1
|
Zhao L, Liu C, Chen X, He Z, Zhang S, Zhang A, Tang S, Wu Z, Liu C, Yuan Y. Injectable double-crosslinked bone cement with enhanced bone adhesion and improved osteoporotic pathophysiological microenvironment for osteoregeneration in osteoporosis. Bioact Mater 2025; 43:441-459. [PMID: 39399835 PMCID: PMC11471141 DOI: 10.1016/j.bioactmat.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
The osteoporotic bone defect caused by excessive activity of osteoclasts has posed a challenge for public healthcare. However, most existing bioinert bone cement fails to effectively regulate the pathological bone microenvironment and reconstruct bone homeostasis in the presence of osteoclast overactivity and osteoblast suppression. Herein, inspired by natural bone tissue, an in-situ modulation system for osteoporotic bone regeneration is developed by fabricating an injectable double-crosslinked PEGylated poly(glycerol sebacate) (PEGS)/calcium phosphate cement (CPC) loaded with sodium alendronate (ALN) (PEGS/CPC@ALN) adhesive bone cement. By incorporating ALN, the organic-inorganic interconnection within PEGS/CPC@ALN results in a 100 % increase in compression modulus and energy dissipation efficiency. Additionally, PEGS/CPC@ALN effectively adheres to the bone by bonding with amine and calcium ions present on the bone surface. Moreover, this in-situ regulation system comprehensively mitigates excessive bone resorption through the buffering effect of CPC to improve the acidic microenvironment of osteoporotic bone and the release of ALN to inhibit hyperactive osteoclasts, and facilitates stem cell proliferation and differentiation into osteoblasts through calcium ion release. Overall, the PEGS/CPC@ALN effectively regulates the pathological microenvironment of osteoporosis while promoting bone regeneration through synergistic effects of drugs and materials, thereby improving bone homeostasis and enabling minimally invasive treatment for osteoporotic defects.
Collapse
Affiliation(s)
- Lingfei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Chenyu Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xing Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zirui He
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuiquan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Anan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shuaimin Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
| | - Zihan Wu
- Shanghai Rebone Biomaterials Co., Ltd, Shanghai, 201707, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry Engineering Research Center for Biomedical Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
2
|
Tian F, Zhao Y, Wang Y, Xu H, Liu Y, Liu R, Li H, Ning R, Wang C, Gao X, Luo R, Jia S, Zhu L, Hao D. Magnesium-Based Composite Calcium Phosphate Cement Promotes Osteogenesis and Angiogenesis for Minipig Vertebral Defect Regeneration. ACS Biomater Sci Eng 2024; 10:7577-7593. [PMID: 39575879 DOI: 10.1021/acsbiomaterials.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Calcium phosphate cement (CPC) is an injectable bone cement with excellent biocompatibility, widely used for filling bone defects of various shapes. However, its slow degradation, insufficient mechanical strength, and poor osteoinductivity limit its further clinical applications. In this study, we developed a novel composite magnesium-based calcium phosphate cement by integrating magnesium microspheres into PLGA fibers obtained through wet spinning and incorporating these fibers into CPC. The inclusion of magnesium-based PLGA fibers enhanced the compressive strength and degradation rate of CPC, with the degradation rate of the magnesium microspheres being controllable to allow for the sustained release of magnesium ions. In vitro experiments showed that magnesium-based CPC enhanced the proliferation and migration of MC3T3-E1 and HUVECs. Additionally, the magnesium-based composite CPC not only enhanced osteogenic differentiation of MC3T3-E1 cells but also promoted angiogenesis in HUVECs. In vivo experiments using a vertebral bone defect model in Bama miniature pigs showed that the magnesium-based composite CPC significantly increased new bone formation. Additionally, compared to the CPC group, this composite exhibited significantly higher levels of osteogenic and angiogenic markers, with no inflammation or necrosis observed in the heart, liver, or kidneys, indicating good biocompatibility. These results suggest that magnesium-based composite CPC, with its superior compressive strength, biodegradability, and ability to promote vascularized bone regeneration, holds promise as a minimally invasive injectable material for bone regeneration.
Collapse
Affiliation(s)
- Fang Tian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Yuqi Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Yuhao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Ruojie Ning
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Chengwen Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Rongjin Luo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| | - Dingjun Hao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No.555, Beilin District, Xi'an, Shaanxi 710001, China
| |
Collapse
|
3
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Yuan Y, Hu J, Shen L, He L, Zhu Y, Meng D, Jiang Q. Injectable calcium phosphate cement integrated with BMSCs-encapsulated microcapsules for bone tissue regeneration. Biomed Mater 2024; 19:065034. [PMID: 39312953 DOI: 10.1088/1748-605x/ad7e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Injectable calcium phosphate cement (CPC) offers significant benefits for the minimally invasive repair of irregular bone defects. However, the main limitations of CPC, including its deficiency in osteogenic properties and insufficient large porosity, require further investigation and resolution. In this study, alginate-chitosan-alginate (ACA) microcapsules were used to encapsulate and deliver rat bone mesenchymal stem cells (rBMSCs) into CPC paste, while a porous CPC scaffold was established to support cell growth. Our results demonstrated that the ACA cell microcapsules effectively protect the cells and facilitate their transport into the CPC paste, thereby enhancing cell viability post-implantation. Additionally, the ACA + CPC extracts were found to stimulate osteogenic differentiation of rBMSCs. Furthermore, results from a rat cranial parietal bone defect model showed that ACA microcapsules containing exogenous rBMSCs initially improved thein situosteogenic potential of CPC within bone defects, providing multiple sites for bone growth. Over time, the osteogenic potential of the exogenous cells diminishes, yet the pores created by the microcapsules persist in supporting ongoing bone formation by recruiting endogenous cells to the osteogenic sites. In conclusion, the utilization of ACA loaded stem cell microcapsules satisfactorily facilitate osteogenesis and degradation of CPC, making it a promising scaffold for bone defect transplantation.
Collapse
Affiliation(s)
- Yafei Yuan
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Jiangqi Hu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Lipei Shen
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Lin He
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Yixuan Zhu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Dan Meng
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| |
Collapse
|
5
|
Zhao L, Wang B, Feng S, Wu H. Preparation of composite calcium phosphate cement scaffold loaded with Hedysarum polysaccharides and its efficacy in repairing bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:49. [PMID: 39136848 PMCID: PMC11322508 DOI: 10.1007/s10856-024-06818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/26/2024] [Indexed: 08/16/2024]
Abstract
It's imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, Hedysarum polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.
Collapse
Affiliation(s)
- Lianggong Zhao
- Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Bo Wang
- Lanzhou University Second Hospital, Lanzhou, 730030, P. R. China
| | - Shilan Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Huifang Wu
- Shanghai i-Reader Biotech Co., Ltd, Shanghai, 201114, P. R. China.
| |
Collapse
|
6
|
Shu X, Liao J, Wang Q, Wang L, Shi Q, Xie X. Enhanced osteogenic and bactericidal performance of premixed calcium phosphate cement with photocrosslinked alginate thin film. J Biomed Mater Res A 2024; 112:1057-1069. [PMID: 38380877 DOI: 10.1002/jbm.a.37688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
The increasing prevalence of implant-associated infections (IAI) in orthopedics remains a public health challenge. Calcium phosphates (CaPs) are critical biomaterials in dental treatments and bone regeneration. It is highly desirable to endow CaPs with antibacterial properties. To achieve this purpose, we developed a photocrosslinked methacrylated alginate co-calcium phosphate cement (PMA-co-PCPC) with antibacterial properties, using α-tricalcium phosphate (α-TCP) powders with 16% amorphous contents as solid phase, liquid phases containing CuCl2 and SrCl2 as an inhibitor, and CaCl2 as an activator to construct PCPC. When CaCl2 started to activate the hydration reaction, Sr2+ or Cu2+ ions were exchanged with Ca2+, and α-TCP dissolution was restarted and gradually hydrated to form calcium-deficient hydroxyapatite (CDHA). PMA was added to crosslink with Cu/Sr ions and form gel-layer-wrapped hydrated CDHA. This study explored the binding mechanism of PMA and PCPC and the ion release rule of Ca2+ → Sr2+/Cu2+, optimized the construction of several antibacterial PMA-co-PCPC materials, and analyzed the physical, chemical, and biological properties. Because of the combined effect of Cu and Sr ions, the scaffold exhibited a potential antibacterial activity, promoting bone formation and vascular regeneration. This work provides a basis for designing antibacterial calcium phosphate biomaterials with controllable treatment, which is an important characteristic for preventing IAI of biomaterials.
Collapse
Affiliation(s)
- Xiulin Shu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Junda Liao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Qian Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Chen J, Yu L, Gao T, Dong X, Li S, Liu Y, Yang J, Xia K, Yu Y, Li Y, Wang S, Fan Z, Deng H, Guo W. Nanofiber-induced hierarchically-porous magnesium phosphate bone cements accelerate bone regeneration by inhibiting Notch signaling. Bioact Mater 2024; 37:459-476. [PMID: 38698920 PMCID: PMC11063995 DOI: 10.1016/j.bioactmat.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Magnesium phosphate bone cements (MPC) have been recognized as a viable alternative for bone defect repair due to their high mechanical strength and biodegradability. However, their poor porosity and permeability limit osteogenic cell ingrowth and vascularization, which is critical for bone regeneration. In the current study, we constructed a novel hierarchically-porous magnesium phosphate bone cement by incorporating extracellular matrix (ECM)-mimicking electrospun silk fibroin (SF) nanofibers. The SF-embedded MPC (SM) exhibited a heterogeneous and hierarchical structure, which effectively facilitated the rapid infiltration of oxygen and nutrients as well as cell ingrowth. Besides, the SF fibers improved the mechanical properties of MPC and neutralized the highly alkaline environment caused by excess magnesium oxide. Bone marrow stem cells (BMSCs) adhered excellently on SM, as illustrated by formation of more pseudopodia. CCK8 assay showed that SM promoted early proliferation of BMSCs. Our study also verified that SM increased the expression of OPN, RUNX2 and BMP2, suggesting enhanced osteogenic differentiation of BMSCs. We screened for osteogenesis-related pathways, including FAK signaing, Wnt signaling and Notch signaling, and found that SM aided in the process of bone regeneration by suppressing the Notch signaling pathway, proved by the downregulation of NICD1, Hes1 and Hey2. In addition, using a bone defect model of rat calvaria, the study revealed that SM exhibited enhanced osteogenesis, bone ingrowth and vascularization compared with MPC alone. No adverse effect was found after implantation of SM in vivo. Overall, our novel SM exhibited promising prospects for the treatment of critical-sized bone defects.
Collapse
Affiliation(s)
- Jingteng Chen
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ling Yu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Shiyu Li
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yinchu Liu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Yang
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kezhou Xia
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaru Yu
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingshuo Li
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sen Wang
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - ZhengFu Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Bone and Soft Tissue Tumor, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - Weichun Guo
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
8
|
Liu X, Astudillo Potes MD, Dashtdar B, Schreiber AC, Tilton M, Li L, Elder BD, Lu L. 3D Stem Cell Spheroids with 2D Hetero-Nanostructures for In Vivo Osteogenic and Immunologic Modulated Bone Repair. Adv Healthc Mater 2024; 13:e2303772. [PMID: 38271276 PMCID: PMC11404522 DOI: 10.1002/adhm.202303772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 01/27/2024]
Abstract
3D stem cell spheroids have immense potential for various tissue engineering applications. However, current spheroid fabrication techniques encounter cell viability issues due to limited oxygen access for cells trapped within the core, as well as nonspecific differentiation issues due to the complicated environment following transplantation. In this study, functional 3D spheroids are developed using mesenchymal stem cells with 2D hetero-nanostructures (HNSs) composed of single-stranded DNA (ssDNA) binding carbon nanotubes (sdCNTs) and gelatin-bind black phosphorus nanosheets (gBPNSs). An osteogenic molecule, dexamethasone (DEX), is further loaded to fabricate an sdCNTgBP-DEX HNS. This approach aims to establish a multifunctional cell-inductive 3D spheroid with improved oxygen transportation through hollow nanotubes, stimulated stem cell growth by phosphate ions supplied from BP oxidation, in situ immunoregulation, and osteogenesis induction by DEX molecules after implantation. Initial transplantation of the 3D spheroids in rat calvarial bone defect shows in vivo macrophage shifts to an M2 phenotype, leading to a pro-healing microenvironment for regeneration. Prolonged implantation demonstrates outstanding in vivo neovascularization, osteointegration, and new bone regeneration. Therefore, these engineered 3D spheroids hold great promise for bone repair as they allow for stem cell delivery and provide immunoregulative and osteogenic signals within an all-in-one construct.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linli Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
9
|
Jain V AK, Ali S, Murugan R, S C. Exploration of Whitlockite Nanostructures for Hemostatic Applications. Cureus 2024; 16:e58701. [PMID: 38779232 PMCID: PMC11110093 DOI: 10.7759/cureus.58701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Background Calcium magnesium phosphate (CMP)-based whitlockite is a promising biomaterial for hemostasis and regenerative applications. Regenerative approaches aim to advance tissue repair and recovery in different clinical scenarios. Whitlockite is a biocompatible and biodegradable mineral that has garnered impressive consideration for its interesting properties, making it an appealing candidate for therapeutic applications. Aim This study aimed to evaluate the hemostatic behavior of synthesized whitlockite nanoparticles. Materials and methods Coprecipitation and hydrothermal methods were used to synthesize whitlockite nanoparticles. Calcium nitrate, magnesium nitrate, and diammonium hydrogen phosphate were used as precursors to prepare this material. Results Crystalline phases of whitlockite (Ca3Mg)3(PO4) and calcium magnesium phosphate Ca7Mg2P6O2 were observed through X-ray diffraction (XRD) patterns, along with relevant properties of the phosphate functional group detected through Raman spectra. This study explores the hemostatic adequacy of CMP-based whitlockite using different methodologies. The capacity of the materials to actuate platelet conglomeration and encourage clot arrangement is assessed using in vitro experiments. Moreover, this study investigates the regenerative potential of CMP-based whitlockite in tissue-building applications. Conclusion The structural and morphological parameters provide crucial insights into the proper formation of the material, and the hemoclot assessment aids in understanding its coagulation behavior. Future investigations and clinical trials will be instrumental in fully harnessing the potential of CMP-based whitlockite for advancing hemostasis and regenerative medicine.
Collapse
Affiliation(s)
- Abhay Kumar Jain V
- Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Saheb Ali
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ramadurai Murugan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Chitra S
- Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
10
|
Lv N, Zhou Z, Hou M, Hong L, Li H, Qian Z, Gao X, Liu M. Research progress of vascularization strategies of tissue-engineered bone. Front Bioeng Biotechnol 2024; 11:1291969. [PMID: 38312513 PMCID: PMC10834685 DOI: 10.3389/fbioe.2023.1291969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024] Open
Abstract
The bone defect caused by fracture, bone tumor, infection, and other causes is not only a problematic point in clinical treatment but also one of the hot issues in current research. The development of bone tissue engineering provides a new way to repair bone defects. Many animal experimental and rising clinical application studies have shown their excellent application prospects. The construction of rapid vascularization of tissue-engineered bone is the main bottleneck and critical factor in repairing bone defects. The rapid establishment of vascular networks early after biomaterial implantation can provide sufficient nutrients and transport metabolites. If the slow formation of the local vascular network results in a lack of blood supply, the osteogenesis process will be delayed or even unable to form new bone. The researchers modified the scaffold material by changing the physical and chemical properties of the scaffold material, loading the growth factor sustained release system, and combining it with trace elements so that it can promote early angiogenesis in the process of induced bone regeneration, which is beneficial to the whole process of bone regeneration. This article reviews the local vascular microenvironment in the process of bone defect repair and the current methods of improving scaffold materials and promoting vascularization.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Zhonglai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuzhu Gao
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Second People’s Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University, Lianyungang, Jiangsu, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
11
|
Kim Y, Hamada K, Sekine K. The effect of supplementing the calcium phosphate cement containing poloxamer 407 on cellular activities. J Biomed Mater Res B Appl Biomater 2024; 112:e35335. [PMID: 37772460 DOI: 10.1002/jbm.b.35335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Calcium phosphate cement (CPC) is generally used for bone repair and augmentation. Poloxamers are tri-block copolymers that are used as surfactants but have applications in drug and antibiotic delivery. However, their biological effects on bone regeneration systems remain unelucidated. Here, we aimed to understand how supplementing the prototype CPC with poloxamer would impact cellular activity and its function as a bone-grafting material. A novel CPC, modified beta-tricalcium phosphate (mβ-TCP) powder, was developed through a planetary ball-milling process using a beta-tricalcium phosphate (β-TCP). The mβ-TCP dissolves rapidly and accelerates hydroxyapatite precipitation; successfully shortening the cement setting time and enhancing the strength. Furthermore, the addition of poloxamer 407 to mβ-TCP could reduce the risk of leakage from bone defects and improve fracture toughness while maintaining mechanical properties. In this study, the poloxamer addition effects (0.05 and 0.1 g/mL) on the cellular activities of MC3T3-E1 cells cultured in vitro were investigated. The cell viability of mβ-TCP containing poloxamer 407 was similar to that of mβ-TCP. All specimens showed effective cell attachment and healthy polygonal extension of the cytoplasm firmly attached to hydroxyapatite (HA) crystals. Therefore, even with the addition of poloxamer to mβ-TCP, it does not have a negative effect to osteoblast growth. These data demonstrated that the addition of poloxamer 407 to mβ-TCP might be considered a potential therapeutic application for the repair and regeneration of bone defects.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
12
|
Sui P, Yu T, Sun S, Chao B, Qin C, Wang J, Wang E, Zheng C. Advances in materials used for minimally invasive treatment of vertebral compression fractures. Front Bioeng Biotechnol 2023; 11:1303678. [PMID: 37954022 PMCID: PMC10634476 DOI: 10.3389/fbioe.2023.1303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Vertebral compression fractures are becoming increasingly common with aging of the population; minimally invasive materials play an essential role in treating these fractures. However, the unacceptable processing-performance relationships of materials and their poor osteoinductive performance have limited their clinical application. In this review, we describe the advances in materials used for minimally invasive treatment of vertebral compression fractures and enumerate the types of bone cement commonly used in current practice. We also discuss the limitations of the materials themselves, and summarize the approaches for improving the characteristics of bone cement. Finally, we review the types and clinical efficacy of new vertebral implants. This review may provide valuable insights into newer strategies and methods for future research; it may also improve understanding on the application of minimally invasive materials for the treatment of vertebral compression fractures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changjun Zheng
- Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Krokhicheva PA, Goldberg MA, Fomin AS, Khayrutdinova DR, Antonova OS, Baikin AS, Leonov AV, Merzlyak EM, Mikheev IV, Kirsanova VA, Sviridova IK, Akhmedova SA, Sergeeva NS, Barinov SM, Komlev VS. Zn-Doped Calcium Magnesium Phosphate Bone Cement Based on Struvite and Its Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4824. [PMID: 37445137 DOI: 10.3390/ma16134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The development of magnesium calcium phosphate bone cements (MCPCs) has garnered substantial attention. MCPCs are bioactive and biodegradable and have appropriate mechanical and antimicrobial properties for use in reconstructive surgery. In this study, the cement powders based on a (Ca + Mg)/P = 2 system doped with Zn2+ at 0.5 and 1.0 wt.% were obtained and investigated. After mixing with a cement liquid, the structural and phase composition, morphology, chemical structure, setting time, compressive strength, degradation behavior, solubility, antibacterial activities, and in vitro behavior of the cement materials were examined. A high compressive strength of 48 ± 5 MPa (mean ± SD) was achieved for the cement made from Zn2+ 1.0 wt.%-substituted powders. Zn2+ introduction led to antibacterial activity against Staphylococcus aureus and Escherichia coli strains, with an inhibition zone diameter of up to 8 mm. Biological assays confirmed that the developed cement is cytocompatible and promising as a potential bone substitute in reconstructive surgery.
Collapse
Affiliation(s)
- Polina A Krokhicheva
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Margarita A Goldberg
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander S Fomin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dinara R Khayrutdinova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga S Antonova
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander S Baikin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Aleksander V Leonov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina M Merzlyak
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ivan V Mikheev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina A Kirsanova
- P.A. Hertsen Moscow Oncology Research Institute-Branch of National Medical Research Radiological Centre Affiliated with Ministry of Health of Russian Federation, 2nd Botkinsky Pr. 3, Moscow 125284, Russia
| | - Irina K Sviridova
- P.A. Hertsen Moscow Oncology Research Institute-Branch of National Medical Research Radiological Centre Affiliated with Ministry of Health of Russian Federation, 2nd Botkinsky Pr. 3, Moscow 125284, Russia
| | - Suraya A Akhmedova
- P.A. Hertsen Moscow Oncology Research Institute-Branch of National Medical Research Radiological Centre Affiliated with Ministry of Health of Russian Federation, 2nd Botkinsky Pr. 3, Moscow 125284, Russia
| | - Natalia S Sergeeva
- P.A. Hertsen Moscow Oncology Research Institute-Branch of National Medical Research Radiological Centre Affiliated with Ministry of Health of Russian Federation, 2nd Botkinsky Pr. 3, Moscow 125284, Russia
| | - Sergey M Barinov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
14
|
Lukina Y, Safronova T, Smolentsev D, Toshev O. Calcium Phosphate Cements as Carriers of Functional Substances for the Treatment of Bone Tissue. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4017. [PMID: 37297151 PMCID: PMC10254876 DOI: 10.3390/ma16114017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Interest in calcium phosphate cements as materials for the restoration and treatment of bone tissue defects is still high. Despite commercialization and use in the clinic, the calcium phosphate cements have great potential for development. Existing approaches to the production of calcium phosphate cements as drugs are analyzed. A description of the pathogenesis of the main diseases of bone tissue (trauma, osteomyelitis, osteoporosis and tumor) and effective common treatment strategies are presented in the review. An analysis of the modern understanding of the complex action of the cement matrix and the additives and drugs distributed in it in relation to the successful treatment of bone defects is given. The mechanisms of biological action of functional substances determine the effectiveness of use in certain clinical cases. An important direction of using calcium phosphate cements as a carrier of functional substances is the volumetric incorporation of anti-inflammatory, antitumor, antiresorptive and osteogenic functional substances. The main functionalization requirement for carrier materials is prolonged elution. Various release factors related to the matrix, functional substances and elution conditions are considered in the work. It is shown that cements are a complex system. Changing one of the many initial parameters in a wide range changes the final characteristics of the matrix and, accordingly, the kinetics. The main approaches to the effective functionalization of calcium phosphate cements are considered in the review.
Collapse
Affiliation(s)
- Yulia Lukina
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
- Faculty of Digital Technologies and Chemical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Tatiana Safronova
- Department of Chemistry, Lomonosov Moscow State University, Building 3, Leninskie Gory 1, 119991 Moscow, Russia;
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| | - Dmitriiy Smolentsev
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
| | - Otabek Toshev
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| |
Collapse
|
15
|
Słota D, Piętak K, Florkiewicz W, Jampilek J, Tomala A, Urbaniak MM, Tomaszewska A, Rudnicka K, Sobczak-Kupiec A. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091469. [PMID: 37177013 PMCID: PMC10180150 DOI: 10.3390/nano13091469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in the form of pastes or composites; however, their porous structure allows modification with active substances and, thus, subsequent use as a drug carrier for the controlled release of active substances. In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP, brushite, as well as HA obtained by wet precipitation methods. The ceramic powders were subjected to physicochemical analysis, including FTIR, XRD, and determination of Ca/P molar ratio or porosity. These techniques confirmed that the materials were phase-pure, and the molar ratios of calcium and phosphorus elements were in accordance with the literature. This confirmed the validity of the selected synthesis methods. CaPs were then modified with the antibiotic clindamycin. Drug release was determined on HPLC, and antimicrobial properties were tested against Staphylococcus aureus. The specific surface area of the ceramic has been demonstrated to be a factor in drug release efficiency.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Wioletta Florkiewicz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Tomala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| |
Collapse
|
16
|
Reinforcement of Calcium Phosphate Cement with Hybrid Silk Fibroin/Kappa-Carrageenan Nanofibers. Biomedicines 2023; 11:biomedicines11030850. [PMID: 36979830 PMCID: PMC10045238 DOI: 10.3390/biomedicines11030850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Calcium phosphate cements (CPCs) offer a promising solution for treating bone defects due to their osteoconductive, injectable, biocompatible, and bone replacement properties. However, their brittle nature restricts their utilization to non-load-bearing applications. In this study, the impact of hybrid silk fibroin (SF) and kappa-carrageenan (k-CG) nanofibers as reinforcements in CPC was investigated. The CPC composite was fabricated by incorporating electrospun nanofibers in 1, 3, and 5% volume fractions. The morphology, mineralization, mechanical properties, setting time, injectability, cell adhesion, and mineralization of the CPC composites were analyzed. The results demonstrated that the addition of the nanofibers improved the CPC mixture, leading to an increase in compressive strength (14.8 ± 0.3 MPa compared to 8.1 ± 0.4 MPa of the unreinforced CPC). Similar improvements were seen in the bending strength and work fracture (WOF). The MC3T3-E1 cell culture experiments indicated that cells attached well to the surfaces of all cement samples and tended to join their adjacent cells. Additionally, the CPC composites showed higher cell mineralization after a culture period of 14 days, indicating that the SF/k-CG combination has potential for applications as a CPC reinforcement and bone cell regeneration promoter.
Collapse
|
17
|
Zhang H, Cui Y, Zhuo X, Kim J, Li H, Li S, Yang H, Su K, Liu C, Tian P, Li X, Li L, Wang D, Zhao L, Wang J, Cui X, Li B, Pan H. Biological Fixation of Bioactive Bone Cement in Vertebroplasty: The First Clinical Investigation of Borosilicate Glass (BSG) Reinforced PMMA Bone Cement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51711-51727. [PMID: 36354323 DOI: 10.1021/acsami.2c15250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PMMA bone cement has been clinically used for decades in vertebroplasty due to its high mechanical strength and satisfactory injectability. However, the interface between bone and PMMA is fragile and more prone to refracture in situ because PMMA lacks a proper biological response from the host bone with minimal bone integration and dense fibrous tissue formation. Here, we modified PMMA by incoporating borosilicate glass (BSG) with a dual glass network of [BO3] and [SiO4], which spontaneously modulates immunity and osteogenesis. In particular, the BSG modified PMMA bone cement (abbreviated as BSG/PMMA cement) provided an alkaline microenvironment that spontaneously balanced the activities between osteoclasts and osteoblasts. Furthermore, the trace elements released from the BSGs enhanced the osteogenesis to strengthen the interface between the host bone and the implant. This study shows the first clinical case after implantation of BSG/PMMA for three months using the dual-energy CT, which found apatite nucleation around PMMA instead of fibrous tissues, indicating the biological interface was formed. Therefore, BSG/PMMA is promising as a biomaterial in vertebroplasty, overcoming the drawback of PMMA by improving the biological response from the host bone.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yinglin Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xianglong Zhuo
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Jua Kim
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Honglong Li
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Shuaijie Li
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Hongsheng Yang
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Kun Su
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunyu Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Tian
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian Li
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Limin Zhao
- Shenzhen Longhua District Central Hospital/The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen 518110, China
| | - Jianyun Wang
- Shenzhen Healthemes Biotechnology Co., Ltd, Shenzhen 518120, China
| | - Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bing Li
- Department of Orthopaedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou 545000, Guangxi, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
18
|
El-Fiqi A, Kim JH, Kim HW. Highly bioactive bone cement microspheres based on α-tricalcium phosphate microparticles/mesoporous bioactive glass nanoparticles: Formulation, physico-chemical characterization and in vivo bone regeneration. Colloids Surf B Biointerfaces 2022; 217:112650. [PMID: 35763895 DOI: 10.1016/j.colsurfb.2022.112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Calcium phosphate cement (CPC) is a self-setting, biocompatible and osteoconductive bone cement, however its use as a bone substitute is still limited owing to its low bioactivity (i.e. its slow in vivo resorption and slow new bone formation rate) which is a challenging issue to be addressed. Herein, we report for the first time highly bioactive bone cement microspheres formulated from a cement paste containing α-tricalcium phosphate microparticles (α-TCP) and mesoporous calcium silicate bioactive glass nanoparticles (mesoporous BGn) using a water-in-oil emulsion method. Indeed, bioactive microspheres possess high potential as bone defect fillers for bone regeneration. The α-TCP microparticles were prepared by a solid state synthesis at 1400 ºC while mesoporous BGn were synthesized by template-assissted ultrasound-mediated sol-gel method. The particle size distribution of as-prepared cement microspheres was in the range of 200 - 450 µm with a sphericity index in the range of 0.92 - 0.94. The surface morphology of α-TCP microspheres revealed α-TCP micoparticles with smooth surfaces whereas α-TCP/BGn microspheres unveiled nano-roughened α-TCP microparticles. The as-prepared α-TCP/BGn cement microspheres exhibited larger specific surface area ca 18.6 m2/g, sustained release of soluble silicate (SiO44-) ions (118 ppm within a week) and high protein adsorption capacity (252 mg/g). Notably, the α-TCP/BGn cement microspheres showed excellent in vitro surface bioactivity via formation of massive amounts of bone-like hydroxyapatite spherules and aggregates on their surfaces after soaking in simulated body fluid. Importantly, the in vivo implantation of as-prepared α-TCP/BGn cement microspheres in rat calvarial critical size bone defects for 6 weeks unveiled high in vivo bioactivity in terms of substantial new bone ingrowth and significant new bone formation within the bone defect as evidenced by histological analyses, X-ray radiography and micro-computed tomography evaluations.
Collapse
Affiliation(s)
- Ahmed El-Fiqi
- Glass Research Department, National Research Centre, Cairo 12622, Egypt.
| | - Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
19
|
Kim Y, Uyama E, Sekine K, Kawano F, Hamada K. Effects of poloxamer additives on strength, injectability, and shape stability of beta-tricalcium phosphate cement modified using ball-milling. J Mech Behav Biomed Mater 2022; 130:105182. [PMID: 35305410 DOI: 10.1016/j.jmbbm.2022.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
Abstract
A new CPC was developed in this study using a β-TCP powder mechano-chemically modified by ball-milling. The prototype CPC exhibits excellent fluidity for easy injection into bone defects; however, there is a risk of leakage from the defects immediately after implantation due to its high fluidity. The addition of poloxamer, an inverse thermoresponsive gelling agent, into CPC optimizes the fluidity. At lower temperatures, it forms a sol and maintains good injectability, whereas at the human body temperature, it transforms to a gel, reducing the fluidity and risk of leakage. In this study, the effects of poloxamer addition of 3, 5, and 10 mass% on the injectability, shape stability, and strength of the prototype CPC were evaluated. The calculated injectability of the prototype CPC pastes containing three different poloxamer contents was higher than that of the CPC paste without poloxamer for 15 min at 37 °C. Furthermore, the shape stability immediately after injection of the three CPC pastes with poloxamer was higher than that of the CPC paste without poloxamer. After 1 week of storage at 37 °C, the compressive strength and diametral tensile strength of the CPC compacts containing 10 mass% poloxamer were similar to those of the CPC compact without poloxamer. Additionally, the CPC compacts containing 10 mass% poloxamer exhibited clear plastic deformation after fracture. These results indicate that the addition of poloxamer to the prototype CPC could reduce the risk of leakage from bone defects and improve the fracture toughness with maintaining the injectability and strength.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan.
| | - Emi Uyama
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Kazumitsu Sekine
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Fumiaki Kawano
- Department of Comprehensive Dentistry, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| | - Kenichi Hamada
- Department of Biomaterials and Bioengineering, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8504, Japan
| |
Collapse
|