1
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
2
|
Hao Z, Li X, Zhang R, Zhang L. Stimuli‐Responsive Hydrogels for Antibacterial Applications. Adv Healthc Mater 2024:e2400513. [PMID: 38723248 DOI: 10.1002/adhm.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the field of antibacterial therapeutics, due to their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of stimuli-responsive functions into antibacterial hydrogels holds the potential to enhance their antibacterial properties and therapeutic efficacy, dynamically responding to different external or internal stimuli, such as pH, temperature, enzymes, and light. Therefore, this review describes the applications of hydrogel dressings responsive to different stimuli in antibacterial therapy. The collaborative interaction between stimuli-responsive hydrogels and antibacterial materials is discussed. This synergistic approach, in contrast to conventional antibacterial materials, not only amplifies the antibacterial effect but also alleviates adverse side effects and diminishes the incidence of multiple infections and drug resistance. The review provides a comprehensive overview of the current challenges and outlines future research directions for stimuli-responsive antibacterial hydrogels. It underscores the imperative for ongoing interdisciplinary research aimed at unraveling the mechanisms of wound healing. This understanding is crucial for optimizing the design and implementation of stimuli-responsive antibacterial hydrogels. Ultimately, this review aims to offer scientific guidance for the development and practical clinical application of stimuli-responsive antibacterial hydrogel dressings.
Collapse
Affiliation(s)
- Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
4
|
Ali AA, Al Bostami RD, Al-Othman A. Nanogel-based composites for bacterial antibiofilm activity: advances, challenges, and prospects. RSC Adv 2024; 14:10546-10559. [PMID: 38567332 PMCID: PMC10985586 DOI: 10.1039/d4ra00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Nano-based approaches, particularly nanogels, have recently emerged as a potential strategy for combating biofilm-related infections. Their exceptional characteristics including biocompatibility, biodegradability, stability, high water content, stimuli-responsiveness, and their nano size (which enables their penetration into biofilms) make nanogels a promising technology in the biomedical field. However, exploring nanogels for biofilm treatment remains in its early stages. This review examined the status of nanogels application for the treatment of bacterial biofilms. Recent investigations studied nanogels derived from natural polymers like chitosan (CS), hyaluronic acid (HA), and alginate, among others, for eliminating and inhibiting biofilms. These nanogels were utilized as carriers for diverse antibiofilm agents, encompassing antibiotics, antimicrobial peptides, natural extracts, and nanoparticles. Utilizing mechanisms like conventional antibody-mediated pathways, photodynamic therapy, photothermal therapy, chemodynamic therapy, and EPS degradation, these nanogels effectively administered antibiofilm drugs, exhibiting efficacy across several bacterial strains, notably Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Escherichia coli (E. coli), among others. Despite showing promise, nanogels remain relatively underexplored in biofilm treatment. This review concludes that research gaps are still present in biofilm treatment processes including (i) a better understanding of the stimuli-responsive behaviors of nanogels, (ii) active targeting strategies, and (iii) the narrow spectrum of antibiofilm agents loaded into nanogels. Hence, future studies could be directed towards the following elements: the exploration of multi-strain biofilms rather than single-strain biofilms, other endogenous and exogenous stimuli to trigger drug release, active targeting mechanisms, a broader range of antibiofilm agents when employing nanogels, and fostering more comprehensive and reliable biofilm treatment strategies. This review found that there are currently several research gaps as well in the use of nanogels for biofilm therapy, and these include: (i) very limited exogenous and endogenous stimuli were explored to trigger drug release from nanogels, (ii) the active targeting strategies were not explored, (iii) a very narrow spectrum of antibiofilm agents was loaded into nanogels, and (iv) only biofilms of single strains were investigated.
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Department of Chemical and Biological Engineering, American University of Sharjah P. O. Box 26666 Sharjah United Arab Emirates
| | - Rouba D Al Bostami
- Biomedical Engineering Graduate Program, American University of Sharjah P. O. Box 26666 Sharjah United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical and Biological Engineering, American University of Sharjah P. O. Box 26666 Sharjah United Arab Emirates
- Energy, Water and Sustainable Environment Research Center, American University of Sharjah P. O. Box 26666 Sharjah United Arab Emirates
| |
Collapse
|
5
|
Caselli L, Nylander T, Malmsten M. Neutron reflectometry as a powerful tool to elucidate membrane interactions of drug delivery systems. Adv Colloid Interface Sci 2024; 325:103120. [PMID: 38428362 DOI: 10.1016/j.cis.2024.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The last couple of decades have seen an explosion of novel colloidal drug delivery systems, which have been demonstrated to increase drug efficacy, reduce side-effects, and provide various other advantages for both small-molecule and biomacromolecular drugs. The interactions of delivery systems with biomembranes are increasingly recognized to play a key role for efficient eradication of pathogens and cancer cells, as well as for intracellular delivery of protein and nucleic acid drugs. In parallel, there has been a broadening of methodologies for investigating such systems. For example, advanced microscopy, mass-spectroscopic "omic"-techniques, as well as small-angle X-ray and neutron scattering techniques, which only a few years ago were largely restricted to rather specialized areas within basic research, are currently seeing increased interest from researchers within wide application fields. In the present discussion, focus is placed on the use of neutron reflectometry to investigate membrane interactions of colloidal drug delivery systems. Although the technique is still less extensively employed for investigations of drug delivery systems than, e.g., X-ray scattering, such studies may provide key mechanistic information regarding membrane binding, re-modelling, translocation, and permeation, of key importance for efficacy and toxicity of antimicrobial, cancer, and other therapeutics. In the following, examples of this are discussed and gaps/opportunities in the research field identified.
Collapse
Affiliation(s)
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden
| | - Martin Malmsten
- Physical Chemistry 1, Lund University, S-221 00 Lund, Sweden; Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Gong H, Liu L, Zhou J, Li H, Qiu J, Cheng W. Smart chitosan-based microgels for enhanced photothermal-assisted antibacterial activity. Int J Biol Macromol 2023; 252:126389. [PMID: 37611687 DOI: 10.1016/j.ijbiomac.2023.126389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/14/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
During recent years, antibiotic-resistant bacteria have rapidly emerged owing to the irrational use of antibiotics, rendering a global problem. Currently, few studies introduce customized antibacterial nanoplatforms to overcome antibiotic-resistance according to specific characteristic of bacteria, rather than abuse of antibiotic. Herein, with regard to personalized antibacterial nanoplatform, we design a novel antibiotic delivery nanocarrier composed of polyaniline-grafted-chitosan, presenting pH-responsive, conductive, photothermal, and biodegradable properties. After treatment with divalent anion (SO42-), the negatively charged nanocarriers are obtained for improving the loading efficacy of cationic vancomycin. Meanwhile, the controlled vancomycin release is achieved by lysozyme-triggered degradation of the nanocarrier. With the assistance of photothermal effect, the photothermal-assisted antibacterial effect of the nanocarriers have been effectively enhanced rather than that of a single antibacterial effect of vancomycin. Owing to the low heat resistance of Escherichia coli, photothermal effect can break the antibiotic-resistant bacteria membrane to render the convenient antibiotic entry, leading to the improved antibacterial efficacy. Therefore, the customization of a photothermal-assisted antibacterial on account of the characteristic of specific bacteria can definitely expand our arsenal for enhancing the antibacterial effect against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Hao Gong
- Department of Emergency, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li Liu
- The People's Hospital of Suzhou New District, Suzhou 215129, China
| | - Jieru Zhou
- Department of Obstetrics and Gynecology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Helin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jiaxing Qiu
- Shanghai TCM-Integrated Hospital, Shanghai 200082, China.
| | - Weini Cheng
- Department of Infectious Diseases, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
7
|
Zarenezhad E, Sanei-Dehkordi A, Babaalizadeh B, Qasmei H, Osanloo M. Repellent efficacy of the nanogel containing Acroptilon repens essential oil in comparison with DEET against Anopheles stephensi. BMC Res Notes 2023; 16:261. [PMID: 37814316 PMCID: PMC10561488 DOI: 10.1186/s13104-023-06538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Malaria is a vector-borne disease that causes many deaths worldwide; repellents are a practical approach to malaria prevention, especially in endemic regions. RESULTS Gas chromatography-mass spectrometry analysis was used to identify compounds in Acroptilon repens essential oil (EO). Alpha-copaene (15.67%), α-cubenen (3.76%), caryophyllene oxide (14.00%), 1-heptadecane (5.61%), and δ-cadinene (2.84) were five major compounds. After that, the nanoemulsion containing the EO with a particle size of 46 ± 4 nm, SPAN 0.85, PDI 0.4, and zeta potential - 5.7 ± 0.4 mV was prepared. Then, it was gellified by adding CMC (carboxymethyl cellulose) to the nanoemulsion. Besides, ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) was used to confirm the EO's successful loading in the nanogel. Finally, the protection time and repellent activity of nanogel compared to DEET (N, N-diethyl-meta-toluamide) were investigated against Anopheles stephensi. Interestingly, the nanogel with a protection time of 310 ± 45 min was significantly more potent than DEET (160 ± 17 min). It could thus be considered for future investigation against other mosquitoes.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Alireza Sanei-Dehkordi
- Department of Biology and Control of Disease Vectors, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behina Babaalizadeh
- Department of Biochemistry, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasmei
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
8
|
Miao Z, Qin L, Zhou Z, Zhou M, Fu H, Zhang L, Zhou J. Zwitterion-Modified Nanogel Responding to Temperature and Ionic Strength: A Dissipative Particle Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13678-13687. [PMID: 37713407 DOI: 10.1021/acs.langmuir.3c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The self-assembly and stimuli-responsive properties of nanogel poly(n-isopropylacrylamide) (p(NIPAm)) and zwitterion-modified nanogel poly(n-isopropylacrylamide-co-sulfobetainemethacrylate) (p(NIPAm-co-SBMA)) were explored by dissipative particle dynamics simulations. Simulation results reveal that for both types of nanogel, it is beneficial to form spherical nanogels at polymer concentrations of 5-10%. When the chain length (L) elongates from 10 to 40, the sizes of the nanogels enlarge. As for the p(NIPAm) nanogel, it shows thermoresponsiveness; when it switches to the hydrophilic state, the nanogel swells, and vice versa. The zwitterion-modified nanogel p(NIPAm-co-SBMA) possesses thermoresponsiveness and ionic strength responsiveness concurrently. At 293 K, both hydrophilic p(NIPAm) and superhydrophilic polysulfobetaine methacrylate (pSBMA) could appear on the outer surface of the nanogel; however, at 318 K, superhydrophilic pSBMA is on the outer surface to cover the hydrophobic p(NIPAm) core. As the temperature rises, the nanogel shrinks and remains antifouling all through. The salt-responsive property can be reflected by the nanogel size; the volumes of the nanogels in saline systems are larger than those in salt-free systems as the ionic condition inhibits the shrinkage of the zwitterionic pSBMA. This work exhibits the temperature-responsive and salt-responsive behavior of zwitterion-modified-pNIPAm nanogels at the molecular level and provides guidance in antifouling nanogel design.
Collapse
Affiliation(s)
- Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lanlan Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhaoxi Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Meng Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
9
|
Jin L, Ji C, Chen S, Song Z, Zhou J, Qian K, Guo W. Multifunctional Textiles with Flame Retardant and Antibacterial Properties: A Review. Molecules 2023; 28:6628. [PMID: 37764404 PMCID: PMC10536766 DOI: 10.3390/molecules28186628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
It is well known that bacterial infections and fire-hazards are potentially injurious in daily life. With the increased security awareness of life and properties as well as the improvement of living standards, there has been an increasing demand for multifunctional textiles with flame retardant and antibacterial properties, especially in the fields of home furnishing and medical protection. So far, various treatment methods, including the spray method, the dip-coating method, and the pad-dry-cure method, have been used to apply functional finishing agents onto fabrics to achieve the functionalization in the past exploration stage. Moreover, in addition to the traditional finishing technology, a number of novel technologies have emerged, such as layer-by-layer (LBL) deposition, the sol-gel process, and chemical grafting modification. In addition, some natural biomasses, including chitin, chitosan (CS), and several synthetic functional compounds that possess both flame-retardant and bacteriostatic properties, have also received extensive attention. Hence, this review focuses on introducing some commonly used finishing technologies and flame retardant/antibacterial agents. At the same time, the advantages and disadvantages of different methods and materials were summarized, which will contribute to future research and promote the development and progress of the industry.
Collapse
Affiliation(s)
- Liping Jin
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Chenpeng Ji
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shun Chen
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhicong Song
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Juntong Zhou
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kun Qian
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wenwen Guo
- Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
10
|
Kim HS, Kang JH, Jang J, Lee EJ, Kim JH, Byun J, Shin US. Dual stimuli-responsive mesoporous silica nanoparticles for efficient loading and smart delivery of doxorubicin to cancer with RGD-integrin targeting. Eur J Pharm Sci 2023; 188:106525. [PMID: 37437854 DOI: 10.1016/j.ejps.2023.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
The recent progress in nanoparticle applications, such as tumor-targeting, has enabled specific delivery of chemotherapeutics to malignant tissues with enhanced local efficacy while limiting side effects. However, existing delivery systems leave much room for improvement in terms of achieving enhanced colloidal stability in fluid medium, efficient targeting of intended sites, and effective release of therapeutic drugs into diseased cells. Here, an efficient stimuli-responsive nanocarrier for mammalian cells, termed RGD-NAMs, was developed, which enabled temperature- and pH-sensitive release of drug loads. The RGD-NAMs comprise two parts: a stimuli-responsive copolymer shell (NIBIm-AA-RGD) and drug-container core (MSNs). The RGD-NAMs have a stable drug-loading capacity with a marked difference in the release rate depending on the temperature and pH conditions. The RGD-NAMs also exhibit high colloidal stability in SBF (Stimulated body fluid) solutions and minimal toxicity in skeletal myoblasts (C2C12) and bovine arterial endothelial cells (BAEC). The doxorubicin-loaded RGD-NAMs induced a cytotoxic effect in a dose-dependent manner, which was furthered by an increase in temperature from 37 to 40 °C. Moreover, significant control of the release rate and the amount were achieved through pH change. This novel, smart drug-delivery system with high responsiveness to temperature and pH changes has wide application prospects in biomedical fields, including the theragnosis of tumors and vascular diseases.
Collapse
Affiliation(s)
- Han-Sem Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea
| | - Ji-Hye Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - JunHwee Jang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - Eun-Jung Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - Jin Hee Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea; Department of Molecular Biology, Division of Biological Sciences, Institute of Nanosensor and Biotechnology, Dankook University, Cheonan-si, Chungnam, 31116, Republic of Korea
| | - Jonghoe Byun
- Department of Molecular Biology, Division of Biological Sciences, Institute of Nanosensor and Biotechnology, Dankook University, Cheonan-si, Chungnam, 31116, Republic of Korea.
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Republic of Korea.
| |
Collapse
|
11
|
Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev 2023; 42:699-724. [PMID: 36971908 PMCID: PMC10040933 DOI: 10.1007/s10555-023-10099-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Cancer is a major health concern worldwide and is still in a continuous surge of seeking for effective treatments. Since the discovery of RNAi and their mechanism of action, it has shown promises in targeted therapy for various diseases including cancer. The ability of RNAi to selectively silence the carcinogenic gene makes them ideal as cancer therapeutics. Oral delivery is the ideal route of administration of drug administration because of its patients' compliance and convenience. However, orally administered RNAi, for instance, siRNA, must cross various extracellular and intracellular biological barriers before it reaches the site of action. It is very challenging and important to keep the siRNA stable until they reach to the targeted site. Harsh pH, thick mucus layer, and nuclease enzyme prevent siRNA to diffuse through the intestinal wall and thereby induce a therapeutic effect. After entering the cell, siRNA is subjected to lysosomal degradation. Over the years, various approaches have been taken into consideration to overcome these challenges for oral RNAi delivery. Therefore, understanding the challenges and recent development is crucial to offer a novel and advanced approach for oral RNAi delivery. Herein, we have summarized the delivery strategies for oral delivery RNAi and recent advancement towards the preclinical stages.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51006, Tartu, Estonia
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Sheikh Shafin Ahmad
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA.
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
| |
Collapse
|
12
|
Ratan C, Arian AM, Rajendran R, Jayakumar R, Masson M, Mangalathillam S. Nano-based formulations of curcumin: elucidating the potential benefits and future prospects in skin cancer. Biomed Mater 2023; 18:052008. [PMID: 37582394 DOI: 10.1088/1748-605x/acf0af] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Skin cancer refers to any malignant lesions that occur in the skin and are observed predominantly in populations of European descent. Conventional treatment modalities such as excision biopsy, chemotherapy, radiotherapy, immunotherapy, electrodesiccation, and photodynamic therapy (PDT) induce several unintended side effects which affect a patient's quality of life and physical well-being. Therefore, spice-derived nutraceuticals like curcumin, which are well tolerated, less expensive, and relatively safe, have been considered a promising agent for skin cancer treatment. Curcumin, a chemical constituent extracted from the Indian spice, turmeric, and its analogues has been used in various mammalian cancers including skin cancer. Curcumin has anti-neoplastic activity by triggering the process of apoptosis and preventing the multiplication and infiltration of the cancer cells by inhibiting some signaling pathways and thus subsequently preventing the process of carcinogenesis. Curcumin is also a photosensitizer and has been used in PDT. The major limitations associated with curcumin are poor bioavailability, instability, limited permeation into the skin, and lack of solubility in water. This will constrain the use of curcumin in clinical settings. Hence, developing a proper formulation that can ideally release curcumin to its targeted site is important. So, several nanoformulations based on curcumin have been established such as nanogels, nanoemulsions, nanofibers, nanopatterned films, nanoliposomes and nanoniosomes, nanodisks, and cyclodextrins. The present review mainly focuses on curcumin and its analogues as therapeutic agents for treating different types of skin cancers. The significance of using various nanoformulations as well non-nanoformulations loaded with curcumin as an effective treatment modality for skin cancer is also emphasized.
Collapse
Affiliation(s)
- Chameli Ratan
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Arya Mangalath Arian
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rajalakshmi Rajendran
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Mar Masson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavík, Iceland
| | - Sabitha Mangalathillam
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| |
Collapse
|
13
|
Hemmati J, Azizi M, Asghari B, Arabestani MR. Multidrug-Resistant Pathogens in Burn Wound, Prevention, Diagnosis, and Therapeutic Approaches (Conventional Antimicrobials and Nanoparticles). THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8854311. [PMID: 37521436 PMCID: PMC10386904 DOI: 10.1155/2023/8854311] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Multidrug-resistant pathogens are one of the common causes of death in burn patients and have a high risk of nosocomial infections, especially pneumonia, urinary tract infections, and cellulitis. The role of prolonged hospitalization and empirical antibiotics administration in developing multidrug-resistant pathogens is undeniable. In the early days of admitting burn patients, Gram-positive bacteria were the dominant isolates with a more sensitive antibiotic pattern. However, the emergence of Gram-negative bacteria that are more resistant later occurs. Trustworthy guideline administration in burn wards is one of the strategies to prevent multidrug-resistant pathogens. Also, a multidisciplinary therapeutic approach is an effective way to avoid antibiotic resistance that involves infectious disease specialists, pharmacists, and burn surgeons. However, the emerging resistance to conventional antimicrobial approaches (such as systemic antibiotic exposure, traditional wound dressing, and topical antibiotic ointments) among burn patients has challenged the treatment of multidrug-resistant infections, and using nanoparticles is a suitable alternative. In this review article, we will discuss different aspects of multidrug-resistant pathogens in burn wounds, emphasizing the full role of these pathogens in burn wounds and discussing the application of nanotechnology in dealing with them. Also, some advances in various types of nanomaterials, including metallic nanoparticles, liposomes, hydrogels, carbon quantum dots, and solid lipid nanoparticles in burn wound healing, will be explained.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Fincheira P, Hoffmann N, Tortella G, Ruiz A, Cornejo P, Diez MC, Seabra AB, Benavides-Mendoza A, Rubilar O. Eco-Efficient Systems Based on Nanocarriers for the Controlled Release of Fertilizers and Pesticides: Toward Smart Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1978. [PMID: 37446494 DOI: 10.3390/nano13131978] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The excessive application of pesticides and fertilizers has generated losses in biological diversity, environmental pollution, and harmful effects on human health. Under this context, nanotechnology constitutes an innovative tool to alleviate these problems. Notably, applying nanocarriers as controlled release systems (CRSs) for agrochemicals can overcome the limitations of conventional products. A CRS for agrochemicals is an eco-friendly strategy for the ecosystem and human health. Nanopesticides based on synthetic and natural polymers, nanoemulsions, lipid nanoparticles, and nanofibers reduce phytopathogens and plant diseases. Nanoproducts designed with an environmentally responsive, controlled release offer great potential to create formulations that respond to specific environmental stimuli. The formulation of nanofertilizers is focused on enhancing the action of nutrients and growth stimulators, which show an improved nutrient release with site-specific action using nanohydroxyapatite, nanoclays, chitosan nanoparticles, mesoporous silica nanoparticles, and amorphous calcium phosphate. However, despite the noticeable results for nanopesticides and nanofertilizers, research still needs to be improved. Here, we review the relevant antecedents in this topic and discuss limitations and future challenges.
Collapse
Affiliation(s)
- Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Nicolas Hoffmann
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias en Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
| | | | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| |
Collapse
|
15
|
Rofeal M, Abdelmalek F, Pietrasik J, Steinbüchel A. A comparative study between two carboxymethylated polysaccharides/protein electrostatic and cross-linked nanogels constructed for caffeic acid and eugenol delivery. Int J Biol Macromol 2023:125585. [PMID: 37379949 DOI: 10.1016/j.ijbiomac.2023.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
In response to the pressing demand for functional nanomaterials synthesis and applications, two polyelectrolyte complexes (PECs) [electrostatic and cross-linked nanogels (NGs)] loaded individually with caffeic acid (CafA) and eugenol (Eug) demonstrating multifunctionalities were proposed for the first time. Curdlan (Curd) and glucomannan (GM) were carboxymethylated (CMCurd and CMGM) successfully and polymeric ratios of 1:1 and 4:1 (v/v) for chitosan (Cs): CMCurd and lactoferrin (Lf): CMGM were selected for the synthesis of Cs/CMCurd and Lf/CMGM NGs. Due to the use of EDC/NHS, Cs/CMCurd/CafA and Lf/CMGM/Eug NGs possessed very uniform particles sizes of 177 ± 18 and 230 ± 17 nm with marked encapsulation efficiencies (EEs) of 76 ± 4 and 88 ± 3 %, respectively. The formation of a carbonyl-amide linkage in both cross-linked NGs was confirmed by FTIR. It should be noted, the self-assembly was not reliable in retaining enough of the encapsulated compounds. Owing to the excellent physicochemical characteristics of the loaded cross-linked NGs, they were prioritized over the electrostatic ones. Both Cs/CMCurd/CafA and Lf/CMGM/Eug NGs exhibited high colloidal stability over 12 weeks, elevated hemocompatibility, and in vitro serum stability. The generated NGs were also tailored to possess controlled release profiles for CafA and Eug over 72 h. Cs/CMCurd/CafA and Lf/CMGM/Eug NGs had promising antioxidant efficacies and could remarkably inhibit 4 bacterial pathogens at low 2-16 μg/mL concentration of encapsulated NGs compared to their unencapsulated counterparts. Interestingly, the respective NGs could significantly decline the IC50 against colorectal cancer HCT-116 than conventional drugs. Based on these data, it was conferred that the investigated NGs could be promising candidates for functional foods and pharmaceutics.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland; Department of Botany and Microbiology, Faculty of Science, Alexandria University, 21521, Egypt.
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
16
|
Tan Y, Zi Y, Peng J, Shi C, Zheng Y, Zhong J. Gelatin as a bioactive nanodelivery system for functional food applications. Food Chem 2023; 423:136265. [PMID: 37167667 DOI: 10.1016/j.foodchem.2023.136265] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Gelatin has long been used as an encapsulant agent in the pharmaceutical and biomedical industries because of its low cost, wide availability, biocompatibility, and degradability. However, the exploitation of gelatin for nanodelivery application is not fully achieved in the functional food filed. In this review article, we highlight the latest work being performed for gelatin-based nanocarriers, including polyelectrolyte complexes, nanoemulsions, nanoliposomes, nanogels, and nanofibers. Specifically, we discuss the applications and challenges of these nanocarriers for stabilization and controlled release of bioactive compounds. To achieve better efficacy, gelatin is frequently used in combination with other biomaterials such as polysaccharides. The fabrication and synergistic effects of the newly developed gelatin composite nanocarriers are also present.
Collapse
Affiliation(s)
- Yang Tan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
17
|
Talebian S, Mendes B, Conniot J, Farajikhah S, Dehghani F, Li Z, Bitoque D, Silva G, Naficy S, Conde J, Wallace GG. Biopolymeric Coatings for Local Release of Therapeutics from Biomedical Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207603. [PMID: 36782094 PMCID: PMC10131825 DOI: 10.1002/advs.202207603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The deployment of structures that enable localized release of bioactive molecules can result in more efficacious treatment of disease and better integration of implantable bionic devices. The strategic design of a biopolymeric coating can be used to engineer the optimal release profile depending on the task at hand. As illustrative examples, here advances in delivery of drugs from bone, brain, ocular, and cardiovascular implants are reviewed. These areas are focused to highlight that both hard and soft tissue implants can benefit from controlled localized delivery. The composition of biopolymers used to achieve appropriate delivery to the selected tissue types, and their corresponding outcomes are brought to the fore. To conclude, key factors in designing drug-loaded biopolymeric coatings for biomedical implants are highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Bárbara Mendes
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - João Conniot
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Syamak Farajikhah
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Zhongyan Li
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Diogo Bitoque
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Gabriela Silva
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Sina Naficy
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - João Conde
- ToxOmicsNOVA Medical School|Faculdade de Ciências MédicasNMS|FCMUniversidade Nova de LisboaLisboa1169‐056Portugal
| | - Gordon G. Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongSydneyNSW2522Australia
| |
Collapse
|
18
|
Diogo P, Amparo F Faustino M, Palma PJ, Rai A, Graça P M S Neves M, Miguel Santos J. May carriers at nanoscale improve the Endodontic's future? Adv Drug Deliv Rev 2023; 195:114731. [PMID: 36787865 DOI: 10.1016/j.addr.2023.114731] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Nanocarriers (NCs) are dynamic nanovehicles used to transport bioactive derivatives like therapeutical formulations, drugs and/or dyes. The current review assists in understanding the mechanism of action of several recent developed NCs with antimicrobial purposes. Here, nine NCs varieties are portrayed with focus on nineteen approaches that are fulfil described based on outcomes obtained from in vitro antimicrobial assays. All approaches have previously been verified and we underline the biochemical challenges of all NCs, expecting that the present data may encourage the application of NCs in endodontic antimicrobial basic research. Methodological limitations and the evident base gaps made not possible to draw a definite conclusion about the best NCs for achieving efficient antimicrobial outcomes in endodontic studies. Due to the lack of pre-clinical trials and the scarce number of clinical trials in this emergent area, there is still much room for improvement on several fronts.
Collapse
Affiliation(s)
- Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
| | - M Amparo F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Akhilesh Rai
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | | | - João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine and Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Lekjinda K, Sunintaboon P. Green synthesis of quaternized chitosan nanogel using emulsion-photopolymerization as redox-responsive drug carrier. Carbohydr Polym 2023; 304:120495. [PMID: 36641180 DOI: 10.1016/j.carbpol.2022.120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
We report the green synthesis of trimethyl chitosan-functionalized poly(2-hydroxyethyl methacrylate) (PHEMA-TMC) nanogels via surfactant-free emulsion photopolymerization. TMC, a quaternized derivative of chitosan, was synthesized through methylation of chitosan, resulting in quaternary and tertiary amine groups as the main substitution products. TMC tertiary amine moiety and riboflavin (RF) acted as a redox photo-initiating system to generate free radicals for the polymerization under light irradiation. The effects of polymerization parameters such as irradiation time, concentrations of TMC and RF were investigated using MBA as crosslinker. Under the optimal condition of 1 % TMC, 4 % HEMA, 0.8 μM RF, 5 % MBA, and 4 h of polymerization time, the cationic PHEMA-TMC nanogel was synthesized with 76 % monomer conversion and an average diameter of about 106 nm. Moreover, the disulfide-crosslinked PHEMA-TMC nanogel was also synthesized using the disulfide dimethacrylate crosslinker, which exhibited a redox-induced degradation and release of encapsulated melatonin, potentially useful as a redox-responsive drug delivery carrier.
Collapse
Affiliation(s)
- Kritsadayut Lekjinda
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
20
|
Sun T, Huang J, Zhang W, Zheng X, Wang H, Liu J, Leng H, Yuan W, Song C. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections. Bioact Mater 2023; 21:44-56. [PMID: 36017072 PMCID: PMC9395756 DOI: 10.1016/j.bioactmat.2022.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Implant-associated infections (IAIs) caused by biofilm formation are the most devastating complications of orthopedic surgery. Statins have been commonly and safely used drugs for hypercholesterolemia for many years. Here, we report that simvastatin-hydroxyapatite-coated titanium alloy prevents biofilm-associated infections. The antibacterial properties of simvastatin against Staphylococcus aureus and Staphylococcus epidermidis biofilms in vitro was confirmed by crystal violet staining and live-dead bacterial staining. We developed a simvastatin-and hydroxyapatite (Sim-HA)-coated titanium alloy via electrochemical deposition. Sim-HA coatings inhibited Staphylococcus aureus biofilm formation and improved the biocompatibility of the titanium alloy. Sim-HA coatings effectively prevented Staphylococcus aureus IAI in rat femurs, as confirmed by radiological assessment and histological examination. The antibacterial effects of the Sim-HA coatings were attributed to their inhibitory effects on biofilm formation, as verified by scanning electron microscopic observations and bacterial spread plate analysis. In addition, the Sim-HA coatings enhanced osteogenesis and osteointegration, as verified by micro-CT, histological evaluation, and biomechanical pull-out tests. In summary, Sim-HA coatings are promising implant materials for protection against biofilm-associated infections. Simvastatin-hydroxyapatite coatings were prepared on Ti6Al4V by electrochemical deposition process. The Simvastatin-hydroxyapatite coatings inhibited S. aureus biofilm formation and improved biocompatibility in vitro. The coatings exhibited antibacterial effects and improved bone formation in a rat femur IAI model. Simvastatin coatings are promising for application in orthopedic implants.
Collapse
|
21
|
Sójka O, Keskin D, van der Mei HC, van Rijn P, Gagliano MC. Nanogel-based coating as an alternative strategy for biofilm control in drinking water distribution systems. BIOFOULING 2023; 39:121-134. [PMID: 36946276 DOI: 10.1080/08927014.2023.2190023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biofilm formation and detachment in drinking water distribution systems (DWDS) can lead to several operational issues. Here, an alternative biofilm control strategy of limiting bacterial adhesion by application of a poly(N-isopropylmethacrylamide)-based nanogel coating on DWDS pipe walls was investigated. The nanogel coatings were successfully deposited on surfaces of four polymeric pipe materials commonly applied in DWDS construction. Nanogel-coated and non-coated pipe materials were characterized in terms of their surface hydrophilicity and roughness. Four DWDS relevant bacterial strains, representing Sphingomonas and Pseudomonas, were used to evaluate the anti-adhesive performance of the coating in 4 h adhesion and 24 h biofilm assays. The presence of the nanogel coating resulted in adhesion reduction up to 97%, and biofilm reduction up to 98%, compared to non-coated surfaces. These promising results motivate further investigation of nanogel coatings as a strategy for biofilm prevention in DWDS.
Collapse
Affiliation(s)
- Olga Sójka
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Damla Keskin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| |
Collapse
|
22
|
Garshasbi HR, Naghib SM. Smart Stimuli-responsive Alginate Nanogels for Drug Delivery Systems and Cancer Therapy: A Review. Curr Pharm Des 2023; 29:3546-3562. [PMID: 38115614 DOI: 10.2174/0113816128283806231211073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles' biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
23
|
Nanogels for the solubility enhancement of water-insoluble drugs. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
24
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
25
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
26
|
Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022; 29:2442-2458. [PMID: 35892224 PMCID: PMC9341380 DOI: 10.1080/10717544.2022.2089294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boom in respiratory tract infection cases has inflicted a socio-economic burden on the healthcare system worldwide, especially in developing countries. Limited alternative therapeutic options have posed a major threat to human health. Nanotechnology has brought an immense breakthrough in the pharmaceutical industry in a jiffy. The vast applications of nanotechnology ranging from early diagnosis to treatment strategies are employed for respiratory tract infections. The research avenues explored a multitude of nanosystems for effective drug delivery to the target site and combating the issues laid through multidrug resistance and protective niches of the bacteria. In this review a brief introduction to respiratory diseases and multifaceted barriers imposed by bacterial infections are enlightened. The manuscript reviewed different nanosystems, i.e. liposomes, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, nanogels, and metallic (gold and silver) which enhanced bactericidal effects, prevented biofilm formation, improved mucus penetration, and site-specific delivery. Moreover, most of the nanotechnology-based recent research is in a preclinical and clinical experimental stage and safety assessment is still challenging.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhangxuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Taizhou, China
| |
Collapse
|
27
|
Structural and bioactive roles of fucoidan in nanogel delivery systems. A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Kanth S, Malgar Puttaiahgowda Y, Gupta S, T S. Recent advancements and perspective of ciprofloxacin-based antimicrobial polymers. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:918-949. [PMID: 36346071 DOI: 10.1080/09205063.2022.2145872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years, microbial pathogens, which are major sources of infections, have become a widespread concern across the world. The number of deaths caused by infectious diseases is continually rising, according to World Health Organization records. Antimicrobial resistance, particularly resistance to several drugs, is steadily growing in percentages of organisms. Ciprofloxacin is a second-generation fluoroquinolone with significant antimicrobial activity and pharmacokinetic characteristics. According to studies, many bacteria are resistant to the antibiotic ciprofloxacin. In this article, we look into polymers as ciprofloxacin macromolecular carriers with a wide range of antibacterial activity. We also discuss the latter form of coupling, in which ciprofloxacin and polymers are covalently bonded. This article also discusses the use of antimicrobial polymers in combination with ciprofloxacin in a various sectors. The current review article provides an overview of publications in the last five years on polymer loaded or modified with ciprofloxacin having applications in numerous sectors.
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| | - Swathi T
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
29
|
The Synthesis and Characterization of Core-Shell Nanogels Based on Alginate and Chitosan for the Controlled Delivery of Mupirocin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Nanogels: Update on the methods of synthesis and applications for cardiovascular and neurological complications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Mashabela LT, Maboa MM, Miya NF, Ajayi TO, Chasara RS, Milne M, Mokhele S, Demana PH, Witika BA, Siwe-Noundou X, Poka MS. A Comprehensive Review of Cross-Linked Gels as Vehicles for Drug Delivery to Treat Central Nervous System Disorders. Gels 2022; 8:563. [PMID: 36135275 PMCID: PMC9498590 DOI: 10.3390/gels8090563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gels are attractive candidates for drug delivery because they are easily producible while offering sustained and/or controlled drug release through various mechanisms by releasing the therapeutic agent at the site of action or absorption. Gels can be classified based on various characteristics including the nature of solvents used during preparation and the method of cross-linking. The development of novel gel systems for local or systemic drug delivery in a sustained, controlled, and targetable manner has been at the epitome of recent advances in drug delivery systems. Cross-linked gels can be modified by altering their polymer composition and content for pharmaceutical and biomedical applications. These modifications have resulted in the development of stimuli-responsive and functionalized dosage forms that offer many advantages for effective dosing of drugs for Central Nervous System (CNS) conditions. In this review, the literature concerning recent advances in cross-linked gels for drug delivery to the CNS are explored. Injectable and non-injectable formulations intended for the treatment of diseases of the CNS together with the impact of recent advances in cross-linked gels on studies involving CNS drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|
32
|
Chremos A, Douglas JF, Basser PJ, Horkay F. Molecular dynamics study of the swelling and osmotic properties of compact nanogel particles. SOFT MATTER 2022; 18:6278-6290. [PMID: 35968626 PMCID: PMC9425154 DOI: 10.1039/d2sm00681b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Owing to their great importance in materials science and other fields, we investigate the solution and osmotic properties of uncharged compact nanogel particles over a wide range of solvent quality and particle concentration by molecular dynamics (MD) simulations. We characterize the osmotic pressure by estimating the second and third virial coefficients, and by extension, we identify the θ-point where the second virial coefficient vanishes. Calculations of the structure factor indicate that these particles are similar to macrogels in that the particle-like scattering profile disappears at moderate concentrations. We also find that improving the solvent quality enhances the spatial segmental uniformity, while significant heterogeneous structure arises near the θ-point. Well below the θ-point where the second osmotic virial coefficient vanishes, these heterogeneous structures become less prevalent as the particles tend to collapse. We also investigate the degree of swelling and structure of compact nanogel particles with a variable excluded volume interaction and gel particle concentration. The osmotic modulus and the scaling exponents in good and θ-point conditions of these gels are characteristic of interacting randomly branched polymers, i.e., "lattice animals".
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Titanium or Biodegradable Osteosynthesis in Maxillofacial Surgery? In Vitro and In Vivo Performances. Polymers (Basel) 2022; 14:polym14142782. [PMID: 35890557 PMCID: PMC9316877 DOI: 10.3390/polym14142782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosynthesis systems are used to fixate bone segments in maxillofacial surgery. Titanium osteosynthesis systems are currently the gold standard. However, the disadvantages result in symptomatic removal in up to 40% of cases. Biodegradable osteosynthesis systems, composed of degradable polymers, could reduce the need for removal of osteosynthesis systems while avoiding the aforementioned disadvantages of titanium osteosyntheses. However, disadvantages of biodegradable systems include decreased mechanical properties and possible foreign body reactions. In this review, the literature that focused on the in vitro and in vivo performances of biodegradable and titanium osteosyntheses is discussed. The focus was on factors underlying the favorable clinical outcome of osteosyntheses, including the degradation characteristics of biodegradable osteosyntheses and the host response they elicit. Furthermore, recommendations for clinical usage and future research are given. Based on the available (clinical) evidence, biodegradable copolymeric osteosyntheses are a viable alternative to titanium osteosyntheses when applied to treat maxillofacial trauma, with similar efficacy and significantly lower symptomatic osteosynthesis removal. For orthognathic surgery, biodegradable copolymeric osteosyntheses are a valid alternative to titanium osteosyntheses, but a longer operation time is needed. An osteosynthesis system composed of an amorphous copolymer, preferably using ultrasound welding with well-contoured shapes and sufficient mechanical properties, has the greatest potential as a biocompatible biodegradable copolymeric osteosynthesis system. Future research should focus on surface modifications (e.g., nanogel coatings) and novel biodegradable materials (e.g., magnesium alloys and silk) to address the disadvantages of current osteosynthesis systems.
Collapse
|
34
|
Wei Y, Wang J, Wu S, Zhou R, Zhang K, Zhang Z, Liu J, Qin S, Shi J. Nanomaterial-Based Zinc Ion Interference Therapy to Combat Bacterial Infections. Front Immunol 2022; 13:899992. [PMID: 35844505 PMCID: PMC9279624 DOI: 10.3389/fimmu.2022.899992] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
Pathogenic bacterial infections are the second highest cause of death worldwide and bring severe challenges to public healthcare. Antibiotic resistance makes it urgent to explore new antibacterial therapy. As an essential metal element in both humans and bacteria, zinc ions have various physiological and biochemical functions. They can stabilize the folded conformation of metalloproteins and participate in critical biochemical reactions, including DNA replication, transcription, translation, and signal transduction. Therefore, zinc deficiency would impair bacterial activity and inhibit the growth of bacteria. Interestingly, excess zinc ions also could cause oxidative stress to damage DNA, proteins, and lipids by inhibiting the function of respiratory enzymes to promote the formation of free radicals. Such dual characteristics endow zinc ions with unparalleled advantages in the direction of antibacterial therapy. Based on the fascinating features of zinc ions, nanomaterial-based zinc ion interference therapy emerges relying on the outstanding benefits of nanomaterials. Zinc ion interference therapy is divided into two classes: zinc overloading and zinc deprivation. In this review, we summarized the recent innovative zinc ion interference strategy for the treatment of bacterial infections and focused on analyzing the antibacterial mechanism of zinc overloading and zinc deprivation. Finally, we discuss the current limitations of zinc ion interference antibacterial therapy and put forward problems of clinical translation for zinc ion interference antibacterial therapy.
Collapse
Affiliation(s)
- Yongbin Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaming Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-Based Alloys With Antibacterial Properties as Orthopedic Implant Materials. Front Bioeng Biotechnol 2022; 10:888084. [PMID: 35677296 PMCID: PMC9168471 DOI: 10.3389/fbioe.2022.888084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Implant-associated infection (IAI) is one of the major challenges in orthopedic surgery. The development of implants with inherent antibacterial properties is an effective strategy to resolve this issue. In recent years, biodegradable alloy materials have received considerable attention because of their superior comprehensive performance in the field of orthopedic implants. Studies on biodegradable alloy orthopedic implants with antibacterial properties have gradually increased. This review summarizes the recent advances in biodegradable magnesium- (Mg-), iron- (Fe-), and zinc- (Zn-) based alloys with antibacterial properties as orthopedic implant materials. The antibacterial mechanisms of these alloy materials are also outlined, thus providing more basis and insights on the design and application of biodegradable alloys with antibacterial properties as orthopedic implants.
Collapse
Affiliation(s)
- Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yutong Ma
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology and Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Shu Guo, ; Shude Yang,
| |
Collapse
|
36
|
Lin J, Yin M, Liu X, Meng F, Luo L. Nanomaterials Based on Functional Polymers for Sensitizing Cancer Radiotherapy. Macromol Rapid Commun 2022; 43:e2200194. [PMID: 35578790 DOI: 10.1002/marc.202200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Despite being the mainstay treatment for many types of cancer in clinic, radiotherapy is undertaking great challenges in overcoming a series of limitations. Radiosensitizers are promising agents capable of depositing irradiation energy and generating free radicals to enhance the radiosensitivity of tumor cells. Combining radiosensitizers with functional polymer-based nanomaterials holds great potential to improve biodistribution, circulation time, and stability in vivo. The derived polymeric nano-radiosensitizers can significantly improve the efficiency of tumor targeting and radiotherapy, and reduce the side effect to healthy tissues. In this review, we provide an overview of functional polymer-based nanomaterials for radiosensitization in recent years. Particular emphases are given to the action mechanisms, drug loading methods, targeting efficiencies, the impact on therapeutic effects and biocompatibility of various radiosensitizing polymers, which are classified as polymeric micelles, dendrimers, polymeric nanospheres, nanoscale coordination polymers, polymersomes, and nanogels. The challenges and outlooks of polymeric nano-radiosensitizers are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinfeng Lin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
37
|
Peng Y, Yu S, Wang Z, Huang P, Wang W, Xing J. Nanogels loading curcumin in situ through microemulsion photopolymerization for enhancement of antitumor effects. J Mater Chem B 2022; 10:3293-3302. [PMID: 35380157 DOI: 10.1039/d2tb00035k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Drug-loaded nanogels for cancer treatment can limit the free diffusion and distribution of drug molecules in the whole body to reduce undesirable side effects and improve the drug absorption efficiency of the tumor. In this study, curcumin as a model drug was encapsulated into nanogels in situ through microemulsion photopolymerization at 532 nm. Nanogels loaded with curcumin (NG-C) displayed a diameter of around 150 nm with good stability and a low polydispersity index of around 0.1. NG-C had a drug-loading capacity of 8.96 ± 1.16 wt%. The cumulative release of curcumin from NG-C was around 25%, 34% and 55% within 90 h in pH 7.4, 6.8 and 5.0 PBS buffer, respectively. NG-C presented prominent cytotoxicity toward Hep G2 and HeLa cancer cells in vitro. Moreover, NG-C exhibited much a stronger inhibition of tumor growth, necrosis, apoptosis, and the suppression of proliferation compared with curcumin on Hep G2 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Siyuan Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Zhen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
38
|
Shen J, Chen R, Wang J, Zhao Z, Gu R, Brash JL, Chen H. One-step surface modification strategy with composition-tunable microgels: From bactericidal surface to cell-friendly surface. Colloids Surf B Biointerfaces 2022; 212:112372. [PMID: 35114438 DOI: 10.1016/j.colsurfb.2022.112372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
As modifiers for biomaterial surfaces, soft colloidal particles not only have good film-forming properties, but can also contribute to the function of the biomaterial via their chemical and biological properties. This general approach has proven effective for surface modification, but little is known about methods to control the properties of the colloidal particles to regulate film formation and biological function. In this work, we prepared poly (N-isopropylacrylamide) microgels (ZQP) containing both a zwitterionic component (Z) to provide anti-fouling functionality, and a quaternary ammonium salt (Q) to give bactericidal functionality. Fine-tuning of the Z and Q contents allowed the preparation of microgels over a range of particle size, size distribution, charge, and film-forming capability. The films showed anti-adhesion and contact-killing properties versus Escherichia coli (E. Coli), depending on the chemical composition. They also showed excellent cytocompatibility relative to L929 cells. A variety of microgel-coated substrates (silicon wafer, PDMS, PU, PVC) showed long-term anti-bacterial activity and resistance to chemical and mechanical treatments. It is concluded that this approach allows the preparation of effective bactericidal, cytocompatible surfaces. The properties can be fine-tuned by regulation of the microgel composition, and the method is applicable universally, i.e., independent of substrate.
Collapse
Affiliation(s)
- Jie Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Rui Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ziqing Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Rong Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - John L Brash
- Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
39
|
Ni J, Wan Y, Cai Y, Ding P, Cohen Stuart MA, Wang J. Synthesis of Anionic Nanogels for Selective and Efficient Enzyme Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3234-3243. [PMID: 35212549 DOI: 10.1021/acs.langmuir.1c03325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolyte nanogels containing cross-linked ionic polymer networks feature both soft environment and intrinsic charges which are of great potential for enzyme encapsulation. In this work, well-defined poly(acrylic acid) (PAA) nanogels have been synthesized based on a facile strategy, namely, electrostatic assembly directed polymerization (EADP). Specifically, AA monomers are polymerized together with a cross-linker in the presence of a cationic-neutral diblock copolymer as the template. Effects of control factors including pH, salt concentration, and cross-linking degree have been investigated systematically, based on which the optimal preparation of PAA nanogels has been established. The obtained nanogel features not only compatible pocket for safely loading enzymes without disturbing their structures, but also abundant negative charges which enable selective and efficient encapsulation of cationic enzymes. The loading capacities of PAA nanogels for cytochrome (cyt c) and lysozyme are 100 and 125 μg/mg (enzyme/nanogel), respectively. More notably, the PAA network seems to modulate a favorable microenvironment for cyt c and induces 2-fold enhanced activity for the encapsulated enzymes, as indicated by the steady-state kinetic assay. Our study reveals the control factors of EADP for optimal synthesis of anionic nanogels and validates their distinctive advances with respect to efficient loading and activation of cationic enzymes.
Collapse
Affiliation(s)
- Jiaying Ni
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yuting Wan
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ying Cai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peng Ding
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
40
|
Kantarcıoğlu M, Karaaslan Tunç MG, Gürses C, Ateş B, Köytepe S. Fabrication, thermal and in vitro behaviors of ciprofloxacin loaded β-cyclodextrin-PEG based polyurethanes as potential biomaterial for wound dressing applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2048954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Melike Kantarcıoğlu
- Department of Chemistry, Science and Literature Faculty, Inonu University, Malatya, Turkey
| | - Merve Gökşin Karaaslan Tunç
- Department of Chemistry, Science and Literature Faculty, Inonu University, Malatya, Turkey
- Department of Property Protection and Security, Taskent Vocational High School, Selcuk University, Konya, Turkey
| | - Canbolat Gürses
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Inonu University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Science and Literature Faculty, Inonu University, Malatya, Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Science and Literature Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
41
|
Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022; 8:gels8020097. [PMID: 35200478 PMCID: PMC8872030 DOI: 10.3390/gels8020097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study examined the most recent advancements in nanogel production and drug delivery. Phytochemistry is a discipline of chemistry that studies herbal compounds. Herbal substances have aided in the development of innovative remedies for a wide range of illnesses. Several of these compounds are forbidden from being used in medications due to broad medical characteristics and pharmacokinetics. A variety of new technical approaches have been investigated to ameliorate herbal discoveries in the pharmaceutical sector. The article focuses on the historical data for herb-related nanogels that are used to treat a variety of disorders with great patient compliance, delivery rate, and efficacy. Stimulus-responsive nanogels such as temperature responsive and pH-responsive systems are also discussed. Nanogel formulations, which have been hailed as promising targets for drug delivery systems, have the ability to alter the profile of a drug, genotype, protein, peptide, oligosaccharide, or immunogenic substance, as well as its ability to cross biological barriers, biodistribution, and pharmacokinetics, improving efficacy, safety, and patient cooperation.
Collapse
|
42
|
Nanocarriers for Sustainable Active Packaging: An Overview during and Post COVID-19. COATINGS 2022. [DOI: 10.3390/coatings12010102] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lockdown has been installed due to the fast spread of COVID-19, and several challenges have occurred. Active packaging was considered a sustainable option for mitigating risks to food systems during COVID-19. Biopolymeric-based active packaging incorporating the release of active compounds with antimicrobial and antioxidant activity represents an innovative solution for increasing shelf life and maintaining food quality during transportation from producers to consumers. However, food packaging requires certain physical, chemical, and mechanical performances, which biopolymers such as proteins, polysaccharides, and lipids have not satisfied. In addition, active compounds have low stability and can easily burst when added directly into biopolymeric materials. Due to these drawbacks, encapsulation into lipid-based, polymeric-based, and nanoclay-based nanocarriers has currently captured increased interest. Nanocarriers can protect and control the release of active compounds and can enhance the performance of biopolymeric matrices. The aim of this manuscript is to provide an overview regarding the benefits of released active compound-loaded nanocarriers in developing sustainable biopolymeric-based active packaging with antimicrobial and antioxidant properties. Nanocarriers improve physical, chemical, and mechanical properties of the biopolymeric matrix and increase the bioactivity of released active compounds. Furthermore, challenges during the COVID-19 pandemic and a brief post-COVID-19 scenario were also mentioned.
Collapse
|
43
|
Self-Gelling Solid Lipid Nanoparticle Hydrogel Containing Simvastatin as Suitable Wound Dressing: An Investigative Study. Gels 2022; 8:gels8010058. [PMID: 35049593 PMCID: PMC8774715 DOI: 10.3390/gels8010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Hydrogels, an advanced interactive system, is finding use as wound dressings, however, they exhibit restricted mechanical properties, macroscopic nature, and may not manage high exudate wounds or incorporate lipophilic actives. In this study, we developed a self-gelling solid lipid nanoparticle (SLNs) dressing to incorporate simvastatin (SIM), a lipophilic, potential wound-healing agent, clinically limited due to poor solubility (0.03 mg/mL) and absorption. The study explores unconventional and novel application of SIM. The idea was to incorporate a significant amount of SIM in a soluble form and release it slowly over a prolonged time. Further, a suitable polymeric surfactant was selected that assigned a self-gelling property to SLNs (SLN-hydrogel) so as to be used as a novel wound dressing. SLNs assign porosity, elasticity, and occlusivity to the dressing to keep the wound area moist. It will also provide better tolerance and sensory properties to the hydrogel. SIM loaded SLN-hydrogel was prepared employing an industry amenable high-pressure homogenization technique. The unique hydrogel dressing was characterized for particle size, zeta potential, Fourier transform infra-red spectroscopy, powder X-ray diffraction, differential scanning calorimetry, rheology, and texture. Significant loading of SIM (10% w/w) was achieved in spherical nanoparticule hydrogel (0.3 nm (nanoparticles) to 2 µm (gelled-matrix)) that exhibited good spreadability and mechanical properties and slow release up to 72 h. SLN-hydrogel was safe as per the organization for economic co-operation and development (OECD-404) guidelines, with no signs of irritation. Complete healing of excision wound observed in rats within 11 days was 10 times better than marketed povidone-iodine product. The presented work is novel both in terms of classifying a per se SLN-hydrogel and employing SIM. Further, it was established to be a safe, effective, and industry amenable invention.
Collapse
|
44
|
Kongprayoon A, Ross G, Limpeanchob N, Mahasaranon S, Punyodom W, Topham PD, Ross S. Bio-derived and biocompatible poly(lactic acid)/silk sericin nanogels and their incorporation within poly(lactide- co-glycolide) electrospun nanofibers. Polym Chem 2022. [DOI: 10.1039/d2py00330a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bio-derived and biocompatible nanogels based on poly(lactic acid) (PLA) and silk sericin (SS) have been synthesized for the first time.
Collapse
Affiliation(s)
- Arisa Kongprayoon
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth Ross
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Biopolymer Group, Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nanteetip Limpeanchob
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sararat Mahasaranon
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Biopolymer Group, Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Paul D. Topham
- Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
- Biopolymer Group, Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
45
|
Zhang H, Keskin D, de Haan-Visser WH, Zu G, van Rijn P, Zuhorn IS. Aliphatic Quaternary Ammonium Functionalized Nanogels for Gene Delivery. Pharmaceutics 2021; 13:1964. [PMID: 34834380 PMCID: PMC8618000 DOI: 10.3390/pharmaceutics13111964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Gene therapy is a promising treatment for hereditary diseases, as well as acquired genetic diseases, including cancer. Facing the complicated physiological and pathological environment in vivo, developing efficient non-viral gene vectors is needed for their clinical application. Here, poly(N-isopropylacrylamide) (p(NIPAM)) nanogels are presented with either protonatable tertiary amine groups or permanently charged quaternized ammonium groups to achieve DNA complexation ability. In addition, a quaternary ammonium-functionalized nanogel was further provided with an aliphatic moiety using 1-bromododecane to add a membrane-interacting structure to ultimately facilitate intracellular release of the genetic material. The ability of the tertiary amine-, quaternized ammonium-, and aliphatic quaternized ammonium-functionalized p(NIPAM) nanogels (i.e., NGs, NGs-MI, and NGs-BDD, respectively) to mediate gene transfection was evaluated by fluorescence microscopy and flow cytometry. It is observed that NGs-BDD/pDNA complexes exhibit efficient gene loading, gene protection ability, and intracellular uptake similar to that of NGs-MI/pDNA complexes. However, only the NGs-BDD/pDNA complexes show a notable gene transfer efficiency, which can be ascribed to their ability to mediate DNA escape from endosomes. We conclude that NGs-BDD displays a cationic lipid-like behavior that facilitates endosomal escape by perturbing the endosomal/lysosomal membrane. These findings demonstrate that the presence of aliphatic chains within the nanogel is instrumental in accomplishing gene delivery, which provides a rationale for the further development of nanogel-based gene delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (H.Z.); (D.K.); (W.H.d.H.-V.); (G.Z.)
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; (H.Z.); (D.K.); (W.H.d.H.-V.); (G.Z.)
| |
Collapse
|
46
|
Hussmann L, Belthle T, Demco DE, Fechete R, Pich A. Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells. SOFT MATTER 2021; 17:8678-8692. [PMID: 34518865 DOI: 10.1039/d1sm01007g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly(N-vinylcaprolactam-co-1-vinyl-3-methylimidazolium) (poly(VCL-VIM+)) microgels carrying permanent positive charges and demonstrate that 1H high-resolution NMR spectroscopy in combination with transverse (T2) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core-corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM+) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative E. coli strains, due to the positive charge of the incorporated VIM+ comonomer in the polymer network.
Collapse
Affiliation(s)
- Larissa Hussmann
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Thomke Belthle
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Dan E Demco
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
- Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca, Romania
| | - Radu Fechete
- Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca, Romania
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
47
|
Dong J, Du X, Zhang Y, Zhuang T, Cui X, Li Z. Thermo/glutathione-sensitive release kinetics of heterogeneous magnetic micro-organogel prepared by sono-catalysis. Colloids Surf B Biointerfaces 2021; 208:112109. [PMID: 34562785 DOI: 10.1016/j.colsurfb.2021.112109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
To improve the loading and delivery for hydrophobic drugs and optimize the release efficiency in tumor microenvironment, a novel core-shell magnetic micro-organogel carrier was successfully prepared by a sono-catalysis process in the study. As-synthesized magnetic micro-organogel had an appropriate dispersibility in water owing to the hydrophilicity of protein shell and could be kept steadily with a well-defined spherical morphology owing to the three-dimensional gel structure of oil core, and it promised an accessible targeted drug delivery owing to its good magnetism-mediated motion ability. Moreover, the magnetic micro-organogel showed a high loading efficiency up to 94.22% for coumarin 6 which was dissolved into the micro-organogel as a model hydrophobic drug. More importantly, the release kinetics revealed that the magnetic micro-organogel had a thermo-sensitive and glutathione (GSH)-sensitive ability to control the drug release, and proved that its release mechanisms referred to the combination of erosion, diffusion and degradation.
Collapse
Affiliation(s)
- Jun Dong
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Yongqiang Zhang
- College of Chemistry, Jilin University, 130012 Changchun, China; Junan Sub-Bureau of Linyi Ecological Environmental Bureau, 276600 Linyi, China
| | - Tingting Zhuang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, 130012 Changchun, China
| | - Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China.
| |
Collapse
|
48
|
Zu G, Meijer M, Mergel O, Zhang H, van Rijn P. 3D-Printable Hierarchical Nanogel-GelMA Composite Hydrogel System. Polymers (Basel) 2021; 13:polym13152508. [PMID: 34372111 PMCID: PMC8348806 DOI: 10.3390/polym13152508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
The strength of the extracellular matrix (ECM) is that it is hierarchical in terms of matrix built-up, matrix density and fiber structure, which allows for hormones, cytokines, and other small biomolecules to be stored within its network. The ECM-like hydrogels that are currently used do not possess this ability, and long-term storage, along with the need for free diffusion of small molecules, are generally incompatible requirements. Nanogels are able to fulfill the additional requirements upon successful integration. Herein, a stable hierarchical nanogel–gelatin methacryloyl (GelMA) composite hydrogel system is provided by covalently embedding nanogels inside the micropore network of GelMA hydrogel to allow a controlled local functionality that is not found in a homogenous GelMA hydrogel. Nanogels have emerged as a powerful tool in nanomedicine and are highly versatile, due to their simplicity of chemical control and biological compatibility. In this study, an N-isopropylacrylamide-based nanogel with primary amine groups on the surface was modified with methacryloyl groups to obtain a photo-cross-linking ability similar to GelMA. The nanogel-GelMA composite hydrogel was formed by mixing the GelMA and the photo-initiator within the nanogel solution through UV irradiation. The morphology of the composite hydrogel was observed by scanning electron microscopy, which clearly showed the nanogel wrapped within the GelMA network and covering the surface of the pore wall. A release experiment was conducted to prove covalent bonding and the stability of the nanogel inside the GelMA hydrogel. In addition, 3D printability studies showed that the nanogel-GelMA composite ink is printable. Therefore, the suggested stable hierarchical nanogel-GelMA composite hydrogel system has great potential to achieve the in situ delivery and controllable release of bioactive molecules in 3D cell culture systems.
Collapse
Affiliation(s)
- Guangyue Zu
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; (G.Z.); (M.M.); (O.M.)
| | - Marnix Meijer
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; (G.Z.); (M.M.); (O.M.)
| | - Olga Mergel
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; (G.Z.); (M.M.); (O.M.)
| | - Heng Zhang
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; (G.Z.); (M.M.); (O.M.)
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
49
|
Responsive Polymeric Nanoparticles for Biofilm-infection Control. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2610-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|