1
|
Li Y, Yang Q, Zhou R, Wang X, Raziq K, Tang M, Wang Z, Sun D. Polyethyleneimine surface-modified silver-selenium nanocomposites for anti-infective treatment of wounds by disrupting biofilms. Biomed Mater 2024; 19:045016. [PMID: 38772390 DOI: 10.1088/1748-605x/ad4e84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Bacterial biofilm formation is associated with the pathogenicity of pathogens and poses a serious threat to human health and clinical therapy. Complex biofilm structures provide physical barriers that inhibit antibiotic penetration and inactivate antibiotics via enzymatic breakdown. The development of biofilm-disrupting nanoparticles offers a promising strategy for combating biofilm infections. Hence, polyethyleneimine surface-modified silver-selenium nanocomposites, Ag@Se@PEI (ASP NCs), were designed for synergistic antibacterial effects by destroying bacterial biofilms to promote wound healing. The results ofin vitroantimicrobial experiments showed that, ASP NCs achieved efficient antibacterial effects againstStaphylococcus aureus (S. aureus)andEscherichia coli (E. coli)by disrupting the formation of the bacterial biofilm, stimulating the outbreak of reactive oxygen species and destroying the integrity of bacterial cell membranes. Thein-vivobacterial infection in mice model showed that, ASP NCs further promoted wound healing and new tissue formation by reducing inflammatory factors and promoting collagen fiber formation which efficiently enhanced the antibacterial effect. Overall, ASP NCs possess low toxicity and minimal side effects, coupled with biocompatibility and efficient antibacterial properties. By disrupting biofilms and bacterial cell membranes, ASP NCs reduced inflammatory responses and accelerated the healing of infected wounds. This nanocomposite-based study offers new insights into antibacterial therapeutic strategies as potential alternatives to antibiotics for wound healing.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Qinping Yang
- College of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Ruiwen Zhou
- College of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xinyu Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Khadija Raziq
- College of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Min Tang
- Department of Pharmacy, Yiyang Medical College, Yiyang 413000, People's Republic of China
| | - Zekun Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| | - Dongdong Sun
- College of Life Sciences, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
2
|
Xie M, Gao M, Yun Y, Malmsten M, Rotello VM, Zboril R, Akhavan O, Kraskouski A, Amalraj J, Cai X, Lu J, Zheng H, Li R. Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angew Chem Int Ed Engl 2023; 62:e202217345. [PMID: 36718001 DOI: 10.1002/anie.202217345] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.
Collapse
Affiliation(s)
- Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Yun
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Physical Chemistry 1, University of Lund, 22100, Lund, Sweden
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.,Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Omid Akhavan
- Condensed Matter National Laboratory, P.O. Box 1956838861, Tehran, Iran
| | - Aliaksandr Kraskouski
- Department of Physicochemistry of Thin Film Materials, Institute of Chemistry of New Materials of NAS of Belarus, 36 F. Skaryna Str., 220084, Minsk, Belarus
| | - John Amalraj
- Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca, Chile
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou, 215123, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
3
|
Wu YQ, Tong T. Curcumae Rhizoma: A botanical drug against infectious diseases. Front Pharmacol 2023; 13:1015098. [PMID: 36703758 PMCID: PMC9871392 DOI: 10.3389/fphar.2022.1015098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Curcumae Rhizoma is the dry rhizome coming from Curcuma longa L. which grow widely in tropical south and southwest Asia. It has been used to treat conditions such as dermatoses, infections, stress, and depression. Moreover, in China, Curcumae Rhizoma and its active constituents have been made into different pharmaceutical preparations. Growing evidence suggests that these preparations can exert antioxidant, anti-inflammatory, and anti-cancer effects, which may play crucial roles in the treatment of various diseases, including cancer, infectious-, autoimmune-, neurological-, and cardiovascular diseases, as well as diabetes. The anti-infective effect of Curcumae Rhizoma has become a popular field of research around the world, including for the treatment of COVID-19, influenza virus, hepatitis B virus, human immunodeficiency virus, and human papilloma virus, among others. In this paper, the basic characteristics of Curcumae Rhizoma and its active constituents are briefly introduced, and we also give an overview on their applications and mechanisms in infectious diseases.
Collapse
|
4
|
Wei M, Wu J, Sun H, Zhang B, Hu X, Wang Q, Li B, Xu L, Ma T, Gao J, Li F, Ling D. An Enzymatic Antibiotic Adjuvant Modulates the Infectious Microenvironment to Overcome Antimicrobial Resistance of Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205471. [PMID: 36399641 DOI: 10.1002/smll.202205471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The emergence and evolution of antimicrobial resistance (AMR) pose a significant challenge to the current arsenal to fight infection. Antibiotic adjuvants represent an appealing tactic for tackling the AMR of pathogens, however, their practical applications are greatly constrained by the harsh infectious microenvironment. Herein, it is found that silver nanoclusters (Ag NCs) can possess tunable enzymatic activities to modulate infectious microenvironments. Based on this finding, an enzymatic nanoadjuvant (EnzNA) self-assembled from Ag NCs, which is inert under neutral physiological conditions but can readily disassemble into isolated Ag NCs exhibiting biofilm destructive oxidase-mimetic activity in the acidic biofilm microenvironment, is developed. Once internalized into the neutral cytoplasm of bacteria, Ag NCs switch to reveal the thiol oxidase-mimetic activity to suppress ribosomal biogenesis for AMR reversal and evolution inhibition of pathogens. Consequently, EnzNAs revitalize various existing antibiotics against methicillin-resistant Staphylococcus aureus, and potentiate the antibiotic efficacy against biofilm-mediated skin infection and lethal lung infection in mice. These findings highlight the capability of enzyme-mimetic nanomaterials to modulate the infectious microenvironment and potentiate antibiotics, providing a paradigm shift for anti-infection therapy.
Collapse
Affiliation(s)
- Min Wei
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiahe Wu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Heng Sun
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| | - Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lilan Xu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Teng Ma
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| |
Collapse
|