1
|
Lam W, Yao Y, Tang C, Wang Y, Yuan Q, Peng L. Bifunctional mesoporous HMUiO-66-NH 2 nanoparticles for bone remodeling and ROS scavenging in periodontitis therapy. Biomaterials 2024; 314:122872. [PMID: 39383779 DOI: 10.1016/j.biomaterials.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Periodontal bone defects represent an irreversible consequence of periodontitis associated with reactive oxygen species (ROS). However, indiscriminate removal of ROS proves to be counterproductive for tissue repair and insufficient for addressing existing bone defects. In the treatment of periodontitis, it is crucial to rationally alleviate local ROS while simultaneously promoting bone regeneration. In this study, Zr-based large-pore hierarchical mesoporous metal-organic framework (MOF) nanoparticles (NPs) HMUiO-66-NH2 were successfully proposed as bifunctional nanomaterials for bone regeneration and ROS scavenging in periodontitis therapy. HMUiO-66-NH2 NPs demonstrated outstanding biocompatibility both in vitro and in vivo. Significantly, these NPs enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under normal and high ROS conditions, upregulating osteogenic gene expression and mitigating oxidative stress. Furthermore, in vivo imaging revealed a gradual degradation of HMUiO-66-NH2 NPs in periodontal tissues. Local injection of HMUiO-66-NH2 effectively reduced bone defects and ROS levels in periodontitis-induced C57BL/6 mice. RNA sequencing highlighted that differentially expressed genes (DEGs) are predominantly involved in bone tissue development, with notable upregulation in Wnt and TGF-β signaling pathways. In conclusion, HMUiO-66-NH2 exhibits dual functionality in alleviating oxidative stress and promoting bone repair, positioning it as an effective strategy against bone resorption in oxidative stress-related periodontitis.
Collapse
Affiliation(s)
- Waishan Lam
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Li S, Lin Y, Mo C, Bi J, Liu C, Lu Y, Jia B, Xu S, Liu Z. Application of metal-organic framework materials in regenerative medicine. J Mater Chem B 2024; 12:8543-8576. [PMID: 39136436 DOI: 10.1039/d4tb00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In the past few decades, scaffolds manufactured from composite or hybrid biomaterials of natural or synthetic origin have made great strides in enhancing wound healing and repairing fractures and pathological bone loss. However, the prevailing use of such scaffolds in tissue engineering is accompanied by numerous constraints, including low mechanical stability, poor biological activity, and impaired cell proliferation and differentiation. The performance of scaffolds in wound and bone tissue engineering may be enhanced by some modifications in the synthesis of nanoscale metal-organic framework (nano-MOF) scaffolds. Nano-MOFs have attracted researchers' attention in recent years due to their distinctive features, which include tenability, biocompatibility, good mechanical stability, and ultrahigh surface area. The biological properties of scaffolds are enhanced and tissue regeneration is facilitated by the introduction of nano-MOFs. Moreover, the physicochemical characteristics, drug loading, and ion release capacities of the scaffolds are improved by the nanoscale structure and topological features of nano-MOFs, which also control stem cell differentiation, proliferation, and attachment. This review provides further comprehensive detail about the most recent uses of nano-MOFs in tissue engineering. The distinct characteristics of nano-MOFs are explored in enhancing tissue repair, wound healing, osteoinduction, and bone conductivity. Significant attributes include high antibacterial activity, substantial drug-loading capacity, and the ability to regulate drug release. Finally, this discussion addresses the obstacles, clinical impediments, and considerations encountered in the application of these nanomaterials to diverse scaffolds, tissue-mimicking structures, dressings, fillers, and implants for bone tissue repair and wound healing.
Collapse
Affiliation(s)
- Siwei Li
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chengxia Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Yu Lu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Mujtaba AG, Toprak Ö, Karakeçili A. A grafting approach for nisin-chitosan bio-based antibacterial films: preparation and characterization. Biomed Mater 2024; 19:055029. [PMID: 39079550 DOI: 10.1088/1748-605x/ad6965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Nisin is a bacteriocin produced by Gram-positive lactic acid bacterium,Lactococcus lactisand currently recognized in the Generally Recognızed as Safe (GRAS) category due to its non-toxicity. Herein, nisin has been grafted to chitosan structure to obtain natural bio-active films with enhanced antibacterial activity. Grafting was performed using ethyl ester lysine diisocyanate and dimer fatty acid-based diisocyanate (DDI); two different close to fully bio-based diisocyanates and Disuccinimidyl suberate; a homo-bifunctional molecule acting as a crosslinker between amino groups. The grafting process allowed the chemical immobilization of nisin to chitosan structure. Physicochemical characterization studies showed the successful grafting of nisin. The antibacterial activity againstStaphylococcus aureuswas evident for all nisin modified chitosan films and best pronounced when DDI was used as a crosslinker with a maximum zone of inhibition of ∼13 mm. All nisin grafted chitosan films were cytocompatible and the cell viability of L929 fibroblasts were >80% pointing out the non-toxic structure. Considering the results of the presented study, bio-based diisocyanates and homo-bifunctional crosslinkers are effective molecules in synthesis of nisin grafted chitosan structures and the new chitosan based antibacterial biopolymers obtained after nisin modification come forward as promising non-toxic and bioactive candidates to be applied in medical devices, implants, and various food coating products.
Collapse
Affiliation(s)
- Ayse Gunyakti Mujtaba
- Institute of Biotechnology, Ankara University, Gümüşdere 60. Yıl Yerleşkesi, Keçiören, 06135 Ankara, Turkey
| | - Özge Toprak
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey
- Graduate School of Natural and Applied Sciences, Ankara University, Dışkapı, 06110 Ankara, Turkey
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandoğan, 06100 Ankara, Turkey
| |
Collapse
|
4
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Zheng M, Huang Y, Hu W, Li R, Wang J, Han M, Li Z. Evaluation of the Antibacterial, Anti-Inflammatory, And Bone-Promoting Capacity of UiO-66 Loaded with Thymol or Carvacrol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36017-36029. [PMID: 38975983 DOI: 10.1021/acsami.4c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Oral infectious diseases have a significant impact on the health of oral and maxillofacial regions, as well as the overall well-being of individuals. Carvacrol and thymol, two isomers known for their effective antibacterial and anti-inflammatory properties, have gained considerable attention in the treatment of oral infectious diseases. However, their application as topical drugs for oral use is limited due to their poor physical and chemical stability. UiO-66, a metal-organic framework based on zirconium ion (Zr4+), exhibits high drug loading capability. Carvacrol and thymol were efficiently loaded onto UiO-66 with loading rates of 79.60 ± 0.71% and 79.65 ± 0.76%, respectively. The release rates of carvacrol and thymol were 77.82 ± 0.87% and 76.51 ± 0.58%, respectively, after a period of 72 h. Moreover, Car@UiO-66 and Thy@UiO-66 demonstrated excellent antibacterial properties against Candida albicans, Escherichia coli, and Staphylococcus aureus with minimum bactericidal concentrations (MBC) of 0.313 mg/mL, 0.313 mg/mL, and 1.25 mg/mL, respectively. Furthermore, based on the results of the CCK8 cytotoxicity assay, even at concentrations as high as 1.25 mg/mL, Car@UiO-66 and Thy@UiO-66 exhibited excellent biocompatibility with a relative cell survival rate above 50%. These findings suggest that Car@UiO-66 and Thy@UiO-66 possess favorable biocompatibility properties without significant toxicity towards periodontal membrane cells. Additionally, in vivo studies confirmed the efficacy of Car@UiO-66and Thy@UiO-66 in reducing inflammation, promoting bone formation through inhibition of TNF-a and IL6 expression, enhancement of IL10 expression, and acceleration of bone defect healing. Therefore, the unique combination of antibacterial, anti-inflammatory, and osteogenic properties make Car@UiO-66 and Thy@Ui O-66 promising candidates for the treatment of oral infectious diseases and repairing bone defects.
Collapse
Affiliation(s)
- Minghe Zheng
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Yanlin Huang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Weiwei Hu
- China Three Gorges University, University Road, Yichang City 443002, Hubei Province, China
| | - Ru Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Jiaye Wang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Mingfang Han
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| | - Zehui Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital The Chinese Hospital of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
- Hangzhou Normal University, The Chinese University of China, Hangzhou 310015, Zhejiang Province, People's Republic of China
| |
Collapse
|
6
|
Yang P, Xie P, Lin F, Wang T, Zhang L, Yan F. Synthesis of two Fluorescent Complexes and Their use as Multifunctional Nanomedicine Carriers for Rhabdomyosarcoma Treatment. J Fluoresc 2024:10.1007/s10895-024-03832-4. [PMID: 38985396 DOI: 10.1007/s10895-024-03832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
This study focuses on the design and synthesis of two novel coordination polymers (CPs), named 1 and 2, with excellent fluorescent properties. Their structures were characterized by X-ray single-crystal diffraction, revealing that both materials exhibit promising fluorescence performance, indicating their potential as fluorescent detection tools. Additionally, 1 was chosen to be combined with chitosan (CS), resulting in the successful fabrication of a biodegradable and non-toxic efficient drug carrier, termed CS-1@Cisplatin. This carrier possesses a large surface area and good solubility, enabling sustained drug release to target cells. Given that CXC motif chemokine receptor type 4 (CXCR4) is a key marker gene highly expressed in Rhabdomyosarcoma (RMS) cells and tissues, RMS was chosen as the biological model for testing. The results demonstrated that CS-1@Cisplatin effectively inhibited the invasiveness of RMS cells by significantly suppressing CXCR4 expression. Therefore, the system shows great potential for applications in RMS treatment, biometrics, and drug delivery, particularly in its unique advantage of targeting RMS by inhibiting the key marker gene CXCR4.
Collapse
Affiliation(s)
- Ping Yang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China
| | - Peng Xie
- Department of Orthopedics, The Third Affliated Hospital The Affliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Feng Lin
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China
| | - Tian Wang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China
| | - Lian Zhang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China
| | - Fei Yan
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China.
| |
Collapse
|
7
|
Zheng W, Meng Z, Zhu Z, Wang X, Xu X, Zhang Y, Luo Y, Liu Y, Pei X. Metal-Organic Framework-Based Nanomaterials for Regulation of the Osteogenic Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310622. [PMID: 38377299 DOI: 10.1002/smll.202310622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Indexed: 02/22/2024]
Abstract
As the global population ages, bone diseases have become increasingly prevalent in clinical settings. These conditions often involve detrimental factors such as infection, inflammation, and oxidative stress that disrupt bone homeostasis. Addressing these disorders requires exogenous strategies to regulate the osteogenic microenvironment (OME). The exogenous regulation of OME can be divided into four processes: induction, modulation, protection, and support, each serving a specific purpose. To this end, metal-organic frameworks (MOFs) are an emerging focus in nanomedicine, which show tremendous potential due to their superior delivery capability. MOFs play numerous roles in OME regulation such as metal ion donors, drug carriers, nanozymes, and photosensitizers, which have been extensively explored in recent studies. This review presents a comprehensive introduction to the exogenous regulation of OME by MOF-based nanomaterials. By discussing various functional MOF composites, this work aims to inspire and guide the creation of sophisticated and efficient nanomaterials for bone disease management.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
Arslan D, Tuccitto N, Auditore A, Licciardello A, Marletta G, Riolo M, La Spada F, Conti Taguali S, Calpe J, Meca G, Pane A, Cacciola SO, Karakeçili A. Chitosan-based films grafted with citrus waste-derived antifungal agents: An innovative and sustainable approach to enhance post-harvest preservation of citrus fruit. Int J Biol Macromol 2024; 264:130514. [PMID: 38423440 DOI: 10.1016/j.ijbiomac.2024.130514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
This paper reports the synthesis, characterization, and properties of chitosan films (CHI) grafted with a natural antifungal agent with the aim of developing active films of natural origin to prevent post-harvest losses of citrus fruit. The antifungal agent was prepared by fermentation using lemon peel (AntiFun-LM), a citrus waste, and grafted on chitosan using different coupling agents (CHI/AntiFun-LM). Bioactive films were prepared by solvent casting. FTIR-ATR and ToF-SIMS analyses provided compelling evidence of the successful grafting process. TGA-DSC demonstrated that the films are stable after grafting. SEM studies showed the continuous and compact surface of the films. WCA measurements proved that CHI/AntiFun-LM films are more hydrophilic than CHI films. Moreover, the CHI/AntiFun-LM films showed stronger UV shielding effect when compared to CHI. The biological evaluation demonstrated that CHI/AntiFun-LM films gained considerable antifungal properties against most fungi responsible for post-harvest decay. Cytotoxicity tests showed that CHI/AntiFun-LM films did not cause any toxic effect against L929 fibroblasts. This study highlights the great potential of chemical grafting of antifungal agents produced from citrus waste to chitosan and preparation of natural-based films to act as a powerful alternative in post-harvest protection of citrus fruit in a perspective of circular economy.
Collapse
Affiliation(s)
- Deniz Arslan
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey; Graduate School of Natural and Applied Sciences, Ankara University, 06110 Dışkapı, Ankara, Turkey
| | - Nunzio Tuccitto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Alessandro Auditore
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Antonino Licciardello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Giovanni Marletta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | | | - Jorge Calpe
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey.
| |
Collapse
|
9
|
Liu L, Wu J, Lv S, Xu D, Li S, Hou W, Wang C, Yu D. Synergistic effect of hierarchical topographic structure on 3D-printed Titanium scaffold for enhanced coupling of osteogenesis and angiogenesis. Mater Today Bio 2023; 23:100866. [PMID: 38149019 PMCID: PMC10750103 DOI: 10.1016/j.mtbio.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 12/28/2023] Open
Abstract
The significance of the osteogenesis-angiogenesis relationship in the healing process of bone defects has been increasingly emphasized in recent academic research. Surface topography plays a crucial role in guiding cellular behaviors. Metal-organic framework (MOF) is an innovative biomaterial with nanoscale structural and topological features, enabling the modulation of scaffold physicochemical properties. This study involved the loading of varying quantities of UiO-66 nanocrystals onto alkali-heat treated 3D-printed titanium scaffolds, resulting in the formation of hierarchical micro/nano topography named UiO-66/AHTs. The physicochemical properties of these scaffolds were subsequently characterized. Furthermore, the impact of these scaffolds on the osteogenic potential of BMSCs, the angiogenic potential of HUVECs, and their intercellular communication were investigated. The findings of this study indicated that 1/2UiO-66/AHT outperformed other groups in terms of osteogenic and angiogenic induction, as well as in promoting intercellular crosstalk by enhancing paracrine effects. These results suggest a promising biomimetic hierarchical topography design that facilitates the coupling of osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Leyi Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shiyu Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Duoling Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
10
|
Zhao C, Shu C, Yu J, Zhu Y. Metal-organic frameworks functionalized biomaterials for promoting bone repair. Mater Today Bio 2023; 21:100717. [PMID: 37545559 PMCID: PMC10401359 DOI: 10.1016/j.mtbio.2023.100717] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Bone defects induced by bone trauma, tumors and osteoarthritis greatly affect the life quality and health of patients. The biomaterials with numerous advantages are becoming the most preferred options for repairing bone defects and treating orthopedic diseases. However, their repairing effects remains unsatisfactory, especially in bone defects suffering from tumor, inflammation, and/or bacterial infection. There are several strategies to functionalize biomaterials, but a more general and efficient method is essential for accomplishing the functionalization of biomaterials. Possessing high specific surface, high porosity, controlled degradability and variable composition, metal-organic frameworks (MOFs) materials are inherently advantageous for functionalizing biomaterials, with tremendous improvements having been achieved. This review summarizes recent progresses in MOFs functionalized biomaterials for promoting bone repair and therapeutic effects. In specific, by utilizing various properties of diverse MOFs materials, integrated MOFs functionalized biomaterials achieve enhanced bone regeneration, antibacterial, anti-inflammatory and anti-tumor functions. Finally, the summary and prospects of on the development of MOFs-functionalized biomaterials for promoting bone repair were discussed.
Collapse
Affiliation(s)
- Chaoqian Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Chaoqin Shu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jiangming Yu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, 200336, PR China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
11
|
Zhou J, Guo M, Wu D, Shen M, Liu D, Ding T. Synthesis of UiO-66 loaded-caffeic acid and study of its antibacterial mechanism. Food Chem 2023; 402:134248. [DOI: 10.1016/j.foodchem.2022.134248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
|
12
|
Mujtaba M, Lipponen J, Ojanen M, Puttonen S, Vaittinen H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158328. [PMID: 36037892 DOI: 10.1016/j.scitotenv.2022.158328] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, petroleum-based synthetic plastics are used as a key barrier material in the paper-based packaging of several food and nonfood goods. This widespread usage of plastic as a barrier lining is not only harmful to human and marine health, but it is also polluting the ecosystem. Researchers and food manufacturers are focused on biobased alternatives because of its numerous advantages, including biodegradability, biocompatibility, non-toxicity, and structural flexibility. When used alone or in composites/multilayers, these biobased alternatives provide strong barrier qualities against grease, oxygen, microbes, air, and water. According to the most recent literature reports, biobased polymers for barrier coatings are having difficulty breaking into the business. Technological breakthroughs in the field of bioplastic production and application are rapidly evolving, proffering new options for academics and industry to collaborate and develop sustainable packaging solutions. Existing techniques, such as multilayer coating of nanocomposites, can be improved further by designing them in a more systematic manner to attain the best barrier qualities. Modified nanocellulose, lignin nanoparticles, and bio-polyester are among the most promising future candidates for nanocomposite-based packaging films with high barrier qualities. In this review, the state-of-art and research advancements made in biobased polymeric alternatives such as paper and board barrier coating are summarized. Finally, the existing limitations and potential future development prospects for these biobased polymers as barrier materials are reviewed.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland; VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Juha Lipponen
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland
| | - Mari Ojanen
- Kemira Oyj, Energiakatu 4, 00101 Helsinki, Finland
| | | | - Henri Vaittinen
- Valmet Technologies, Wärtsilänkatu 100, 04440 Järvenpää, Finland
| |
Collapse
|