1
|
Albrecht FB, Schmidt FF, Schmidt C, Börret R, Kluger PJ. Robot-based 6D bioprinting for soft tissue biomedical applications. Eng Life Sci 2024; 24:e2300226. [PMID: 38975018 PMCID: PMC11223372 DOI: 10.1002/elsc.202300226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/08/2024] [Accepted: 05/10/2024] [Indexed: 07/09/2024] Open
Abstract
Within this interdisciplinary study, we demonstrate the applicability of a 6D printer for soft tissue engineering models. For this purpose, a special plant was constructed, combining the technical requirements for 6D printing with the biological necessities, especially for soft tissue. Therefore, a commercial 6D robot arm was combined with a sterilizable housing (including a high-efficiency particulate air (HEPA) filter and ultraviolet radiation (UVC) lamps) and a custom-made printhead and printbed. Both components allow cooling and heating, which is desirable for working with viable cells. In addition, a spraying unit was installed that allows the distribution of fine droplets of a liquid. Advanced geometries on uneven or angled surfaces can be created with the use of all six axes. Based on often used bioinks in the field of soft tissue engineering (gellan gum, collagen, and gelatin methacryloyl) with very different material properties, we could demonstrate the flexibility of the printing system. Furthermore, cell-containing constructs using primary human adipose-derived stem cells (ASCs) could be produced in an automated manner. In addition to cell survival, the ability to differentiate along the adipogenic lineage could also be demonstrated as a representative of soft tissue engineering.
Collapse
Affiliation(s)
- Franziska B. Albrecht
- Reutlingen Research InstituteReutlingen UniversityReutlingenGermany
- Faculty of Natural ScienceUniversity of HohenheimStuttgartGermany
| | - Freia F. Schmidt
- Reutlingen Research InstituteReutlingen UniversityReutlingenGermany
| | | | - Rainer Börret
- Aalen University, Center for Optical TechnologiesAalenGermany
| | - Petra J. Kluger
- Faculty of Life SciencesReutlingen UniversityReutlingenGermany
| |
Collapse
|
2
|
Wu Y, Yang X, Gupta D, Alioglu MA, Qin M, Ozbolat V, Li Y, Ozbolat IT. Dissecting the Interplay Mechanism among Process Parameters toward the Biofabrication of High-Quality Shapes in Embedded Bioprinting. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2313088. [PMID: 38952568 PMCID: PMC11216718 DOI: 10.1002/adfm.202313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 07/03/2024]
Abstract
Embedded bioprinting overcomes the barriers associated with the conventional extrusion-based bioprinting process as it enables the direct deposition of bioinks in 3D inside a support bath by providing in situ self-support for deposited bioinks during bioprinting to prevent their collapse and deformation. Embedded bioprinting improves the shape quality of bioprinted constructs made up of soft materials and low-viscosity bioinks, leading to a promising strategy for better anatomical mimicry of tissues or organs. Herein, the interplay mechanism among the printing process parameters toward improved shape quality is critically reviewed. The impact of material properties of the support bath and bioink, printing conditions, cross-linking mechanisms, and post-printing treatment methods, on the printing fidelity, stability, and resolution of the structures is meticulously dissected and thoroughly discussed. Further, the potential scope and applications of this technology in the fields of bioprinting and regenerative medicine are presented. Finally, outstanding challenges and opportunities of embedded bioprinting as well as its promise for fabricating functional solid organs in the future are discussed.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Veli Ozbolat
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
- Ceyhan Engineering Faculty, Mechanical Engineering Department, Cukurova University, Adana 01330, Turkey
- Institute of Natural and Applied Sciences, Tissue Engineering Department, Cukurova University, Adana 01130, Turkey
| | - Yao Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Jiu J, Liu H, Li D, Li J, Liu L, Yang W, Yan L, Li S, Zhang J, Li X, Li JJ, Wang B. 3D bioprinting approaches for spinal cord injury repair. Biofabrication 2024; 16:032003. [PMID: 38569491 DOI: 10.1088/1758-5090/ad3a13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.
Collapse
Affiliation(s)
- Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Dijun Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lu Liu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenjie Yang
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, People's Republic of China
| | - Xiaoke Li
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, People's Republic of China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Öztürk-Öncel MÖ, Leal-Martínez BH, Monteiro RF, Gomes ME, Domingues RMA. A dive into the bath: embedded 3D bioprinting of freeform in vitro models. Biomater Sci 2023; 11:5462-5473. [PMID: 37489648 PMCID: PMC10408712 DOI: 10.1039/d3bm00626c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Designing functional, vascularized, human scale in vitro models with biomimetic architectures and multiple cell types is a highly promising strategy for both a better understanding of natural tissue/organ development stages to inspire regenerative medicine, and to test novel therapeutics on personalized microphysiological systems. Extrusion-based 3D bioprinting is an effective biofabrication technology to engineer living constructs with predefined geometries and cell patterns. However, bioprinting high-resolution multilayered structures with mechanically weak hydrogel bioinks is challenging. The advent of embedded 3D bioprinting systems in recent years offered new avenues to explore this technology for in vitro modeling. By providing a stable, cell-friendly and perfusable environment to hold the bioink during and after printing, it allows to recapitulate native tissues' architecture and function in a well-controlled manner. Besides enabling freeform bioprinting of constructs with complex spatial organization, support baths can further provide functional housing systems for their long-term in vitro maintenance and screening. This minireview summarizes the recent advances in this field and discuss the enormous potential of embedded 3D bioprinting technologies as alternatives for the automated fabrication of more biomimetic in vitro models.
Collapse
Affiliation(s)
- M Özgen Öztürk-Öncel
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Baltazar Hiram Leal-Martínez
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rosa F Monteiro
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães 4805-017, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Sun Z, Zhao J, Leung E, Flandes-Iparraguirre M, Vernon M, Silberstein J, De-Juan-Pardo EM, Jansen S. Three-Dimensional Bioprinting in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2023; 13:1180. [PMID: 37627245 PMCID: PMC10452258 DOI: 10.3390/biom13081180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional (3D) printing plays an important role in cardiovascular disease through the use of personalised models that replicate the normal anatomy and its pathology with high accuracy and reliability. While 3D printed heart and vascular models have been shown to improve medical education, preoperative planning and simulation of cardiac procedures, as well as to enhance communication with patients, 3D bioprinting represents a potential advancement of 3D printing technology by allowing the printing of cellular or biological components, functional tissues and organs that can be used in a variety of applications in cardiovascular disease. Recent advances in bioprinting technology have shown the ability to support vascularisation of large-scale constructs with enhanced biocompatibility and structural stability, thus creating opportunities to replace damaged tissues or organs. In this review, we provide an overview of the use of 3D bioprinting in cardiovascular disease with a focus on technologies and applications in cardiac tissues, vascular constructs and grafts, heart valves and myocardium. Limitations and future research directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jack Zhao
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Emily Leung
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Maria Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Michael Vernon
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jenna Silberstein
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Elena M. De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
- Heart and Vascular Research Institute, Harry Perkins Medical Research Institute, Perth, WA 6009, Australia
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Budharaju H, Sundaramurthi D, Sethuraman S. Efficient dual crosslinking of protein-in-polysaccharide bioink for biofabrication of cardiac tissue constructs. BIOMATERIALS ADVANCES 2023; 152:213486. [PMID: 37302210 DOI: 10.1016/j.bioadv.2023.213486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
Myocardial infarction (MI) is a lethal cardiac disease that causes most of the mortality across the world. MI is a consequence of plaque in the arterial walls of heart, which eventually result in occlusion and ischemia to the myocardial tissues due to inadequate nutrient and oxygen supply. As an efficient alternative to the existing treatment strategies for MI, 3D bioprinting has evolved as an advanced tissue fabrication technique where the cell-laden bioinks are printed layer-by-layer to create functional cardiac patches. In this study, a dual crosslinking strategy has been utilized towards 3D bioprinting of myocardial constructs by using a combination of alginate and fibrinogen. Herein, pre-crosslinking of the physically blended alginate-fibrinogen bioinks with CaCl2 enhanced the shape fidelity and printability of the printed structures. Physicochemical properties of the bioinks such as rheology, fibrin distribution, swelling ratio and degradation behaviour, were determined post-printing for only ionically crosslinked & dual crosslinked constructs and found to be ideal for bioprinting of cardiac constructs. Human ventricular cardiomyocytes (AC 16) exhibited a significant increase in cell proliferation on day 7 and 14 in AF-DMEM-20 mM CaCl2 bioink when compared to A-DMEM-20 mM CaCl2 (p < 0.05). Furthermore, myocardial patches containing neonatal ventricular rat myocytes (NVRM) showed >80 % viability and also expressed sarcomeric alpha actinin & connexin 43. These results indicate that the dual crosslinking strategy was cytocompatible and also possess the potential to be used for biofabrication of thick myocardial constructs for regenerative medicine applications.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, India.
| |
Collapse
|
7
|
Zhang C, Wang G, Lin H, Shang Y, Liu N, Zhen Y, An Y. Cartilage 3D bioprinting for rhinoplasty using adipose-derived stem cells as seed cells: Review and recent advances. Cell Prolif 2023; 56:e13417. [PMID: 36775884 PMCID: PMC10068946 DOI: 10.1111/cpr.13417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/14/2023] Open
Abstract
Nasal deformities due to various causes affect the aesthetics and use of the nose, in which case rhinoplasty is necessary. However, the lack of cartilage for grafting has been a major problem and tissue engineering seems to be a promising solution. 3D bioprinting has become one of the most advanced tissue engineering methods. To construct ideal cartilage, bio-ink, seed cells, growth factors and other methods to promote chondrogenesis should be considered and weighed carefully. With continuous progress in the field, bio-ink choices are becoming increasingly abundant, from a single hydrogel to a combination of hydrogels with various characteristics, and more 3D bioprinting methods are also emerging. Adipose-derived stem cells (ADSCs) have become one of the most popular seed cells in cartilage 3D bioprinting, owing to their abundance, excellent proliferative potential, minimal morbidity during harvest and lack of ethical considerations limitations. In addition, the co-culture of ADSCs and chondrocytes is commonly used to achieve better chondrogenesis. To promote chondrogenic differentiation of ADSCs and construct ideal highly bionic tissue-engineered cartilage, researchers have used a variety of methods, including adding appropriate growth factors, applying biomechanical stimuli and reducing oxygen tension. According to the process and sequence of cartilage 3D bioprinting, this review summarizes and discusses the selection of hydrogel and seed cells (centered on ADSCs), the design of printing, and methods for inducing the chondrogenesis of ADSCs.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Hongying Lin
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yujia Shang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Na Liu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
Mao X, Wang Z. Research Progress of Three-Dimensional Bioprinting Artificial Cardiac Tissue. Tissue Eng Regen Med 2023; 20:1-9. [PMID: 36401767 PMCID: PMC9852375 DOI: 10.1007/s13770-022-00495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular disease is one of the main diseases that endanger human life and health, and heart failure often occurs when the cardiovascular disease develops to the end-stage. Heart transplantation is the most effective treatment. However, there has always been a shortage of living heart organs. With the development of regenerative medicine, researchers have turned to bioprinting technology that can build tissues and organs in vitro. A large number of relevant literature on three-dimensional (3D) bioprinted hearts were searched and screened in Google Scholar. 3D bioprinting technology can accurately print biomaterials containing living cells into 3D functional living tissues, providing a feasible solution to the shortage of transplantable organs. As one of the most important organs in the human body, the research on 3D bioprinting of the heart has currently become a hot topic. This paper briefly overviews 3D bioprinting technology and the progress in bioprinting cardiac tissue. It is believed that in the future, bio-printed hearts will become a reality, making a new way of providing artificial organs for heart transplantation.
Collapse
Affiliation(s)
- Xin Mao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, People's Republic of China
| | - Zhehui Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, People's Republic of China.
| |
Collapse
|
9
|
Sun L, Wang Y, Xu D, Zhao Y. Emerging technologies for cardiac tissue engineering and artificial hearts. SMART MEDICINE 2023; 2:e20220040. [PMID: 39188557 PMCID: PMC11235648 DOI: 10.1002/smmd.20220040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 08/28/2024]
Abstract
Heart diseases, especially cardiovascular diseases, have brought heavy burden on society for their high morbidity and mortality. In clinical, heart transplantation is recognized as an effective strategy to rescue the lives of patients, while it may suffer from lack of donors and possible immune responses. In view of this, tremendous efforts have been devoted to developing alternative strategies to recover the function and promote the regeneration of cardiac tissues. As an emerging field blending cell biology and material science, tissue engineering technique allows the construction of biomimetic living complexes as organ substitutes for heart repair. In this review, we will present the recent progress in cardiac tissue engineering and artificial hearts. After introducing the critical elements in cardiac tissue engineering, we will present advanced fabrication methods to achieve scaffolds with desired micro/nanostructure design as well as the applications of these bioinspired scaffolds. We will also discuss the current dilemma and possible development direction from a biomedical perspective.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
10
|
Huang J, Lu J, Liu Z, Jin J, Xie C, Zheng Y, Wang Z, Yu L, Zhu Y, Fan G, Sun G, Xu Z, Zhou G. Covalent immobilization of VEGF on allogeneic bone through polydopamine coating to improve bone regeneration. Front Bioeng Biotechnol 2022; 10:1003677. [PMID: 36312529 PMCID: PMC9597090 DOI: 10.3389/fbioe.2022.1003677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Promoting bone regeneration and repairing in bone defects is of great significance in clinical work. Using a simple and effective surface treatment method to enhance the osteogenic ability of existing bone scaffold is a promising method. In this article, we study the application of catecholic amino acid 3,4-dihydroxyphenylalanine (DOPA) surface coating chelated with vascular endothelial growth factor (VEGF) on allogeneic bone. Method: Allogeneic bone is immersed in DOPA solution and DOPA form polydopamine (PDA) with good adhesion. Electron microscopy is used to characterize the surface characteristics of allogeneic bone. MC3T3-E1 cells were tested for biocompatibility and osteogenic signal expression. Finally, a 12-week rabbit bone defect model was established to evaluate bone regeneration capability. Results: We found that the surface microenvironment of DOPA bonded allogeneic bone was similar to the natural allogeneic bone. VEGF loaded allografts exhibited satisfying biocompatibility and promoted the expression of osteogenic related signals in vitro. The VEGF loaded allografts healed the bone defect after 12 weeks of implantation that continuous and intact bone cortex was observed. Conclusion: The PDA coating is a simple surface modification method and has mild properties and high adhesion. Meanwhile, the PDA coating can act on the surface modification of different materials. This study provides an efficient surface modification method for enhancing bone regeneration by PDA coating, which has a high potential for translational clinical applications.
Collapse
Affiliation(s)
- Jianhao Huang
- Department of Orthopedics, Jinling Hospital, The first School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jingwei Lu
- Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ziying Liu
- Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jing Jin
- Nanjing Drum Tower Hospital, Nanjing, China
| | - Chunmei Xie
- Hangzhou Lancet Robotics Company Ltd, Hangzhou, China
| | - Yang Zheng
- Nanjing Yaho Dental Clinic, Nanjing, China
| | - Zhen Wang
- Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lingfeng Yu
- Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yan Zhu
- Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Gentao Fan
- Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Guojing Sun
- Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhihong Xu
- Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, Nanjing, China
- *Correspondence: Zhihong Xu, ; Guangxin Zhou,
| | - Guangxin Zhou
- Department of Orthopedics, Jinling Hospital, The first School of Clinical Medicine, Southern Medical University, Nanjing, China
- Affiliated Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
- *Correspondence: Zhihong Xu, ; Guangxin Zhou,
| |
Collapse
|
11
|
Wen L, Tang F. Organoid research on human early development and beyond. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:512-523. [PMID: 37724162 PMCID: PMC10471100 DOI: 10.1515/mr-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 09/20/2023]
Abstract
The organoid field has been developing rapidly during the last decade. Organoids for human pre-, peri- and post-implantation development have opened an avenue to study these biological processes in vitro, which have been hampered by lack of accessible research models for long term. The technologies of four fields, single cell omics sequencing, genome editing and lineage tracing, microfluidics and tissue engineering, have fueled the rapid development of the organoid field. In this review, we will discuss the organoid research on human early development as well as future directions of the organoid field combining with other powerful technologies.
Collapse
Affiliation(s)
- Lu Wen
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, P. R. China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, P. R. China
| |
Collapse
|
12
|
|