1
|
Hia EM, Jang SR, Maharjan B, Park J, Park CH. Cu-MSNs and ZnO nanoparticles incorporated poly(ethylene glycol) diacrylate/sodium alginate double network hydrogel for simultaneous enhancement of osteogenic differentiation. Colloids Surf B Biointerfaces 2024; 236:113804. [PMID: 38428209 DOI: 10.1016/j.colsurfb.2024.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
In this study, a double network (DN) hydrogel was synthesized using poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA), incorporating copper-doped mesoporous silica nanospheres (Cu-MSNs) and zinc oxide nanoparticles (ZnO NPs). The blending of PEGDA and SA (PS) facilitates the double network and improves the less porous microstructure of pure PEGDA hydrogel. Furthermore, the incorporation of ZnO NPs and Cu-MSNs into the hydrogel network (PS@ZnO/Cu-MSNs) improved the mechanical properties of the hydrogel (Compressive strength = ⁓153 kPa and Young's modulus = ⁓ 1.66 kPa) when compared to PS hydrogel alone (Compressive strength = ⁓ 103 kPa and Young's modulus = ⁓ 0.95 kPa). In addition, the PS@ZnO/Cu-MSNs composite hydrogel showed antibacterial activities against Staphylococcus aureus and Escherichia coli. Importantly, the PS@ZnO/Cu-MSNs hydrogel demonstrated excellent biocompatibility, enhanced MC3T3-E1 cell adhesion, proliferation, and significant early-stage osteoblastic differentiation, as evidenced by increased alkaline phosphatase (ALP), and improved calcium mineralization, as evidenced by increased alizarin red staining (ARS) activities. These findings point to the possible use of the PS@ZnO/Cu-MSNs composite hydrogel in bone tissue regeneration.
Collapse
Affiliation(s)
- Esensil Man Hia
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Se Rim Jang
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Jeesoo Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea.
| |
Collapse
|
2
|
Li Y, Luo W, Liu Y, Lu Y, Geng W, Lin J. Copper-containing titanium alloys promote the coupling of osteogenesis and angiogenesis by releasing copper ions. Biochem Biophys Res Commun 2023; 681:157-164. [PMID: 37776747 DOI: 10.1016/j.bbrc.2023.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Previous investigations have reported on the ability of copper (Cu)-bearing biomaterials to accelerate vascular formation and bone regeneration. However, few studies have explored the effects of Cu-bearing materials on the interactions between angiogenesis and osteogenesis. Therefore, in this study, we prepared Cu-containing alloys using selective laser melting (SLM) technology and investigated the impact of preosteoblasts seeded on Ti6Al4V-4.5Cu alloy on angiogenesis. Our results indicated that Ti6Al4V-4.5Cu alloys increased the expression of proangiogenic genes and proteins in preosteoblasts, which further stimulated vascular formation in endothelial cells. Besides, we discovered that the biological effects of the Ti6Al4V-4.5Cu alloy were partly attributed to the release of Cu ions. In short, our research demonstrated the ability of Ti6Al4V-4.5Cu alloys to promote the coupling of angiogenesis and osteogenesis by releasing Cu ions.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wenqiong Luo
- The First People's Hospital of Liangshan Yi Autonomous Prefecture, Sichuan, 615000, China
| | - Yuqi Liu
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, 350002, China.
| |
Collapse
|
3
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
4
|
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 2023; 14:1236063. [PMID: 37600774 PMCID: PMC10433393 DOI: 10.3389/fimmu.2023.1236063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.
Collapse
Affiliation(s)
- Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| | - Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| |
Collapse
|
5
|
Chen S, Ni S, Liu C, He M, Pan Y, Cui P, Wang C, Ni X. Neglected immunoregulation: M2 polarization of macrophages triggered by low-dose irradiation plays an important role in bone regeneration. J Cell Mol Med 2023; 27:1095-1109. [PMID: 36929666 PMCID: PMC10098298 DOI: 10.1111/jcmm.17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Current studies have found that low-dose irradiation (IR) can promote bone regeneration. However, mechanism studies of IR-triggered bone regeneration mainly focus on the effects of osteoblasts, neglecting the role of the surrounding immune microenvironment. Here in this study, in vitro proliferation experiments showed that low-dose IR ≤2 Gy could promote the proliferation of bone marrow mesenchymal stem cells (BMSCs), and qRT-PCR assay showed that low-dose IR ≤2 Gy could exert the M2 polarization of Raw264.7 cells, while IR >2 Gy inhibited BMSC proliferation and triggered M1 polarization in Raw264.7 cells. The ALP and mineralized nodules staining showed that low-dose IR ≤2 Gy not only promoted osteoblast mineralization through IR-triggered osteoblast proliferation but also through M2 polarization of Raw264.7 cells, while high-dose IR >2 Gy had the opposite effect. The co-incubation of BMSC with low-dose IR irradiated Raw264.7 cell supernatants increased the mRNA expression of BMP-2 and Osx. The rat cranial defects model revealed that low-dose IR ≤2 Gy gradually promoted bone regeneration, while high-dose IR >2 Gy inhibited bone regeneration. Detection of macrophage polarity in peripheral blood samples showed that low-dose IR ≤2 Gy increased the expression of CD206 and CD163, but decreased the expression of CD86 and CD80 in macrophages, which indicated M2 polarization of macrophages in vivo, while high-dose IR had the opposite effect. Our finding innovatively revealed that low-dose IR ≤2 Gy promotes bone regeneration not only by directly promoting the proliferation of osteoblasts but also by triggering M2 polarization of macrophages, which provided a new perspective for immune mechanism study in the treatment of bone defects with low-dose IR.
Collapse
Affiliation(s)
- Shaoqing Chen
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
| | - Su Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chun Liu
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Mu He
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yiwen Pan
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,School of Pharmacy, Changzhou University, Changzhou, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
| |
Collapse
|