Lin H, Douglas TEL, Kuciel S, Zagórska A, Tyliszczak B. Investigations on the impact of the introduction of the Aloe vera into the hydrogel matrix on cytotoxic and hydrophilic properties of these systems considered as potential wound dressings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111977. [PMID: 33812605 DOI: 10.1016/j.msec.2021.111977] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
In the paper, synthesis of chitosan-based hydrogels modified with Aloe vera juice is presented. The novelty of the research was a combination of hydrogel materials with properties beneficial in viewpoint of their use as modern wound dressings and Aloe vera juice supporting the wound healing process. Hydrogels have been obtained via UV radiation. The impact of the amount of the crosslinking agent as well as the introduction of the Aloe vera juice into the hydrogel matrix has been determined. Performed measurements involved analysis of the swelling ability, characteristics of the surface roughness, determining the release profile of Aloe vera and the contact angles of hydrogels. Furthermore, the analysis of the dehydration process of the polymer membrane, investigations on the cytotoxicity of hydrogels via MTT reduction assay and the neutral red uptake assay as well as the studies on the pro-inflammatory activity have also been performed. It was proved that the addition of Aloe vera juice improves the hydrophilic properties of the materials (e.g. contact angle changed from 82.5° to 73.0°). Next, the use of 25% more of the crosslinker resulted even in the increase of the contact angle by 86%. Modified hydrogels showed higher swelling properties even by 15% than unmodified materials. Furthermore, obtained hydrogels show an ability to release Aloe vera - after 5 h approx. 80% of this additive has been released in an acidic environment. Tested materials do not exhibit cytotoxic properties, the addition of Aloe vera results in an improvement of the viability of L929 murine fibroblasts and, importantly, these materials show lower pro-inflammatory activity than the positive control. Performed investigations allow to state that obtained materials show a great application potential.
Collapse
Affiliation(s)
- S Kudłacik-Kramarczyk
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland.
| | - A Drabczyk
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland.
| | - M Głąb
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - D Alves-Lima
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK
| | - H Lin
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK
| | - T E L Douglas
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK; Materials Science Institute (MSI), Lancaster University, UK
| | - S Kuciel
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - A Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - B Tyliszczak
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland.
| |
Collapse
|
14
|
Egorikhina MN, Aleynik DY, Rubtsova YP, Charykova IN. Quantitative analysis of cells encapsulated in a scaffold. MethodsX 2021; 7:101146. [PMID: 33665147 PMCID: PMC7897707 DOI: 10.1016/j.mex.2020.101146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
One of the urgent problems arising while carrying out research in the field of scaffold technology is achieving an objective, direct, quantitative analysis of cells cultivated within a scaffold; one which allows characterization of the density distribution of the cells, their viability and their proliferative activity when encapsulated within the scaffold. This problem is associated with the peculiarities of cell cultivation in the three-dimensional structure of scaffolds, including limitations imposed on the possibility of direct cell counting using light microscopy. Also, most scaffolds are opaque, so this generally excludes methods of quantitative analysis using light microscopy. There are methods for the quantitative analysis of cells in a scaffold based on the assessment of their metabolic activity (for example: MTT test). However, these methods are indirect and can result in significant errors. This is due to differences in the metabolic activity of the cells, for example, in different phases of mitosis. Methods based on direct counting of the number of cells isolated from the scaffold are also characterized by a high degree of error that is associated with the loss of cells during the destruction of the scaffold. We describe in detail a method that allows the direct quantitation of cells within a scaffold. Modifications of the method make it possible both to analyze the proliferative activity of cells cultivated in a scaffold and to assess their viability and density distribution in the three-dimensional structure.•Direct rather than indirect analysis of the number of cells in the scaffold by counting the number of nuclei.•Carrying out research without destroying the scaffold structure.•Carrying out research without additional preliminary preparation of samples before staining.
Collapse
|
15
|
Catori DM, Fragal EH, Messias I, Garcia FP, Nakamura CV, Rubira AF. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal. Int J Biol Macromol 2020; 167:726-735. [PMID: 33285200 DOI: 10.1016/j.ijbiomac.2020.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023]
Abstract
Hydrogels based on pectin and cellulose nanocrystals (CNC) were used in our study to nucleation and growth of hydroxyapatite (HAp) by the biomimetic method. In this study, we evaluated the direct impact of the different percentages of CNC on pectin hydrogel and the influence of HAp obtained through two methods. CNC were obtained from HCl hydrolysis following chemical functionalization through vinyl groups. The percentage of CNC positively induces thermal stability, mechanical properties and HAp mineralization from biomimetic using simulated body fluid (1.5 SBF). Hydrogels with 5% of CNC showed a higher amount of HAp immersed for 14 days, about 28% of HAp. The obtained hydrogels were compared with hydrogels containing 20% of HAp nanoparticles obtained by chemical precipitation. Biocompatibility of the hydrogels was evaluated by cell viability using fibroblasts (L929). In general, the hydrogels obtained through the biomimetic method show slightly larger biocompatibility compared to the hybrid hydrogels obtained from chemical precipitation.
Collapse
Affiliation(s)
- Daniele M Catori
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Elizângela H Fragal
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| | - Igor Messias
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Francielle P Garcia
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Adley F Rubira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
16
|
Egorikhina MN, Rubtsova YP, Aleynik DY. Long-Term Cryostorage of Mesenchymal Stem Cell-Containing Hybrid Hydrogel Scaffolds Based on Fibrin and Collagen. Gels 2020; 6:E44. [PMID: 33255558 PMCID: PMC7709639 DOI: 10.3390/gels6040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
The most difficult issue when using tissue engineering products is enabling the ability to store them without losing their restorative capacity. The numbers and viability of mesenchymal stem cells encapsulated in a hydrogel scaffold after cryostorage at -80 °C (by using, individually, two kinds of cryoprotectors-Bambanker and 10% DMSO (Dimethyl sulfoxide) solution) for 3, 6, 9, and 12 months were determined, with subsequent assessment of cell proliferation after 96 h. The analysis of the cellular component was performed using fluorescence microscopy and the two fluorochromes-Hoechst 3334 and NucGreenTM Dead 488. The experimental protocol ensured the preservation of cells in the scaffold structure, retaining both high viability and proliferative activity during storage for 3 months. Longer storage of scaffolds led to their significant changes. Therefore, after 6 months, the proliferative activity of cells decreased. Cryostorage of scaffolds for 9 months led to a decrease in cells' viability and proliferative activity. As a result of cryostorage of scaffolds for 12 months, a decrease in viability and proliferative activity of cells was observed, as well as pronounced changes in the structure of the hydrogel. The described scaffold cryostorage protocol could become the basis for the development of storage protocols for such tissue engineering products, and for helping to extend the possibilities of their clinical use while accelerating their commercialization.
Collapse
Affiliation(s)
- Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education, Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH), 603600 Nizhny Novgorod, Russia; (Y.P.R.); (D.Y.A.)
| | | | | |
Collapse
|
17
|
Egorikhina MN, Rubtsova YP, Charykova IN, Bugrova ML, Bronnikova II, Mukhina PA, Sosnina LN, Aleynik DY. Biopolymer Hydrogel Scaffold as an Artificial Cell Niche for Mesenchymal Stem Cells. Polymers (Basel) 2020; 12:polym12112550. [PMID: 33143320 PMCID: PMC7692241 DOI: 10.3390/polym12112550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of stem cell processes is regulated by internal and external signals of the cell "niche". In general, the niche of stem cells can be represented as the microenvironment of the cells, providing a signal complex, determining the properties of the cells. At the same time, the "niche" concept implies feedback. Cells can modify their microenvironment, supporting homeostasis or remodeling the composition and structure of the extracellular matrix. To ensure the regenerative potential of tissue engineering products the "niche" concept should be taken into account. To investigate interactions in an experimental niche, an original hydrogel biopolymer scaffold with encapsulated mesenchymal adipose-derived stem cells (ASCs) was used in this study. The scaffold provides for cell adhesion, active cell growth, and proliferative activity. Cells cultured within a scaffold are distinguished by the presence of a developed cytoskeleton and they form a cellular network. ASCs cultured within a scaffold change their microenvironment by secreting VEGF-A and remodeling the scaffold structure. Scaffold biodegradation processes were evaluated after previous culturing of the ASCs in the scaffolds for periods of either 24 h or six days. The revealed differences confirmed that changes had occurred in the properties of scaffolds remodeled by cells during cultivation. The mechanisms of the identified changes and the possibility of considering the presented scaffold as an appropriate artificial niche for ASCs are discussed.
Collapse
|
18
|
Semenycheva LL, Egorikhina MN, Chasova VO, Valetova NB, Kuznetsova YL, Mitin AV. Enzymatic Hydrolysis of Marine Collagen and Fibrinogen Proteins in the Presence of Thrombin. Mar Drugs 2020; 18:E208. [PMID: 32290502 PMCID: PMC7230862 DOI: 10.3390/md18040208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
: Enzymatic hydrolysis of native collagen and fibrinogen was carried out under comparable conditions at room temperature. The molecular weight parameters of proteins before and after hydrolysis by thrombin were monitored by gel-penetrating chromatography (GPC). An analysis of the experiment results shows that the molecular weight parameters of the initial fibrinogen (Fn) and cod collagen (CC) are very similar. High molecular CC decays within the first minute, forming two low molecular fractions. The main part (~80%) falls on the fraction with a value of Mw less than 10 kDa. The initial high molecular fraction of Fn with Mw ~320-340 kDa is not completely hydrolyzed even after three days of control. The presence of low molecular fractions with Mw ~17 and Mw ~10 kDa in the solution slightly increases within an hour and noticeably increases for three days. The destruction of macromolecules of high molecular collagen to hydrolysis products appears almost completely within the first minute mainly to the polymer with Mw ~10 kDa, and enzymatic hydrolysis of fibrinogen proceeds slower than that of collagen, but also mainly to the polymer with Mw ~10 kDa. Comparative photos of the surfaces of native collagen, fibrinogen and the scaffold based on them were obtained.
Collapse
Affiliation(s)
- Ludmila L Semenycheva
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Marfa N Egorikhina
- Federal State Budgetary Educational Institution of Higher Education Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky square 10/1, 603950 Nizhny Novgorod, Russia
| | - Victoria O Chasova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Natalya B Valetova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Yulia L Kuznetsova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Alexander V Mitin
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| |
Collapse
|