1
|
Kahvecioglu D, Ozguven SY, Sicak Y, Tok F, Öztürk M, Kocyigit-Kaymakcioglu B. Synthesis and molecular docking analysis of novel hydrazone and thiosemicarbazide derivatives incorporating a pyrimidine ring: exploring neuroprotective activity. J Biomol Struct Dyn 2024:1-15. [PMID: 39731533 DOI: 10.1080/07391102.2024.2442758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 12/30/2024]
Abstract
The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects. Our study focused on the synthesis of a new series of hydrazone and thiosemicarbazide derivatives bearing a pyrimidine ring. The compounds of structures were characterized by FT-IR, 1H NMR, 13C NMR, and HR-MS spectroscopic methods. Compounds 3a and 4f were determined using COSY and HSQC spectra. Compared to the standard drug galantamine (IC50 = 4.82 ± 0.75 µM), compound 3d exhibited remarkable inhibitory activity against AChE (IC50 values of 20.15 ± 0.44 µM). This compound was more effective against BChE (IC50 = 36.42 ± 0.73 µM) than galantamine (IC50 = 45.54 ± 0.18 µM). Antioxidant assays revealed the robust antioxidant activity of compound 3d. Furthermore, docking studies have shown that the active site of enzymes interacts strongly with electron donors through hydrogen bonds, while the aromatic ring structure plays an active role in π interactions.
Collapse
Affiliation(s)
- Dilay Kahvecioglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Institute of Health Sciences, Marmara University, Istanbul, Türkiye
- Edirne Sultan 1. Murat State Hospital, Republic of Türkiye Ministry of Health, Edirne, Türkiye
| | - Serap Yilmaz Ozguven
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Türkiye
| | - Yusuf Sicak
- Department of Herbal and Animal Production, Koycegiz Vocational School, Mugla Sitki Kocman University, Mugla, Türkiye
| | - Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Mehmet Öztürk
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, Türkiye
| | | |
Collapse
|
2
|
Naimi N, Seyedmirzaei H, Hassannejad Z, Soltani Khaboushan A. Advanced nanoparticle strategies for optimizing RNA therapeutic delivery in neurodegenerative disorders. Biomed Pharmacother 2024; 175:116691. [PMID: 38713941 DOI: 10.1016/j.biopha.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
Neurodegenerative diseases affect many people worldwide, and as the population ages, the incidence of these conditions increases. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent neurodegenerative disorders worldwide. Different medicines are being used to control symptoms related to these conditions, but no treatment has yet been approved. Both genetic and environmental factors are involved in disease pathogenesis, and research on the pathophysiological pathways is still ongoing. The role of subcellular pathways and dysregulation in RNA pathways has been highlighted in pathophysiological studies, and treatment strategies focused on these pathways can be a promising approach. Many experiments have been conducted on delivering RNA cargo to the CNS to modulate various pathways involved. Yet another challenge to be faced is the effective transport of desired molecules to targets, which can be greatly hindered by distinct barriers limiting transport to the CNS, most noticeably the blood-brain barrier (BBB). Nanotechnology and the use of different nano-carriers for the delivery of nucleotides, peptides, proteins, and drug molecules are currently of great interest as these carriers help with better delivery and protection and, as a result, improve the effectiveness of the cargo. Nanocarriers can protect susceptible RNA molecules from possible degradation or destruction and improve their ability to reach the brain by enhancing BBB penetration. Different mechanisms for this process have been hypothesized. This review will go through the therapeutic application of RNA molecules in the treatment of AD and PD and the role of nanocarriers in overcoming delivery challenges and enhancing efficacy.
Collapse
Affiliation(s)
- Narges Naimi
- Departement of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yekeler HB, Guler E, Beato PS, Priya S, Abobakr FKM, Dogan M, Uner B, Kalaskar DM, Cam ME. Design and in vitro evaluation of curcumin-loaded PLGA nanoparticle-embedded sodium alginate/gelatin 3D printed scaffolds for Alzheimer's disease. Int J Biol Macromol 2024; 268:131841. [PMID: 38679260 DOI: 10.1016/j.ijbiomac.2024.131841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Targeted nanoparticles (NPs) are aimed at improving clinical outcomes by enhancing the diagnostic and therapeutic efficacy of drugs in the treatment of Alzheimer's disease (AD). METHODS Curcumin (CUR)-loaded poly-lactic-co-glycolic acid (PLGA) NPs (CNPs) were produced to demonstrate a prolonged release and successfully embedded into 3D printed sodium alginate (SA)/gelatin (GEL) scaffolds that can dissolve rapidly sublingually. Characterization and in vitro activity of the NPs and scaffolds were evaluated. RESULTS Based on the in vitro drug release studies, 99.6 % of the encapsulated CUR was released in a controlled manner within 18 days for the CNPs. In vitro cell culture studies showed that all samples exhibited cell viability above 84.2 % and no significant cytotoxic effect on SH-SY5Y cells. The samples were analyzed through 2 different pathways by PCR analysis. Real-time PCR results indicated that CNP and CNP-embedded SA/GEL scaffolds (CNPSGS) may show neuroprotective effects by modulating the Wnt/β-catenin pathway. The gene expression level of β-catenin slightly increased compared to the gene expression levels of other proteins and enzymes with these treatments. However, the PI3K/Akt/GSK-3β signaling pathway was regulated at the same time because of the crosstalk between these 2 pathways. CONCLUSION CNPSGS might be an effective therapeutic alternative for AD treatment.
Collapse
Affiliation(s)
- Humeyra Betul Yekeler
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Türkiye; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye
| | - Ece Guler
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Patricia Santos Beato
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Sushma Priya
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | | | - Murat Dogan
- Department of Pharmaceutical Biotechnology, Cumhuriyet University, Sivas 58140, Türkiye; Cancer Survivorship Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 625 N. Michigan Ave., Suite 2100, Chicago, IL, 60611, USA
| | - Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye
| | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Muhammet Emin Cam
- Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Türkiye; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; MecNano Technologies, Cube Incibation, Teknopark Istanbul, Istanbul 34906, Türkiye; Department of Pharmacology, Faculty of Pharmacy, Istanbul Kent University, Kagithane 34406, Istanbul, Türkiye; Biomedical Engineering Department, University of Aveiro, Aveiro 3810-193, Portugal; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul 34854, Türkiye.
| |
Collapse
|
4
|
Lu G, Li B, Lin L, Li X, Ban J. Mechanical strength affecting the penetration in microneedles and PLGA nanoparticle-assisted drug delivery: Importance of preparation and formulation. Biomed Pharmacother 2024; 173:116339. [PMID: 38428314 DOI: 10.1016/j.biopha.2024.116339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Microneedles (MNs) prepared from polymeric materials are painless and minimally invasive, safe and efficient, but they hindered by low mechanical strength and single diverse drug release pattern. Due to the distinctive mechanical strength and dimensions of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), the integration of nano-technology with microneedles can effectively improve penetration and delivery efficiency through the stratum corneum. We herein designed a simple paroxetine (PAX)-loaded PLGA nanoparticles-integrated dissolving microneedles system (PAX-NPs-DMNs), aiming to improve the bioavailability of PAX through the synergistic permeation-enhancing effect of dissolving microneedles (DMNs) and NPs. PAX-NPs-DMNs had a complete tips molding rate (Neff) of (94.06 ± 2.16) %, a 15×15 quadrangular-conical microneedle array and an overall fracture force of 301.10 N, which were improved nearly 0.50 times compared with the blank microneedles (HA-DMNs) and PAX microneedles (PAX-DMNs). PAX-NPs-DMNs could extend the release duration of PAX from 1 h to 24 h and the cumulative permeability per unit area (Qn) was 47.66 times and 7.37 times higher than the PAX and the PAX-DMNs groups. PAX-NPs-DMNs could be rapidly dissolved within 10 min without hindering skin healing or causing adverse reactions. This study confirmed that PAX-NPs-DMNs can effectively improve the bioavailability of PAX and the mechanical strength of DMNs, which can easily penetrate the skin to provide sustained and painless delivery without causing adverse effects, thus offering a more convenient and effective method for central nervous diseases.
Collapse
Affiliation(s)
- Geng Lu
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Baohua Li
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Luping Lin
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiaofang Li
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Junfeng Ban
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Li J, Zheng Y, Wang P, Zhang H. The alginate dialdehyde crosslinking on curcumin-loaded zein nanofibers for controllable release. Food Res Int 2024; 178:113944. [PMID: 38309870 DOI: 10.1016/j.foodres.2024.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
In this study, electrospun zein/alginate dialdehyde (AD) nanofibers were prepared by green crosslinking. The degree of crosslinking could reach 50.72 %, and the diameter of electrospun fibers ranged from 446.2 to 541.8 nm. The generation of AD and the bonding of crosslinking were further confirmed by the changes on characteristic peaks and conformational ratios in the infrared spectroscopy and secondary structure analysis. High concentrations of AD led to improved thermal stabilities, mechanical properties, and hydrophobicity. And the highly crosslinked nanofibers (Z-8) owned the highest elastic modulus (24.92 MPa), tensile strength (0.28 MPa), and elongation at break (8.14 %) among five samples. Moreover, Z-8 possessed a high swelling ratio of 5.45 g/g, and a low weight loss of 6.09 %. The samples could encapsulate curcumin efficiently and show controllable release behaviors based on different AD addition. And the oxidation resistance of nanofibers gradually improved, consistent with the release performances. This study indicated AD crosslinking favored the preparation and application of zein nanofibers, and the oxidized polysaccharide acted as the green crosslinking agent, which provided reference value for the application of polysaccharides in food-related electrospun materials.
Collapse
Affiliation(s)
- Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yuanhao Zheng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
6
|
Sahraei A, Shamsoddini MJ, Mohammadi F, Hassani L. Interaction of gallium, indium, and vanadyl curcumin complexes with hen egg-white lysozyme (HEWL): Mechanistic aspects and evaluation of antiamyloidogenic activity. Biochem Biophys Res Commun 2024; 691:149307. [PMID: 38011821 DOI: 10.1016/j.bbrc.2023.149307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Many proteins and peptides can aggregate into amyloid fibrils with high-ordered and cross-β rich structure characteristics. Amyloid deposition is a common feature of neurodegenerative diseases called amyloidosis. Various natural polyphenolic compounds such as curcumin exhibited antiamyloidogenic activities, but less researches were focused on the metal complexes of these compounds. In this study, the inhibitory effects of gallium curcumin (Ga(cur)3), indium curcumin (In(cur)3), and vanadyl curcumin (VO(cur)2) on the amyloid fibrillation of hen egg white lysozyme (HEWL) have been investigated. Moreover, the details of binding interactions of these metal complexes with HEWL have been explored. The results of fluorescence quenching analyses revealed that In(cur)3 and VO(cur)2 have much higher binding affinities than Ga(cur)3 toward HEWL. The interactions of these metal complexes were accompanied by partial conformational changes in the tertiary structure of HEWL. The kinetic curves of the fibrillation process demonstrated that In(cur)3 and VO(cur)2 have higher inhibitory effects than Ga(cur)3 on the amyloid fibrillation of HEWL. The strength of binding to HEWL is completely in accordance with inhibitory activities of these metal complexes of curcumin.
Collapse
Affiliation(s)
- Amin Sahraei
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan, 45137-66731, Iran
| | - Mohammad Javad Shamsoddini
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan, 45137-66731, Iran
| | - Fakhrossadat Mohammadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan, 45137-66731, Iran.
| | - Leila Hassani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan, 45137-66731, Iran
| |
Collapse
|
7
|
Mugundhan SL, Balasubramaniyan P, Narayanasamy D, Mohan M. Curcumin- β-Cyclodextrin Molecular Inclusion Complex: A Water-Soluble Complex in Fast-dissolving Tablets for the Treatment ofNeurodegenerative Disorders. Pharm Nanotechnol 2024; 12:365-377. [PMID: 38192139 DOI: 10.2174/0122117385273171231120051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Orally disintegrating tablets (ODTs) have become an excellent choice for delivering drugs as their palatability is greatly improved. In this work, β-cyclodextrin has been used to improve the solubility of curcumin by encapsulating it into the hydrophobic cavity for the treatment of neurodegenerative disorders. OBJECTIVES The current study aimed to present the design, formulation, and optimisation of fastdissolving oral tablets of curcumin- β-cyclodextrin molecular inclusion complex using a 32-factorial design. METHODS The drug-excipient compatibility was studied by FTIR spectroscopy. The inclusion complex of curcumin-β-cyclodextrin was prepared using solvent casting and confirmed using XRD studies. Powder blends were evaluated for flow properties. Tablets prepared by direct compression were evaluated for post-compression parameters. Further, the effect of formulation variables, such as sodium starch glycolate (X1) and Neusilin® ULF2 (X2), on various responses, including disintegration time and dissolution at 2 hours, was studied using statistical models. RESULTS Post-compression parameters, i.e., hardness (4.4-5 kg/cm2), thickness (3.82-3.93 mm), weight variation (±7.5%), friability (< 1%), wetting time (51-85 seconds) and drug content (96.28- 99.32%) were all found to be within the permissible limits and the disintegration time of tablets with super-disintegrants ranged between 45-58 seconds. The in-vitro dissolution profile of tablets showed that higher SSG and Neuslin® ULF2 levels promoted drug release. For statistical analysis, the 2FI model was chosen. Optimised variables for formulation have been determined and validated with the experimental findings based on the significant desirability factor. CONCLUSION The current study reveals the validated curcumin-β-cyclodextrin inclusion complex fastdissolving tablets with SSG and Neusilin® ULF2 to be an ideal choice for effectively treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
8
|
Ertas B, Hazar-Yavuz AN, Topal F, Keles-Kaya R, Karakus Ö, Ozcan GS, Taskin T, Cam ME. Rosa canina L. improves learning and memory-associated cognitive impairment by regulating glucose levels and reducing hippocampal insulin resistance in high-fat diet/streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116541. [PMID: 37088237 DOI: 10.1016/j.jep.2023.116541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recent studies claim that Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) overlap in several common pathological pathways which from neuronal damage to impaired memory performance. It is known that the use of Rosa canina L. (R. canina) as medicine in folk medicine dates back to ancient times and is used in the treatment of nervous diseases in Persian medicine. However, the effect of R. canina on diabetes-related cognitive decline and memory impairment has not yet been studied. AIM OF THE STUDY We evaluated the impact of T2DM on AD-like alterations and examined the molecular mechanism of a possible effect of R. canina on cognitive alterations in diabetic rats. MATERIALS&METHODS R. canina ethanol extract was obtained by maceration method. This study was performed with male Spraque-Dawley rats fed with a high-fat diet (HFD) for 8 weeks, low-dose streptozotocin (STZ; 35 mg/kg IP) injection for 4 weeks, and R. canina (250 mg/kg; per oral) and metformin (400 mg/kg; per oral) administration for 4 weeks. The weight and blood glucose of rats were measured weekly. To evaluate glucose tolerance area under the curve (AUC) was calculated by performing an oral glucose tolerance test. Then the rats were subjected to behavioural tests, and their hippocampus and cortex tissues were obtained for biochemical and morphological analyses. RESULTS R. canina could manage glucose responsiveness by reducing post-prandial blood glucose levels, preventing weight loss, and raising serum insulin levels in T2DM-induced rats. Behavioural tests showed that R. canina significantly improves diabetes-related cognitive decline in recall and long-term memory. Treatment with R. canina significantly reversed HFD/STZ-induced increases in insulin, amyloid-β, amyloid precursor protein levels, and acetylcholinesterase activity in the prefrontal cortex and hippocampus. Furthermore, histological analyzes revealed the protection of R. canina against neuronal disruption in the cortical and hippocampal CA3 region caused by chronic hyperglycemia. CONCLUSION Analyzed collectively, these results suggest that R. canina can correct T2DM-related cognitive decline may be attributed to insulin pathway modulation, prevention of amyloid deposition, and increased cholinergic transmission.
Collapse
Affiliation(s)
- Busra Ertas
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722, Istanbul, Turkey
| | - Ayse Nur Hazar-Yavuz
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Fadime Topal
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Rumeysa Keles-Kaya
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, 34854, Turkey
| | - Özge Karakus
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Gul Sinemcan Ozcan
- Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Turgut Taskin
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey
| | - Muhammet Emin Cam
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, 34854, Turkey; Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722, Istanbul, Turkey; UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK; Biomedical Engineering Department, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul, 34722, Turkey.
| |
Collapse
|
9
|
Guler E, Polat EB, Cam ME. Drug delivery systems for neural tissue engineering. BIOMATERIALS FOR NEURAL TISSUE ENGINEERING 2023:221-268. [DOI: 10.1016/b978-0-323-90554-1.00012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Wang B, Liu W, Sun F. Nucleosome assembly protein 1-like 5 alleviates Alzheimer's disease-like pathological characteristics in a cell model. Front Mol Neurosci 2022; 15:1034766. [PMID: 36568274 PMCID: PMC9773259 DOI: 10.3389/fnmol.2022.1034766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) remains one of the most common dementias of neurodegenerative disease-related diseases. Nucleosome assembly protein 1-like 5 (NAP1L5) belongs to the NAP1L protein family, which acts as a histone chaperone. However, the function and mechanism of NAP1L5 in AD are still unclear. Bioinformatics analysis, RT-qPCR, and Western blotting results showed that NAP1L5 was downregulated in the brain tissues of AD patients and a mouse cell model of AD. NAP1L5 overexpression alleviated (Amyloid-β precursor protein) APP metabolism and Tau phosphorylation. We further demonstrated that NAP1L5 regulated the AD-like pathological characteristics through the GSK3B/Wnt/β-Catenin signaling pathway. Moreover, we showed that the Wnt/β-Catenin signaling pathway, regulated by NAP1L5, was mediated by AQP1-mediated mechanism in N2a-APP695sw cell. In sum, these results suggested that NAP1L5 overexpression has neuroprotective effects and might act as potential biomarker and target for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Bingyan Wang
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Weiying Liu
- Department of Pathogen Biology, School of Basic Medicine, Tianjin Medical University, Tianjin, China,*Correspondence: Weiying Liu,
| | - Fengxian Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Tianjin Medical University, Tianjin, China,Fengxian Sun,
| |
Collapse
|