1
|
Cheng M, Xu Y, Liu W, Mu L, Lian X, Gao G, Sun L. Regulatory science promotes the translation of transcatheter tricuspid valve repair/replacement devices. Regen Biomater 2024; 11:rbae084. [PMID: 39220742 PMCID: PMC11364518 DOI: 10.1093/rb/rbae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024] Open
Abstract
For patients with symptomatic and severe tricuspid regurgitation but inoperable with open surgery, transcatheter tricuspid valve intervention (TTVI) is a procedure of great clinical value. TTVI products include repair and replacement devices. TTVI products are one of the hotspots of investigation now, with different innovative biomaterials and structural designs in trials to satisfy divergent indications and reduce complications. With the emerging biomaterials, the technical difficulty of structural design will be greatly reduced, spurring further product innovation and development. The innovativeness and complexity of TTVI products have brought challenges to academia, industry, and regulatory agencies. Regulatory science provides a bridge to address these difficulties and challenges. This perspective article introduces the latest development of the TTVI products. With traditional methods, regulatory agencies face challenges in evaluating the safety and efficacy of TTVr/TTVR devices given the uncertainty of clinical use and the diversity of innovative structural design. This perspective article analyzes the regulatory challenges and discusses regulatory science that can be developed to assess the safety, efficacy, quality and performance of such products: including new approaches for innovative devices, pre-review path, computer modeling and simulation, accelerated wear testing methods for transcatheter heart valves and evidence-based research. This article reveals for the first time how to apply regulatory science systematically to TTVI products, which is of great relevance to their development and translation.
Collapse
Affiliation(s)
- Maobo Cheng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Yun Xu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Wei Liu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Lanlan Mu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Xiaoqi Lian
- Guangdong-Hong Kong-Macao Greater Bay Area, Center for Medical Device Evaluation and Inspection of NMPA, Shenzhen 518045, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing 100081, China
| |
Collapse
|
2
|
Kaveti R, Lee JH, Youn JK, Jang TM, Han WB, Yang SM, Shin JW, Ko GJ, Kim DJ, Han S, Kang H, Bandodkar AJ, Kim HY, Hwang SW. Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307391. [PMID: 37770105 DOI: 10.1002/adma.202307391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.
Collapse
Affiliation(s)
- Rajaram Kaveti
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix Co., Ltd., 2091, Gyeongchung-daero, Bubal-eup, Incheon, Gyeonggi-do, 17336, Republic of Korea
| | - Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
3
|
Liang NE, Griffin MF, Berry CE, Parker JB, Downer MA, Wan DC, Longaker MT. Attenuating Chronic Fibrosis: Decreasing Foreign Body Response with Acellular Dermal Matrix. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:671-680. [PMID: 37212342 DOI: 10.1089/ten.teb.2023.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surgical implants are increasingly used across multiple medical disciplines, with applications ranging from tissue reconstruction to improving compromised organ and limb function. Despite their significant potential for improving health and quality of life, biomaterial implant function is severely limited by the body's immune response to its presence: this is known as the foreign body response (FBR) and is characterized by chronic inflammation and fibrotic capsule formation. This response can result in life-threatening sequelae such as implant malfunction, superimposed infection, and associated vessel thrombosis, in addition to soft tissue disfigurement. Patients may require frequent medical visits, as well as repeated invasive procedures, increasing the burden on an already strained health care system. Currently, the FBR and the cells and molecular mechanisms that mediate it are poorly understood. With applications across a wide array of surgical specialties, acellular dermal matrix (ADM) has emerged as a potential solution to the fibrotic reaction seen with FBR. Although the mechanisms by which ADM decreases chronic fibrosis remain to be clearly characterized, animal studies across diverse surgical models point to its biomimetic properties that facilitate decreased periprosthetic inflammation and improved host cell incorporation. Impact Statement Foreign body response (FBR) is a significant limitation to the use of implantable biomaterials. Acellular dermal matrix (ADM) has been observed to decrease the fibrotic reaction seen with FBR, although its mechanistic details are poorly understood. This review is dedicated to summarizing the primary literature on the biology of FBR in the context of ADM use, using surgical models in breast reconstruction, abdominal and chest wall repair, and pelvic reconstruction. This article will provide readers with an overarching review of shared mechanisms for ADM across multiple surgical models and diverse anatomical applications.
Collapse
Affiliation(s)
- Norah E Liang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle F Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Charlotte E Berry
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer B Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Mauricio A Downer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Lanzalaco S, Weis C, Traeger KA, Turon P, Alemán C, Armelin E. Mechanical Properties of Smart Polypropylene Meshes: Effects of Mesh Architecture, Plasma Treatment, Thermosensitive Coating, and Sterilization Process. ACS Biomater Sci Eng 2023; 9:3699-3711. [PMID: 37232093 PMCID: PMC10889589 DOI: 10.1021/acsbiomaterials.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures. In this work, the mechanical performance of plasma-treated and hydrogel-grafted meshes preheated at 37 °C has been compared with standard meshes using bursting and the suture pull out tests. Furthermore, the influence of the mesh architecture, the amount of grafted hydrogel, and the sterilization process on such properties have been examined. Results reveal that although the plasma treatment reduces the bursting and suture pull out forces, the thermosensitive hydrogel improves the mechanical resistance of the meshes. Moreover, the mechanical performance of the meshes coated with the PNIPAAm hydrogel is not influenced by ethylene oxide gas sterilization. Micrographs of the broken meshes evidence the role of the hydrogel as reinforcing coating for the PP filaments. Overall, results confirm that the modification of PP medical textiles with a biocompatible thermosensitive hydrogel do not affect, and even improve, the mechanical requirements necessary for the implantation of these prostheses in vivo.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| | - Christine Weis
- Research and Development Centre, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, Barcelona 08191, Spain
| | - Kamelia A Traeger
- Research and Development Centre, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, Barcelona 08191, Spain
| | - Pau Turon
- Research and Development Centre, B. Braun Surgical, S.A.U., Carretera de Terrassa 121, Rubí, Barcelona 08191, Spain
| | - Carlos Alemán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Elaine Armelin
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930 Barcelona, Spain
| |
Collapse
|
5
|
Advancing medical device regulatory reforms for innovation, translation and industry development in China. J Orthop Translat 2022; 37:89-93. [PMID: 36262965 PMCID: PMC9550533 DOI: 10.1016/j.jot.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
The blossoming Chinese medical device market calls for a science-based regulatory system in China. Consistent efforts have been made to advance the medical device regulatory reforms for innovation, translation and industry development. In this article, we report both the latest regulatory requirements which aim to ensure safety and efficacy for patients while encouraging innovation of the medical device industry, and the key programs on medical devices covered in the Regulatory Science Action Plan (RSAP) of the National Medical Products Administration of China (NMPA). The main features of the revised regulations are first elucidated before the opportunities for translational research are interpreted, including those for additive manufacturing and customized devices, drug–device combination products, artificial intelligence-powered software and surgical robots, and nanomaterials for medical devices. Finally, a regulatory perspective is provided to researchers who expect to translate their technologies in the Chinese medical device market. Important issues including early attention to critical market and clinical needs, understanding the true principle and spirit underlying the changing regulations and standards, and protecting intellectual property rights with comprehensive measures, are discussed. These developments warrant further investigations into the distinct role of regulatory science in shaping medical devices research and development.
Collapse
|
6
|
Żywicka B, Struszczyk MH, Paluch D, Kostanek K, Krucińska I, Kowalski K, Kopias K, Rybak Z, Szymonowicz M, Gutowska A, Kubiak P. Design of New Concept of Knitted Hernia Implant. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2671. [PMID: 35408005 PMCID: PMC9000569 DOI: 10.3390/ma15072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
A knitted implant, unilaterally modified with plasma-assisted chemical-vapor deposition (PACVD), and with a nano-layer of fluorine derivative supplementation, for reducing the risk of complications related to adhesions, and the formation of a thick postoperative scar was prepared. The biological evaluation of designed or modified medical devices is the main aspect of preclinical research. If such studies use a medical device with prolonged contact with connective tissue (more than 30 days), biocompatibility studies require a safety assessment in terms of toxicity in vitro and in vivo, allergenicity, irritation, and cancerogenicity, reproductive and developmental toxicity. The ultimate aspect of biological evaluation is biofunctionality, and evaluation of the local tissue response after implantation, resulting in the determination of all aspects of local biocompatibility with the implemented synthetic material. The implantation of PACVD-modified materials in muscle allows us to estimate the local irritation effect on the connective tissue, determining the risk of scar formation, whereas implantation of the above-mentioned knitted fabric into the abdominal wall, assists with evaluating the risk of fistula formation-the main post-surgical complications. The research aimed to evaluate the local reaction of the soft tissues after the implantation of the knitted implants modified with PACVD of the fluoropolymer in the nanostuctural form. The local effect that occurred during the implantation of the designed implants was quantitatively and qualitatively evaluated when PACVD unmodified (reference), and modified medical devices were implanted in the abdominal cavity (intra-abdominal position) for 12 or into the muscles for 56 weeks. The comparative semi-quantitative histological assessment included the severity of inflammatory cells (multinucleated cells, lymphocytes, plasma cells, macrophages, giant cells) and the tissue response (necrosis, neovascularization, fibrosis, and fat infiltration) on a five-point scale. The knitted implants modified by PACVD did not indicate cumulative tissue response when they were implanted in the muscle and intra-abdominally with direct contact with the viscera. They reduced local tissue reaction (score -2.71 after 56 weeks of the implantation) and internal organ adhesion (irritation score -2.01 and adhesion susceptibility -0.3 after 12 weeks of the implantation) compared with the reference (unmodified by PACVD) knitted implant, which had an identical structure and was made of the same source.
Collapse
Affiliation(s)
- Bogusława Żywicka
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Marcin Henryk Struszczyk
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| | - Danuta Paluch
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Krzysztof Kostanek
- Łukasiewicz Research Network—Textile Research Institute, Brzezińska 5/15, 92-103 Lodz, Poland;
| | - Izabella Krucińska
- Department of Material and Commodity Sciences and Textile Metrology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Krzysztof Kowalski
- Department of Knitting Technology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland; (K.K.); (K.K.)
| | - Kazimierz Kopias
- Department of Knitting Technology, Faculty of Material Technologies and Textile Design, Technological University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland; (K.K.); (K.K.)
| | - Zbigniew Rybak
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Maria Szymonowicz
- Pre-clinical Research Center, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (D.P.); (Z.R.); (M.S.)
| | - Agnieszka Gutowska
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| | - Paweł Kubiak
- Institute of Security Technologies “MORATEX”, Curie-Sklodowskiej 3, 90-505 Lodz, Poland; (M.H.S.); (A.G.); (P.K.)
| |
Collapse
|
7
|
Tian J, Song X, Wang Y, Cheng M, Lu S, Xu W, Gao G, Sun L, Tang Z, Wang M, Zhang X. Regulatory perspectives of combination products. Bioact Mater 2022; 10:492-503. [PMID: 34901562 PMCID: PMC8637005 DOI: 10.1016/j.bioactmat.2021.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Combination products with a wide range of clinical applications represent a unique class of medical products that are composed of more than a singular medical device or drug/biological product. The product research and development, clinical translation as well as regulatory evaluation of combination products are complex and challenging. This review firstly introduced the origin, definition and designation of combination products. Key areas of systematic regulatory review on the safety and efficacy of device-led/supervised combination products were then presented. Preclinical and clinical evaluation of combination products was discussed. Lastly, the research prospect of regulatory science for combination products was described. New tools of computational modeling and simulation, novel technologies such as artificial intelligence, needs of developing new standards, evidence-based research methods, new approaches including the designation of innovative or breakthrough medical products have been developed and could be used to assess the safety, efficacy, quality and performance of combination products. Taken together, the fast development of combination products with great potentials in healthcare provides new opportunities for the advancement of regulatory review as well as regulatory science.
Collapse
Affiliation(s)
- Jiaxin Tian
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Xu Song
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yongqing Wang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Maobo Cheng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Shuang Lu
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Wei Xu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Zhonglan Tang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Minghui Wang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
A Systematic Review Examining the Experimental Methodology Behind In Vivo Testing of Hiatus Hernia and Diaphragmatic Hernia Mesh. J Gastrointest Surg 2022; 26:684-692. [PMID: 34935102 PMCID: PMC8927034 DOI: 10.1007/s11605-021-05227-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/06/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Mesh implants are regularly used to help repair both hiatus hernias (HH) and diaphragmatic hernias (DH). In vivo studies are used to test not only mesh safety, but increasingly comparative efficacy. Our work examines the field of in vivo mesh testing for HH and DH models to establish current practices and standards. METHOD This systematic review was registered with PROSPERO. Medline and Embase databases were searched for relevant in vivo studies. Forty-four articles were identified and underwent abstract review, where 22 were excluded. Four further studies were excluded after full-text review-leaving 18 to undergo data extraction. RESULTS Of 18 studies identified, 9 used an in vivo HH model and 9 a DH model. Five studies undertook mechanical testing on tissue samples-all uniaxial in nature. Testing strip widths ranged from 1-20 mm (median 3 mm). Testing speeds varied from 1.5-60 mm/minute. Upon histology, the most commonly assessed structural and cellular factors were neovascularisation and macrophages respectively (n = 9 each). Structural analysis was mostly qualitative, where cellular analysis was equally likely to be quantitative. Eleven studies assessed adhesion formation, of which 8 used one of four scoring systems. Eight studies measured mesh shrinkage. DISCUSSION In vivo studies assessing mesh for HH and DH repair are uncommon. Within this relatively young field, we encourage surgical and materials testing institutions to discuss its standardisation.
Collapse
|