1
|
Wang Q, Chiu C, Zhang H, Wang X, Chen Y, Li X, Pan J. The H 2O 2 Self-Sufficient 3D Printed β-TCP Scaffolds with Synergistic Anti-Tumor Effect and Reinforced Osseointegration. Adv Healthc Mater 2024; 13:e2303390. [PMID: 38490171 DOI: 10.1002/adhm.202303390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Tumor recurrence and massive bone defects are two critical challenges for postoperative treatment of oral and maxillofacial tumor, posing serious threats to the health of patients. Herein, in order to eliminate residual tumor cells and promote osteogenesis simultaneously, the hydrogen peroxide (H2O2) self-sufficient TCP-PDA-CaO2-CeO2 (TPCC) scaffolds are designed by preparing CaO2 or/and CeO2 nanoparticles (NPs)/chitosan solution and modifying the NPs into polydopamine (PDA)-modified 3D printed TCP scaffolds by rotary coating method. CaO2 NPs loaded on the scaffolds can release Ca2+ and sufficient H2O2 in the acidic tumor microenvironment (TME). The generated H2O2 can further produce hydroxyl radicals (·OH) under catalysis effect by peroxidase (POD) activity of CeO2 NPs, in which the photothermal effect of the PDA coating enhances its POD catalytic effect. Overall, NPs loaded on the scaffold chemically achieve a cascade reaction of H2O2 self-sufficiency and ·OH production, while functionally achieving synergistic effects on anti-tumor and bone promotion. In vitro and in vivo studies show that the scaffolds exhibit effective osteo-inductivity, induced osteoblast differentiation and promote osseointegration. Therefore, the multifunctional composite scaffolds not only validate the concept of chemo-dynamic therapy (CDT) cascade therapy, but also provide a promising clinical strategy for postoperative treatment of oral and maxillofacial tumor.
Collapse
Affiliation(s)
- Qing Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chingyen Chiu
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hang Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuan Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Li
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinsong Pan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
2
|
Liu YJ, Dong SH, Hu WH, Chen QL, Zhang SF, Song K, Han ZC, Li MM, Han ZT, Liu WB, Zhang XS. A multifunctional biomimetic nanoplatform for image-guideded photothermal-ferroptotic synergistic osteosarcoma therapy. Bioact Mater 2024; 36:157-167. [PMID: 38463554 PMCID: PMC10924166 DOI: 10.1016/j.bioactmat.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Much effort has been devoted to improving treatment efficiency for osteosarcoma (OS). However, most current approaches result in poor therapeutic responses, thus indicating the need for the development of other therapeutic options. This study developed a multifunctional nanoparticle, PDA-MOF-E-M, an aggregation of OS targeting, programmed death targeting, and near-infrared (NIR)-aided targeting. At the same time, a multifunctional nanoparticle that utilises Fe-MOFs to create a cellular iron-rich environment and erastin as a ferroptosis inducer while ensuring targeted delivery to OS cells through cell membrane encapsulation is presented. The combination of PDA-MOF-E-M and PTT increased intracellular ROS and LPO levels and induced ferroptosis-related protein expression. A PDA-based PTT combined with erastin showed significant synergistic therapeutic improvement in the anti-tumour efficiency of the nanoparticle in vitro and vivo. The multifunctional nanoparticle efficiently prevents the osteoclasia progression of OS xenograft bone tumors in vivo. Finally, this study provides guidance and a point of reference for clinical approaches to treating OS.
Collapse
Affiliation(s)
- Yu-jie Liu
- Department of Orthopedic Oncology and Spine Tumor Center, Changzheng Hospital, Second Military Medical University, Shanghai, 200001, China
| | - Su-he Dong
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Wen-hao Hu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qiao-ling Chen
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shao-fu Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Kai Song
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhen-chuan Han
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Meng-meng Li
- Department of Anesthesiology, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhi-tao Han
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023, Jiangsu, China
| | - Wei-bo Liu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xue-song Zhang
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
3
|
Sun K, Yuan L, Chen S, Sun Y, Wei D. Alendronate Pt IV Prodrug Amphiphile for Enhanced Chemotherapy Targeting and Bone Destruction Inhibition in Osteosarcoma. Adv Healthc Mater 2024; 13:e2302746. [PMID: 37988194 DOI: 10.1002/adhm.202302746] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Chemotherapy remains the primary treatment method for osteosarcoma after surgery. However, the lack of selectivity of chemotherapy for osteosarcoma leads to unpredictable therapeutic effects, undesirable side effects, and drug resistance. A platinum(IV) (PtIV ) prodrug amphiphile (ALN-PtIV -Lipo) covalently bound to alendronate (ALN) and a lipid tail is designed to overcome these limitations. ALN-PtIV -Lipo can self-assemble into PtIV lipid nanoparticles (APtIV ) for osteosarcoma targeting chemotherapy and bone destruction inhibition. It is demonstrated that APtIV achieved an eightfold increase in the eradication of osteosarcoma cells compared to cisplatin and threefold selective inhibition of osteosarcoma cells over breast cancer cells via APtIV in vitro. After intravenous injection, APtIV effectively accumulates at the osteosarcoma site in vivo, resulting in significantly suppressed primary osteosarcoma growth, and alleviation of bone destruction. Therefore, APtIV delivers a promising solution for enhanced chemotherapy targeting and bone destruction inhibition in osteosarcoma.
Collapse
Affiliation(s)
- Kaichuang Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Lu Yuan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Shen Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
4
|
Wang Y, Williams GR, Zheng Y, Guo H, Chen S, Ren R, Wang T, Xia J, Zhu LM. Polydopamine-cloaked Fe-based metal organic frameworks enable synergistic multidimensional treatment of osteosarcoma. J Colloid Interface Sci 2023; 651:76-92. [PMID: 37540932 DOI: 10.1016/j.jcis.2023.07.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023]
Abstract
One of the major challenges in effective cancer therapy arises because of the hypoxic microenvironment in the tumor. This compromises the efficacy of both chemo- and radiotherapy, and thus hinders patient outcomes. To solve this problem, we constructed polydopamine (PDA)-cloaked Fe-based metal organic frameworks (MOFs) loaded with d-arginine (d-Arg), glucose oxidase (GOX), and the chemotherapeutic drug tirapazamine (TPZ). These offer simultaneous multifaceted therapy combining chemodynamic therapy (CDT)/radiotherapy (RT)/starvation therapy (ST)/gas therapy (GT) and chemotherapy. The particles further can act as contrast agents in magnetic resonance imaging. GOX catalyses the conversion of endogenous glucose and O2 to hydrogen peroxide and gluconic acid, blocking the cells' energy supply and providing ST. With the resultant acidification of the local environment, the breakdown of the MOF releases TPZ (for chemotherapy) and Fe3+, which reacts with H2O2 to produce reactive oxygen species and thus stimulates the conversion of d-Arg to NO for GT and RT sensitization. The PDA coating not only seals the pores and chelates Fe3+ to enhance the T1-weighted magnetic resonance imaging (MRI) properties, but also is used to graft folate bovine serum albumin (FA-BSA) and thereby target the tumor site. The combined administration of low doses of X-ray irradiation and nanoparticles reduces the side effects on healthy tissue and can prevent lung metastases in mice. This work highlights the synergistic treatment of osteosarcoma via ST/GT/CDT/RT/MRI/ chemotherapy using a PDA-cloaked MOF system.
Collapse
Affiliation(s)
- Ying Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, UK
| | - Yilu Zheng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Shiyan Chen
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Rong Ren
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tong Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China.
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Huang L, Zeng X, Liang W, Chen J, Zhong C, Cai W, Wang X, Zhu Z, Su L, Liu Z, Peng H. Dissecting the role of lactate metabolism LncRNAs in the progression and immune microenvironment of osteosarcoma. Transl Oncol 2023; 36:101753. [PMID: 37549606 PMCID: PMC10423928 DOI: 10.1016/j.tranon.2023.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The process of lactate metabolism has been proved to play a critical role in the progression of various cancers and to influence the immune microenvironment, but its potential role in osteosarcoma remains unclear. METHODS We have acquired transcriptomic and clinical data from 84 osteosarcoma samples and 70 normal bone samples from the TARGET and GTEx databases. We identified differentially expressed lactate metabolism-related LncRNAs (LRLs) in osteosarcoma and performed Cox regression and LASSO regression to establish LRLs prognostic signature (LRPS). The reliability of LRPS performance was examined by separate prognostic analysis, viability curves and receiver operating characteristic (ROC) curves. Furthermore, the effects of LRPS on the immune microenvironment of osteosarcoma were investigated, and the functions of the focal genes were experimentally validated. RESULT A total of 856 differentially expressed LRLs were identified and 5 of them were selected to construct LRPS, which was a better prognostic predictor for osteosarcoma compared with other published prognostic signatures (AUC up to 0.947 and 0.839 in the training and test groups, respectively, with adj-p<0.05 for KM curves). We found that LRPS significantly affected the immune infiltration of osteosarcoma, while RP11-472M19.2 significantly promoted the metastasis of osteosarcoma, which was well validated experimentally. Encouragingly, a number of sensitive drugs were identified for LRPS and RP11-472M19.2 high-risk groups. CONCLUSION Our study shows that lactate metabolism plays a crucial role in the development of osteosarcoma and has been well validated experimentally, providing extremely important insights into the clinical treatment and in-depth research of osteosarcoma.
Collapse
Affiliation(s)
- Liangkun Huang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China
| | - Xiaoshuang Zeng
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China
| | - Wanting Liang
- Department of Clinical Medicine, Xianyue Hospital of Xiamen Medical College, Xiamen, 310058, China
| | - Junwen Chen
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China
| | - Changheng Zhong
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China
| | - Wenxiang Cai
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China
| | - Xuezhong Wang
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China
| | - Zhengjie Zhu
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China
| | - Li Su
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China
| | - Zilin Liu
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China.
| | - Hao Peng
- Department of Orthopedics Surgery, Renmin Hospital of Wuhan University, Wuhan Hubei, 430060, China.
| |
Collapse
|
6
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
7
|
Zeng M, Guo D, Fernández-Varo G, Zhang X, Fu S, Ju S, Yang H, Liu X, Wang YC, Zeng Y, Casals G, Casals E. The Integration of Nanomedicine with Traditional Chinese Medicine: Drug Delivery of Natural Products and Other Opportunities. Mol Pharm 2023; 20:886-904. [PMID: 36563052 DOI: 10.1021/acs.molpharmaceut.2c00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The integration of progressive technologies such as nanomedicine with the use of natural products from traditional medicine (TM) provides a unique opportunity for the longed-for harmonization between traditional and modern medicine. Although several actions have been initiated decades ago, a disparity of reasons including some misunderstandings between each other limits the possibilities of a truly complementation. Herein, we analyze some common challenges between nanomedicine and traditional Chinese medicine (TCM). These challenges, if solved in a consensual way, can give a boost to such harmonization. Nanomedicine is a recently born technology, while TCM has been used by the Chinese people for thousands of years. However, for these disciplines, the regulation and standardization of many of the protocols, especially related to the toxicity and safety, regulatory aspects, and manufacturing procedures, are under discussion. Besides, both TCM and nanomedicine still need to achieve a wider social acceptance. Herein, we first briefly discuss the strengths and weaknesses of TCM. This analysis serves to focus afterward on the aspects where TCM and nanomedicine can mutually help to bridge the existing gaps between TCM and Western modern medicine. As discussed, many of these challenges can be applied to TM in general. Finally, recent successful cases in scientific literature that merge TCM and nanomedicine are reviewed as examples of the benefits of this harmonization.
Collapse
Affiliation(s)
- Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongdong Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036 Barcelona, Spain.,Department of Biomedicine, University of Barcelona, 08007 Barcelona, Spain
| | - Xu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Siqi Fu
- Department of Dermatology, Second Xiangya Hospital Central South University, Changsha 410011, China
| | - Shijie Ju
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Huiling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ya-Chao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha 410008, China.,First Clinical Department of Changsha Medical University, Changsha 410219, China
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
8
|
Hua L, Lei P, Hu Y. Construction and validation model of necroptosis-related gene signature associates with immunity for osteosarcoma patients. Sci Rep 2022; 12:15893. [PMID: 36151259 PMCID: PMC9508147 DOI: 10.1038/s41598-022-20217-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Osteosarcoma is the most common malignant tumor in children and adolescents and its diagnosis and treatment still need to be improved. Necroptosis has been associated with many malignancies, but its significance in diagnosing and treating osteosarcoma remains unclear. The objective is to establish a predictive model of necroptosis-related genes (NRGs) in osteosarcoma for evaluating the tumor microenvironment and new targets for immunotherapy. In this study, we download the osteosarcoma data from the TARGET and GEO websites and the average muscle tissue data from GTEx. NRGs were screened by Cox regression analysis. We constructed a prediction model through nonnegative matrix factorization (NMF) clustering and the least absolute shrinkage and selection operator (LASSO) algorithm and verified it with a validation cohort. Kaplan–Meier survival time, ROC curve, tumor invasion microenvironment and CIBERSORT were assessed. In addition, we establish nomograms for clinical indicators and verify them by calibration evaluation. The underlying mechanism was explored through the functional enrichment analysis. Eight NRGs were screened for predictive model modeling. NRGs prediction model through NMF clustering and LASSO algorithm was established. The survival, ROC and tumor microenvironment scores showed significant statistical differences among subgroups (P < 0.05). The validation model further verifies it. By nomogram and calibration, we found that metastasis and risk score were independent risk factors for the poor prognosis of osteosarcoma. GO and KEGG analyses demonstrate that the genes of osteosarcoma cluster in inflammatory, apoptotic and necroptosis signaling pathways. The significant role of the correlation between necroptosis and immunity in promoting osteosarcoma may provide a novel insight into detecting molecular mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People's Republic of China.,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, People's Republic of China.,Department of Orthopedics, The Sixth Affiliated Hospital, Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People's Republic of China. .,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, People's Republic of China.
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People's Republic of China. .,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|