1
|
Qi X, Xiang Y, Li Y, Wang J, Chen Y, Lan Y, Liu J, Shen J. An ATP-activated spatiotemporally controlled hydrogel prodrug system for treating multidrug-resistant bacteria-infected pressure ulcers. Bioact Mater 2025; 45:301-321. [PMID: 39669125 PMCID: PMC11635604 DOI: 10.1016/j.bioactmat.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Adenosine triphosphate (ATP)-activated prodrug approaches demonstrate potential in antibacterial uses. However, their efficacy frequently faces obstacles due to uncontrolled premature activation and spatiotemporal distribution differences under physiological circumstances. Herein, we present an endogenous ATP-activated prodrug system (termed ISD3) consisting of nanoparticles (indole-3-acetic acid/zeolitic imidazolate framework-8@polydopamine@platinum, IZPP) embedded in a silk fibroin-based hydrogel, aimed at treating multidrug-resistant (MDR) bacteria-infected pressure ulcers. Initially, an ultraviolet-triggered adhesive ISD3 barrier is formed over the pressure ulcer wound by a simple local injection. Subsequently, the bacteria-secreted ATP prompts the degradation of IZPP, allowing the loaded IAA prodrug and nanozyme to encounter spatiotemporally on a single carrier, thereby efficiently generating reactive oxygen species (ROS). Exposure to 808 nm near-infrared light enhances the catalytic reaction speed, boosting ROS levels for stronger antibacterial action. Once optimal antibacterial action is reached, ISD3 switches to a dormant state, halting any further ROS production. Moreover, the bioactive components in ISD3 can exert anti-inflammatory functions, aiding in pressure ulcer recovery. Overall, our research introduces a hydrogel prodrug strategy activated by bacterial endogenous ATP, which precisely manages ROS generation and accelerates the recovery of MDR bacteria-infected pressure ulcers.
Collapse
Affiliation(s)
- Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jiajia Wang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuxi Chen
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yulong Lan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jinsong Liu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
2
|
Sabu A, Kandel M, Sarma RR, Ramesan L, Roy E, Sharmila R, Chiu HC. Heterojunction semiconductor nanocatalysts as cancer theranostics. APL Bioeng 2024; 8:041502. [PMID: 39381587 PMCID: PMC11459490 DOI: 10.1063/5.0223718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer nanotechnology is a promising area of cross-disciplinary research aiming to develop facile, effective, and noninvasive strategies to improve cancer diagnosis and treatment. Catalytic therapy based on exogenous stimulus-responsive semiconductor nanomaterials has shown its potential to address the challenges under the most global medical needs. Semiconductor nanocatalytic therapy is usually triggered by the catalytic action of hot electrons and holes during local redox reactions within the tumor, which represent the response of nontoxic semiconductor nanocatalysts to pertinent internal or external stimuli. However, careful architecture design of semiconductor nanocatalysts has been the major focus since the catalytic efficiency is often limited by facile hot electron/hole recombination. Addressing these challenges is vital for the progress of cancer catalytic therapy. In recent years, diverse strategies have been developed, with heterojunctions emerging as a prominent and extensively explored method. The efficiency of charge separation under exogenous stimulation can be heightened by manipulating the semiconducting performance of materials through heterojunction structures, thereby enhancing catalytic capabilities. This review summarizes the recent applications of exogenous stimulus-responsive semiconducting nanoheterojunctions for cancer theranostics. The first part of the review outlines the construction of different heterojunction types. The next section summarizes recent designs, properties, and catalytic mechanisms of various semiconductor heterojunctions in tumor therapy. The review concludes by discussing the challenges and providing insights into their prospects within this dynamic and continuously evolving field of research.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Manoj Kandel
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ritwick Ranjan Sarma
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Lakshminarayan Ramesan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ekta Roy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ramalingam Sharmila
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Li L, Xing Y, Chen Y, Li K, Wu Y, Cai K, Wang L, Zhang J. Flower-Like Nanosensors for Photoacoustic-Enhanced Lysosomal Escape and Cytoplasmic Marker-Activated Fluorescence: Enabling High-Contrast Identification and Photothermal Ablation of Minimal Residual Disease in Breast Cancer. Adv Healthc Mater 2024:e2403042. [PMID: 39580677 DOI: 10.1002/adhm.202403042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Indexed: 11/26/2024]
Abstract
The clearance of minimal residual disease (MRD) after breast cancer surgery is crucial for inhibiting metastasis and recurrence. However, the most promising biomarker-activated fluorescence imaging strategies encounter accessibility issues of the delivered sensors to cytoplasmic targets. Herein, a flower-like composite nanosensor with photoacoustic (PA) effect-enhanced lysosomal escape and cytoplasmic marker-activated fluorescence is developed to address this challenge. Specifically, the incorporation of Co2+ into the synthesis of 2D Zn2+-derived metal-organic frameworks enabled rapid dopamine polymerization and deposition. Subsequently, the composite nanoflower (FHN), characterized by an average size of ≈80 nm and petal thickness of ≈6 nm, is formed through the sealing of micropores and simultaneous cross-linking of nanosheets. The pronounced reduction in thermal conductivity of FHN, and superposition of interpetal thermal fields under a pulsed laser (PL), lead to enhanced PA effect and membrane permeability. Thereby, nanosensors efficiently escape from lysosomes resulting in synergistic fluorescence activation by dual-factors (ATP, miRNA-21) and DNA probes installed on FHN. A subsequently high tumor-to-normal tissue signal ratio (TNR) of 17.4 lead to precise guidance of NIR irradiation for efficient MRD eradication and recurrence inhibition. This study provides a new approach for high-contrast identification and precise ablation of MRD based on the synergistic response of endogenous and exogenous factors.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuhua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kunlin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yunyun Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lu Wang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), No.158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, No.8 Yikang Road, Hangzhou, Zhejiang, 311399, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
4
|
Yang L, Zhao Z, Tian B, Yang M, Dong Y, Zhou B, Gai S, Xie Y, Lin J. A singular plasmonic-thermoelectric hollow nanostructure inducing apoptosis and cuproptosis for catalytic cancer therapy. Nat Commun 2024; 15:7499. [PMID: 39209877 PMCID: PMC11362521 DOI: 10.1038/s41467-024-51772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Thermoelectric technology has recently emerged as a distinct therapeutic modality. However, its therapeutic effectiveness is significantly limited by the restricted temperature gradient within living organisms. In this study, we introduce a high-performance plasmonic-thermoelectric catalytic therapy utilizing urchin-like Cu2-xSe hollow nanospheres (HNSs) with a cascade of plasmonic photothermal and thermoelectric conversion processes. Under irradiation by a 1064 nm laser, the plasmonic absorption of Cu2-xSe HNSs, featuring rich copper vacancies (VCu), leads to a rapid localized temperature gradient due to their exceptionally high photothermal conversion efficiency (67.0%). This temperature gradient activates thermoelectric catalysis, generating toxic reactive oxygen species (ROS) targeted at cancer cells. Density functional theory calculations reveal that this vacancy-enhanced thermoelectric catalytic effect arises from a much more carrier concentration and higher electrical conductivity. Furthermore, the exceptional photothermal performance of Cu2-xSe HNSs enhances their peroxidase-like and catalase-like activities, resulting in increased ROS production and apoptosis induction in cancer cells. Here we show that the accumulation of copper ions within cancer cells triggers cuproptosis through toxic mitochondrial protein aggregation, creating a synergistic therapeutic effect. Tumor-bearing female BALB/c mice are used to evaluate the high anti-cancer efficiency. This innovative approach represents the promising instance of plasmonic-thermoelectric catalytic therapy, employing dual pathways (membrane potential reduction and thioctylated protein aggregation) of mitochondrial dysfunction, all achieved within a singular nanostructure. These findings hold significant promise for inspiring the development of energy-converting nanomedicines.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhiyu Zhao
- Department of Ultrasound, the First Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Boshi Tian
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Meiqi Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Bingchen Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, P. R. China.
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, P. R. China.
| | - Jun Lin
- State Key Laboratory of Rare Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.
| |
Collapse
|
5
|
Li X, Gao ML, Wang SS, Li YL, Liu TN, Xiang H, Liu PN. Engineering an Organic Nanoplatform for Augmented Pyroeletroimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400756. [PMID: 38820232 DOI: 10.1002/adma.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Photothermal immunotherapy has shown great promise in the treatment of tumor metastasis. However, the thermal resistance of tumor cells substantially compromises the treatment effect of photothermal immunotherapy. Herein, a high-performance organic pyroelectric nanoplatform, tBu-TPAD-BF2 nanoparticles (NPs), is rationally engineered for the effective pyroelectroimmunotherapy of tumor metastasis. Biocompatible tBu-TPAD-BF2 NPs with excellent pyroelectric and photothermal conversion properties are constructed by assembling organic, low-bandgap pyroelectric molecules with amphiphilic polymers. After internalization by tumor cells, treatment with tBu-TPAD-BF2 NPs causes an apparent temperature elevation upon near-infrared (NIR) laser irradiation, inducing potent immunogenic cell death (ICD). Additionally, the temperature variations under alternating NIR laser irradiation facilitate reactive oxygen species production for pyroelectric therapy, thus promoting ICD activation and lowering thermal resistance. Importantly, in vivo assessments illustrate that tBu-TPAD-BF2 NPs in combination with NIR laser exposure notably inhibit primary and distant tumor proliferation and prominently retarded lung metastasis. RNA profiling reveals that treatment with tBu-TPAD-BF2 NPs markedly suppresses metastasis under NIR laser illumination by downregulating metastasis-related genes and upregulating immune response-associated pathways. Therefore, this study provides a strategy for designing high-performance pyroelectric nanoplatforms to effectively cure tumor metastasis, thereby overcoming the inherent shortcomings of photothermal immunotherapy.
Collapse
Affiliation(s)
- Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng-Lu Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shan-Shan Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu-Long Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tong-Ning Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
6
|
Xu H, Kim D, Zhao YY, Kim C, Song G, Hu Q, Kang H, Yoon J. Remote Control of Energy Transformation-Based Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402806. [PMID: 38552256 DOI: 10.1002/adma.202402806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Cancer treatment requires precise tumor-specific targeting at specific sites that allows for high-resolution diagnostic imaging and long-term patient-tailorable cancer therapy; while, minimizing side effects largely arising from non-targetability. This can be realized by harnessing exogenous remote stimuli, such as tissue-penetrative ultrasound, magnetic field, light, and radiation, that enable local activation for cancer imaging and therapy in deep tumors. A myriad of nanomedicines can be efficiently activated when the energy of such remote stimuli can be transformed into another type of energy. This review discusses the remote control of energy transformation for targetable, efficient, and long-term cancer imaging and therapy. Such ultrasonic, magnetic, photonic, radiative, and radioactive energy can be transformed into mechanical, thermal, chemical, and radiative energy to enable a variety of cancer imaging and treatment modalities. The current review article describes multimodal energy transformation where a serial cascade or multiple types of energy transformation occur. This review includes not only mechanical, chemical, hyperthermia, and radiation therapy but also emerging thermoelectric, pyroelectric, and piezoelectric therapies for cancer treatment. It also illustrates ultrasound, magnetic resonance, fluorescence, computed tomography, photoluminescence, and photoacoustic imaging-guided cancer therapies. It highlights afterglow imaging that can eliminate autofluorescence for sustained signal emission after the excitation.
Collapse
Affiliation(s)
- Hai Xu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yuan-Yuan Zhao
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
7
|
Liu W, Li Y, An Y, Zhao R, Wei C, Ren X, He H. Yunnan Baiyao Might Mitigate Periodontitis Bone Destruction by Inhibiting Autophagy and Promoting Osteoblast Differentiation in vivo, ex vivo and in vitro. J Inflamm Res 2024; 17:2271-2284. [PMID: 38645877 PMCID: PMC11027930 DOI: 10.2147/jir.s454694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Background and Objective Periodontitis is an inflammatory disease that eventually destroys tooth-supporting tissue. Yunnan Baiyao (YNBY), a traditional Chinese medicine compound with haemostatic and anti-inflammatory properties has shown therapeutic potential in several diseases. Our previous study revealed that YNBY suppressed osteoclast differentiation in periodontitis. The purpose of this study is to investigate the influences of YNBY on osteoblasts and explore its potential mechanisms. Materials and Methods A rat periodontitis model was established by ligation of maxillary second molars. After the end of modelling, histopathological observation by hematoxylin-eosin (HE) staining and Masson trichrome staining, detection of bone resorption by Micro-CT scanning, detection of osteoclasts by tartrate-resistant acid phosphatase (TRAP) staining, expression of osteocalcin (OCN) and microtubule-associated protein 1 light chain 3 (LC3) by immunohistochemistry. Lipopolysaccharides was used to irritate MC3T3-E1 osteoblastic cells and ex vivo calvarial organ as an in vitro model of inflammation. CCK-8 assay was performed to examine the toxicity of YNBY to MC3T3-E1 osteoblastic cells. Osteogenesis was assessed with alizarin red staining, immunofluorescence staining, Western blot and immunohistochemical staining. Transmission electron microscopy, fluorescent double staining, Western blot and immunohistochemical staining were employed to detect autophagy. Results Histological and micro-CT analyses revealed that YNBY gavage reduced bone loss caused by experimental periodontitis and upregulated osteogenic proteins in vivo. YNBY attenuated the production of autophagy-related proteins in periodontitis rats. Additionally, YNBY promoted osteogenesis by inhibiting inflammation-induced autophagy in vitro. Furthermore, YNBY suppressed LPS-mediated bone resorption and promoted the production of osteoblast-related proteins in inflamed calvarial tissues ex vivo. Conclusion This study demonstrated, through in vivo, in vitro and ex vivo experiments, that YNBY promoted osteoblast differentiation by suppressing autophagy, which markedly alleviated bone destruction caused by periodontitis.
Collapse
Affiliation(s)
- Wang Liu
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Yanjie Li
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Yuanyuan An
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Ruoyu Zhao
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Chenxi Wei
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Xiaobin Ren
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
| |
Collapse
|
8
|
Yuan X, Kang Y, Dong J, Li R, Ye J, Fan Y, Han J, Yu J, Ni G, Ji X, Ming D. Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy. Nat Commun 2023; 14:5140. [PMID: 37612298 PMCID: PMC10447553 DOI: 10.1038/s41467-023-40954-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
The exogenous excitation requirement and electron-hole recombination are the key elements limiting the application of catalytic therapies. Here a tumor microenvironment (TME)-specific self-triggered thermoelectric nanoheterojunction (Bi0.5Sb1.5Te3/CaO2 nanosheets, BST/CaO2 NSs) with self-built-in electric field facilitated charge separation is fabricated. Upon exposure to TME, the CaO2 coating undergoes rapid hydrolysis, releasing Ca2+, H2O2, and heat. The resulting temperature difference on the BST NSs initiates a thermoelectric effect, driving reactive oxygen species production. H2O2 not only serves as a substrate supplement for ROS generation but also dysregulates Ca2+ channels, preventing Ca2+ efflux. This further exacerbates calcium overload-mediated therapy. Additionally, Ca2+ promotes DC maturation and tumor antigen presentation, facilitating immunotherapy. It is worth noting that the CaO2 NP coating hydrolyzes very slowly in normal cells, releasing Ca2+ and O2 without causing any adverse effects. Tumor-specific self-triggered thermoelectric nanoheterojunction combined catalytic therapy, ion interference therapy, and immunotherapy exhibit excellent antitumor performance in female mice.
Collapse
Affiliation(s)
- Xue Yuan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Ruiyan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Jiamin Ye
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Jingwen Han
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Junhui Yu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Guangjian Ni
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China.
- Medical College, Linyi University, 276000, Linyi, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
9
|
Shi D, Wu F, Huang L, Li Y, Ke S, Li J, Hou Z, Fan Z. Bioengineered nanogenerator with sustainable reactive oxygen species storm for self-reinforcing sono-chemodynamic oncotherapy. J Colloid Interface Sci 2023; 646:649-662. [PMID: 37220698 DOI: 10.1016/j.jcis.2023.05.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Oxidative stress-based antitumor modalities derived from reactive oxygen species (ROS) storms have attracted increasing attention. Nevertheless, low delivery efficiency, poor selectivity, hypoxia and overexpressed glutathione (GSH) have severely restricted the sustainable generation of the ROS storm in tumor cells. Herein, we design a bioengineered nanogenerator by coordination-driven co-assembly of sonosensitizer indocyanine green (ICG), Fenton-like agent copper ion (CuⅡ) and mitochondrial respiratory inhibitor metformin (MET), which is then camouflaged by a cancer cytomembrane to induce a sustainable intracellular ROS storm for on-demand self-reinforcing sono-chemodynamic oncotherapy. Such a nanogenerator with a core-shell structure, suitable diameter and outstanding stability can efficiently accumulate in tumor regions and then internalize into tumor cells through the camouflaging and homologous targeting strategy of the cancer cytomembrane. The nanogenerator shows an exceptional instability under the triple stimulations of acidic lysosomes, overexpressed GSH and ultrasound (US) radiation, thereby resulting in the rapid disassembly and burst drug release. Interestingly, the released MET significantly enhances the sonodynamic therapy (SDT) efficacy of the released ICG by inhibiting mitochondrial respiration and meanwhile the released CuⅡ obviously reduces ROS elimination by downregulating overexpressed GSH for self-amplifying and self-protecting the intracellular ROS storm. Moreover, such a nanogenerator almost completely achieves the tumor ablation in vivo in a single therapy cycle. Taken together, our bioengineered nanogenerator with a sustainable ROS storm can provide a promising strategy for ROS storm-based oncotherapy.
Collapse
Affiliation(s)
- Dao Shi
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; College of Materials, Xiamen University, Xiamen 361005, China
| | - Feng Wu
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Lingling Huang
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Ying Li
- Xiamen Key Laboratory of Traditional Chinese Bio-engineering, Xiamen Medical College, Xiamen 361021, China
| | - Sunkui Ke
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, China.
| | - Jinyao Li
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Institute of Materia Medica & College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
10
|
Zhang Y, Zhu J, Zhang Z, He D, Zhu J, Chen Y, Zhang Y. Remodeling of tumor microenvironment for enhanced tumor chemodynamic/photothermal/chemo-therapy. J Nanobiotechnology 2022; 20:388. [PMID: 36028817 PMCID: PMC9419403 DOI: 10.1186/s12951-022-01594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/13/2022] [Indexed: 12/04/2022] Open
Abstract
The anticancer treatment is largely affected by the microenvironment of the tumors, which not only resists the tumors to the thermo/chemo-therapy, but also promotes their growth and invasion. In this work, the angiogenesis factor is balanced by combining with the breathing hyperoxygen, for regulating the tumor microenvironment and also for relieving hypoxia and high tissue interstitial pressure, which promote drug delivery to tumor tissues by increasing the in vivo perfusion and reversing the immunosuppressive tumor. In addition, the designed multifunctional nanoparticles have a great potential for applications to the tumor dual-mode imaging including magnetic resonance (MR) and photoacoustic (PA) imaging. This work proposes a promising strategy to enhance the thermo/chemo-therapy efficacy by remodeling the tumor microenvironment, which would provide an alternative to prolong the lifetime of tumor patients.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Jingyao Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Dannong He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jun Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.
| | - Yunsheng Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China. .,Shanghai Burns Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin 2nd Road, Shanghai, 200025, China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|