1
|
Anjani QK, Moreno-Castellanos N, Adhami M, Ramadon D, Jangga J, Donnelly RF. Quercetin loaded polymeric dissolving microarray patches: fabrication, characterisation and evaluation. Drug Deliv Transl Res 2025; 15:355-371. [PMID: 38722459 PMCID: PMC11614984 DOI: 10.1007/s13346-024-01616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 12/05/2024]
Abstract
Quercetin, a natural compound, shows promising potential in wound healing by reducing fibrosis, limiting scar formation, and boosting fibroblast proliferation. However, its effectiveness is hindered by poor solubility, resulting in low bioavailability and necessitating high doses for therapeutic efficacy. This study presents a novel approach, fabricating quercetin-loaded microarray patches (MAPs) using widely employed solubility enhancement strategies. Fabricated MAPs exhibited favourable mechanical strength and could be inserted into excised porcine skin to a depth of 650 μm. Furthermore, formulations containing Soluplus® significantly increased the drug loading capacity, achieving up to 2.5 mg per patch and complete dissolution within an hour of application on excised porcine skin. In vitro studies on full-thickness neonatal porcine skin demonstrated that Soluplus®-enhanced MAPs effectively delivered quercetin across various skin layers, achieving a delivery efficiency exceeding 80% over 24 h. Additionally, these prototype MAPs displayed anti-inflammatory properties and demonstrated biocompatibility with human keratinocyte skin cells. Therefore, quercetin-loaded MAPs employing Soluplus® as a solubility enhancer present a promising alternative strategy for wound healing and anti-inflammatory therapy applications.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
- Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar, 90234, Indonesia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga, 680001, Colombia
| | - Masoud Adhami
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, Indonesia
| | - Jangga Jangga
- Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar, 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
2
|
Ghanma R, Naser YA, Kurnia Anjani Q, Hidayat Bin Sabri A, Hutton ARJ, Vora LK, Himawan A, Moreno-Castellanos N, Greer B, McCarthy HO, Paredes AJ, Donnelly RF. Dissolving microarray patches for transdermal delivery of risperidone for schizophrenia management. Int J Pharm 2024; 660:124342. [PMID: 38880253 DOI: 10.1016/j.ijpharm.2024.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Schizophrenia is a psychiatric disorder that results from abnormal levels of neurotransmitters in the brain. Risperidone (RIS) is a common drug prescribed for the treatment of schizophrenia. RIS is a hydrophobic drug that is typically administered orally or intramuscularly. Transdermal drug delivery (TDD) could potentially improve the delivery of RIS. This study focused on the development of RIS nanocrystals (NCs), for the first time, which were incorporated into dissolving microneedle array patches (DMAPs) to facilitate the drug delivery of RIS. RIS NCs were formulated via wet-media milling technique using poly(vinylalcohol) (PVA) as a stabiliser. NCs with particle size of 300 nm were produced and showed an enhanced release profile up to 80 % over 28 days. Ex vivo results showed that 1.16 ± 0.04 mg of RIS was delivered to both the receiver compartment and full-thickness skin from NCs loaded DMAPs compared to 0.75 ± 0.07 mg from bulk RIS DMAPs. In an in vivo study conducted using female Sprague Dawley rats, both RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) were detected in plasma samples for 5 days. In comparison with the oral group, DMAPs improved the overall pharmacokinetic profile in plasma with a ∼ 15 folds higher area under the curve (AUC) value. This work has represented the novel delivery of the antipsychotic drug, RIS, through microneedles. It also offers substantial evidence to support the broader application of MAPs for the transdermal delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Rand Ghanma
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
3
|
Li H, Anjani QK, Hutton ARJ, Paris JL, Moreno‐Castellanos N, Himawan A, Larrañeta E, Donnelly RF. Design of a Novel Delivery Efficiency Feedback System for Biphasic Dissolving Microarray Patches Based on Poly(Lactic Acid) and Moisture-Indicating Silica. Adv Healthc Mater 2024; 13:e2304082. [PMID: 38471772 PMCID: PMC11468354 DOI: 10.1002/adhm.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Dissolving microarray patches (DMAPs) represent an innovative approach to minimally invasive transdermal drug delivery, demonstrating efficacy in delivering both small and large therapeutic molecules. However, concerns raised in end-user surveys have hindered their commercialization efforts. One prevalent issue highlighted in these surveys is the lack of clear indicators for successful patch insertion and removal time. To address this challenge, a color-change-based feedback system is devised, which confirms the insertion and dissolution of DMAPs, aiming to mitigate the aforementioned problems. The approach combines hydrophilic needles containing model drugs (fluorescein sodium and fluorescein isothiocyanate (FITC)-dextran) with a hydrophobic poly(lactic acid) baseplate infused with moisture-sensitive silica gel particles. The successful insertion and subsequent complete dissolution of the needle shaft are indicated by the progressive color change of crystal violet encapsulated in the silica. Notably, distinct color alterations on the baseplate, observed 30 min and 1 h after insertion for FITC-dextran and fluorescein sodium DMAPs respectively, signal the full dissolution of the needles, confirming the complete cargo delivery and enabling timely patch removal. This innovative feedback system offers a practical solution for addressing end-user concerns and may significantly contribute to the successful commercialization of DMAPs by providing a visualized drug delivery method.
Collapse
Affiliation(s)
- Huanhuan Li
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
| | | | | | - Juan Luis Paris
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐IBIMA Plataforma BIONANDMálaga29590Spain
| | | | - Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyUniversitas HasanuddinMakassar90245Indonesia
| | - Eneko Larrañeta
- School of PharmacyQueen's University BelfastBelfastBT9 7BLUK
| | | |
Collapse
|
4
|
Anjani QK, Moreno-Castellanos N, Li Y, Sabri AHB, Donnelly RF. Dissolvable microarray patches of levodopa and carbidopa for Parkinson's disease management. Eur J Pharm Biopharm 2024; 199:114304. [PMID: 38663522 DOI: 10.1016/j.ejpb.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Carbidopa and levodopa remain the established therapeutic standard for managing Parkinson's disease. Nevertheless, their oral administration is hindered by rapid enzymatic degradation and gastrointestinal issues, limiting their efficacy, and necessitating alternative delivery methods. This work presents a novel strategy employing dissolving microarray patches (MAPs) loaded with carbidopa and levodopa, formulated with Tween® 80 to improve their transdermal delivery. The fabricated MAPs demonstrated an acceptable mechanical strength, resisting pressures equivalent to manual human thumb application (32 N) onto the skin. Additionally, these MAPs exhibited an insertion depth of up to 650 µm into excised neonatal porcine skin. Ex vivo dermatokinetic studies could achieve delivery efficiencies of approximately 53.35 % for levodopa and 40.14 % for carbidopa over 24 h, demonstrating their significant potential in drug delivery. Biocompatibility assessments conducted on human dermal fibroblast cells corroborated acceptable cytocompatibility, confirming the suitability of these MAPs for dermal application. In conclusion, dissolving MAPs incorporating carbidopa and levodopa represent a promising alternative for improving the therapeutic management of Parkinson's disease.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Yaocun Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Anjani QK, Nainggolan ADC, Li H, Miatmoko A, Larrañeta E, Donnelly RF. Parafilm® M and Strat-M® as skin simulants in in vitro permeation of dissolving microarray patches loaded with proteins. Int J Pharm 2024; 655:124071. [PMID: 38554738 DOI: 10.1016/j.ijpharm.2024.124071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
In vitro permeation studies play a crucial role in early formulation optimisation before extensive animal model investigations. Biological membranes are typically used in these studies to mimic human skin conditions accurately. However, when focusing on protein and peptide transdermal delivery, utilising biological membranes can complicate analysis and quantification processes. This study aims to explore Parafilm®M and Strat-M® as alternatives to dermatomed porcine skin for evaluating protein delivery from dissolving microarray patch (MAP) platforms. Initially, various MAPs loaded with different model proteins (ovalbumin, bovine serum albumin and amniotic mesenchymal stem cell metabolite products) were prepared. These dissolving MAPs underwent evaluation for insertion properties and in vitro permeation profiles when combined with different membranes, dermatomed porcine skin, Parafilm®M, and Strat-M®. Insertion profiles indicated that both Parafilm®M and Strat-M® showed comparable insertion depths to dermatomed porcine skin (in range of 360-430 µm), suggesting promise as membrane substitutes for insertion studies. In in vitro permeation studies, synthetic membranes such as Parafilm®M and Strat-M® demonstrated the ability to bypass protein-derived skin interference, providing more reliable results compared to dermatomed neonatal porcine skin. Consequently, these findings present valuable tools for preliminary screening across various MAP formulations, especially in the transdermal delivery of proteins and peptides.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | | | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andang Miatmoko
- Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Stem Cell Research and Development Center, Airlangga University, Institute of Tropical Disease Building, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
6
|
Vora LK, Tekko IA, Zanutto FV, Sabri A, Choy RKM, Mistilis J, Kwarteng P, Jarrahian C, McCarthy HO, Donnelly RF. A Bilayer Microarray Patch (MAP) for HIV Pre-Exposure Prophylaxis: The Role of MAP Designs and Formulation Composition in Enhancing Long-Acting Drug Delivery. Pharmaceutics 2024; 16:142. [PMID: 38276512 PMCID: PMC10819247 DOI: 10.3390/pharmaceutics16010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of MAP delivery of micronized cabotegravir sodium (CAB Na) for HIV pre-exposure prophylaxis (PrEP). The refinement of microneedle design parameters, including needle length, shape, density, and arrangement, and the formulation properties, such as solubility, viscosity, polymer molecular weight, and stability, are crucial for improving penetration and release profiles. Additionally, a bilayer MAP optimization step was conducted by diluting the CAB Na polymeric mixture to localize the drug into the tips of the needles to enable rapid drug deposition into the skin following MAP application. Six MAP designs were analyzed and investigated with regard to delivery efficiency into the skin in ex vivo and in vivo studies. The improved MAP design and formulations were found to be robust and had more than 30% in vivo delivery efficiency, with plasma levels several-fold above the therapeutic concentration over a month. Repeated weekly dosing demonstrated the robustness of MAPs in delivering a consistent and sustained dose of CAB. In summary, CAB Na MAPs were able to deliver therapeutically relevant levels of drug.
Collapse
Affiliation(s)
- Lalitkumar K. Vora
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Ismaiel A. Tekko
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Fabiana Volpe Zanutto
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Akmal Sabri
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Robert K. M. Choy
- PATH, 2201 Westlake Avenue, Seattle, DC 98121, USA; (R.K.M.C.); (J.M.)
| | - Jessica Mistilis
- PATH, 2201 Westlake Avenue, Seattle, DC 98121, USA; (R.K.M.C.); (J.M.)
| | | | | | - Helen O. McCarthy
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| |
Collapse
|
7
|
Anjani QK, Cárcamo-Martínez Á, Wardoyo LAH, Moreno-Castellanos N, Sabri AHB, Larrañeta E, Donnelly RF. MAP-box: a novel, low-cost and easy-to-fabricate 3D-printed box for the storage and transportation of dissolving microneedle array patches. Drug Deliv Transl Res 2024; 14:208-222. [PMID: 37477867 PMCID: PMC10746783 DOI: 10.1007/s13346-023-01393-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Research on the use of microarray patches (MAPs) has progressed at an unprecedented rate over the years, leading to the development of many novel drug delivery systems. As the technology approaches patients, there are several key aspects that ought to be addressed in order to facilitate the smooth translation of MAPs from bench to bedside. One integral factor includes the choice of devices and packaging for the storage of MAPs. In the current work, a slide-and-seal box, MAP-box, was developed for the storage of dissolving MAPs, using fused-deposition modelling. The device has been designed to act as a pill-box for MAPs not only to provide protection for MAPs from the environment, but also to improve patient's adherence to treatment. The overall design of the MAP-box was simple, yet offers the capability of sealing and protecting dissolving MAPs up to 30 days. Donepezil HCl was formulated into a dissolvable MAP, which was used to treat dementia related to Alzheimer's disease. This compound was used as a model formulation to evaluate the utility of the 3D printed MAP-box when placed under three storage conditions: 5 °C and ambient humidity, 25 °C and 65% relative humidity and 40 °C and 75% relative humidity. It was shown that the slide-and-seal box was able to confer protection to MAPs for up to 30 days under accelerated stability study conditions as the drug loading, mechanical properties and insertion properties of MAPs remained unaffected when compared to the unpackaged MAPs stored under these same parameters. These preliminary data provide evidence that the MAP-box prototype may be of great utility for the storage of single or multiple MAPs. Nevertheless, future work will be needed to evaluate their patient usability and its application to different types of MAP systems to fully validate the overall robustness of the prototype.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Álvaro Cárcamo-Martínez
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riss, Germany
| | - Luki Ahmadi Hari Wardoyo
- Fakultas Seni Rupa Dan Desain, Institut Teknologi Bandung, Jl. Ganesa No.10, Bandung, 40132, Indonesia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga, 680001, Colombia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
8
|
Utomo E, Domínguez-Robles J, Anjani QK, Picco CJ, Korelidou A, Magee E, Donnelly RF, Larrañeta E. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X 2023; 5:100142. [PMID: 36531743 PMCID: PMC9755236 DOI: 10.1016/j.ijpx.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is an abnormal condition caused by the change of microbiota in the vagina. One of the most common bacteria found in the case of BV is Gardnerella vaginalis, which is categorised as anaerobic facultative bacteria. Currently, the available treatment for BV is the use of antibiotics, such as metronidazole (MTZ), in topical and oral dosage forms. The limitation of the currently available treatment is that multiple administration is required and thus, the patient needs to apply the drug frequently to maintain the drug efficacy. To address these limitations, this research proposed prolonged delivery of MTZ in the form of intravaginal devices made from biodegradable and biocompatible polymers. Semi-solid extrusion (SSE) 3D printing was used to prepare the intravaginal devices. The ratio of high and low molecular weight poly(caprolactone) (PCL) was varied to evaluate the effect of polymer composition on the drug release. The versatility of SSE 3D printer was used to print the intravaginal devices into two different shapes (meshes and discs) and containing two different polymer layers made from PCL and a copolymer of methyl vinyl ether and maleic anhydride (Gantrez™-AN119), which provided mucoadhesive properties. Indeed, this layer made from Gantrez™-AN119 increased ca. 5 times the mucoadhesive properties of the final 3D-printed devices (from 0.52 to 2.57 N). Furthermore, MTZ was homogenously dispersed within the polymer matrix as evidenced by scanning electron microscopy analysis. Additionally, in vitro drug release, and antibacterial activity of the MTZ-loaded intravaginal devices were evaluated. Disc formulations were able to sustain the release of MTZ for 72 h for formulations containing 70/30 and 60/40 ratio of high molecular weight/low molecular weight PCL. On the other hand, the discs containing a 50/50 ratio of high molecular weight/low molecular weight PCL showed up to 9 days of release. However, no significant differences in the MTZ release from the MTZ-loaded meshes (60/40 and 50/50 ratio of high molecular weight/low molecular weight PCL) were found after 24 h. The results showed that the different ratios of high and low molecular weight PCL did not significantly affect the MTZ release. However, the shape of the devices did influence the release of MTZ, showing that larger surface area of the meshes provided a faster MTZ release. Moreover, MTZ loaded 3D-printed discs (5% w/w) were capable of inhibiting the growth of Gardnerella vaginalis. These materials showed clear antimicrobial properties, exhibiting a zone of inhibition of 19.0 ± 1.3 mm. Based on these findings, the manufactured represent a valuable alternative approach to the current available treatment, as they were able to provide sustained release of MTZ, reducing the frequency of administration and thus improving patient compliance.
Collapse
Affiliation(s)
| | | | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J. Picco
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Erin Magee
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F. Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
9
|
Anjani QK, Sabri AHB, Hamid KA, Moreno-Castellanos N, Li H, Donnelly RF. Tip loaded cyclodextrin-carvedilol complexes microarray patches. Carbohydr Polym 2023; 320:121194. [PMID: 37659788 DOI: 10.1016/j.carbpol.2023.121194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 09/04/2023]
Abstract
Carvedilol, a β-blocker prescribed for chronic heart failure, suffers from poor bioavailability and rapid first pass metabolism when administered orally. Herein, we present the development of tip microarray patches (MAPs) composed of ternary cyclodextrin (CD) complexes of carvedilol for transdermal delivery. The ternary complex with hydroxypropyl γ-cyclodextrin (HPγCD) and poly(vinyl pyrrolidone) (PVP) reduced the crystallinity of carvedilol, as evidenced by DSC, XRD, NMR, and SEM analysis. MAPs were fabricated using a two-step process with the ternary complex as the needle layer. The resulting MAPs were capable of breaching ex vivo neonatal porcine skin to a depth ≈600 μm with minimal impact to needle height. Upon insertion, the needle dissolved within 2 h, leading to the transdermal delivery of carvedilol. The MAPs displayed minimal toxicity and acceptable biocompatibility in cell assays. In rats, MAPs achieved significantly higher AUC levels of carvedilol than oral administration, with a delayed Tmax and sustained plasma levels over several days. These findings suggest that the carvedilol-loaded dissolving MAPs have the potential to revolutionise the treatment of chronic heart failure.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, 42300 Puncak Alam, Malaysia
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
10
|
Anjani QK, Volpe-Zanutto F, Hamid KA, Sabri AHB, Moreno-Castellano N, Gaitán XA, Calit J, Bargieri DY, Donnelly RF. Primaquine and chloroquine nano-sized solid dispersion-loaded dissolving microarray patches for the improved treatment of malaria caused by Plasmodium vivax. J Control Release 2023; 361:385-401. [PMID: 37562555 DOI: 10.1016/j.jconrel.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Malaria is a global parasitic infection that leads to substantial illness and death. The most commonly-used drugs for treatment of malaria vivax are primaquine and chloroquine, but they have limitations, such as poor adherence due to frequent oral administration and gastrointestinal side effects. To overcome these limitations, we have developed nano-sized solid dispersion-based dissolving microarray patches (MAPs) for the intradermal delivery of these drugs. In vitro testing showed that these systems can deliver to skin and receiver compartment up to ≈60% of the payload for CQ-based dissolving MAPs and a total of ≈42% of drug loading for PQ-based dissolving MAPs. MAPs also displayed acceptable biocompatibility in cell tests. Pharmacokinetic studies in rats showed that dissolving MAPs could deliver sustained plasma levels of both PQ and CQ for over 7 days. Efficacy studies in a murine model for malaria showed that mice treated with PQ-MAPs and CQ-MAPs had reduced parasitaemia by up to 99.2%. This pharmaceutical approach may revolutionise malaria vivax treatment, especially in developing countries where the disease is endemic. The development of these dissolving MAPs may overcome issues associated with current pharmacotherapy and improve patient outcomes.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, 42300, Puncak Alam, Malaysia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Natalia Moreno-Castellano
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Xiomara A Gaitán
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Y Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
11
|
Pervez S, Nasir F, Hidayatullah T, Khattak MA, Alasmari F, Zainab SR, Gohar S, Tahir A, Maryam GE. Transdermal Delivery of Glimepiride: A Novel Approach Using Nanomicelle-Embedded Microneedles. Pharmaceutics 2023; 15:2019. [PMID: 37631233 PMCID: PMC10459310 DOI: 10.3390/pharmaceutics15082019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Glimepiride (GM) is a hydrophobic drug that dissolves slowly and yields inconsistent clinical responses after oral administration. Transdermal drug delivery (TDD) is an appropriate alternative to oral administration. Microneedles (MNs) offer a promising delivery system that penetrates the skin, while polymeric micelles can enhance the solubility; hence, the combination of both results in high drug bioavailability. This study aims to improve glimepiride's solubility, dissolution rate, and bioavailability by incorporating nanomicelles into MNs for TDD. The nanomicelles formulated with 10% Soluplus® (SP) and 40% GM had a mean particle size of 82.6 ± 0.54, PDI of 0.1 ± 0.01, -16.2 ± 0.18 zeta potential, and achieved a 250-fold increase in solubility. The fabricated pyramid shaped GM-dissolving MNs were thermally stable and had no formulation incompatibility, as confirmed by thermal and FTIR analysis. The in vitro dissolution profile revealed that the GM release from nanomicelles and nanomicelle-loaded DMN was concentration-independent following non-Fickian transport mechanism. Improved pharmacokinetic parameters were obtained with dose of 240 µg as compared to 1 mg of GM oral tablet, in healthy human volunteers. The observed Cmax, Tmax and MRT were 1.56 μg/mL ± 0.06, 4 h, and 40.04 h ± 3.37, respectively. The safety profile assessment indicated that microneedles are safe with no adverse effects on skin or health. This study provides an alternative delivery system for the administration of glimepiride, resulting in improved bioavailability, enhanced patient compliance, and reduced dosing frequency.
Collapse
Affiliation(s)
- Sadia Pervez
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Talaya Hidayatullah
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Muzna Ali Khattak
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syeda Rabqa Zainab
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Shazma Gohar
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Arbab Tahir
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan; (S.P.); (T.H.); (M.A.K.); (S.R.Z.); (S.G.); (A.T.)
| | - Gul e Maryam
- Department of Pharmacy, Qurtaba University of Science and Information Technology, Peshawar 25000, Pakistan;
| |
Collapse
|
12
|
Detamornrat U, Parrilla M, Domínguez-Robles J, Anjani QK, Larrañeta E, De Wael K, Donnelly RF. Transdermal on-demand drug delivery based on an iontophoretic hollow microneedle array system. LAB ON A CHIP 2023; 23:2304-2315. [PMID: 37073607 DOI: 10.1039/d3lc00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transdermal drug delivery has emerged as an alternative administration route for therapeutic drugs, overcoming current issues in oral and parenteral administration. However, this technology is hindered by the low permeability of the stratum corneum of the skin. In this work, we develop a synergic combination of two enhancing technologies to contribute to an improved and on-demand drug delivery through an iontophoretic system coupled with hollow microneedles (HMNs). For the first time, a polymeric HMN array coupled with integrated iontophoresis for the delivery of charged molecules and macromolecules (e.g. proteins) is devised. To prove the concept, methylene blue, fluorescein sodium, lidocaine hydrochloride, and bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) were first tested in an in vitro setup using 1.5% agarose gel model. Subsequently, the ex vivo drug permeation study using a Franz diffusion cell was conducted, exhibiting a 61-fold, 43-fold, 54-fold, and 17-fold increment of the permeation of methylene blue, fluorescein sodium, lidocaine hydrochloride, and BSA-FITC, respectively, during the application of 1 mA cm-2 current for 6 h. Moreover, the total amount of drug delivered (i.e. in the skin and receptor compartment) was analysed to untangle the different delivery profiles according to the types of molecule. Finally, the integration of the anode and cathode into an iontophoretic hollow microneedle array system (IHMAS) offers the full miniaturisation of the concept. Overall, the IHMAS device provides a versatile wearable technology for transdermal on-demand drug delivery that can improve the administration of personalised doses, and potentially enhance precision medicine.
Collapse
Affiliation(s)
- Usanee Detamornrat
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Marc Parrilla
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Juan Domínguez-Robles
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Anjani QK, Demartis S, Volpe-Zanutto F, Li H, Sabri AHB, Gavini E, Donnelly RF. Fluorescence-Coupled Techniques for Determining Rose Bengal in Dermatological Formulations and Their Application to Ex Vivo Skin Deposition Studies. Pharmaceutics 2023; 15:pharmaceutics15020408. [PMID: 36839730 PMCID: PMC9960589 DOI: 10.3390/pharmaceutics15020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Rose Bengal (RB) is a fluorescent dye with several potential biomedical applications, particularly in dermatology. Due to RB's poor physicochemical properties, several advanced delivery systems have been developed as a potential tool to promote its permeation across the skin. Nevertheless, no validated quantitative method to analyse RB within the skin is described in the literature. Considering RB exhibits a conjugated ring system, the current investigation proposes fluorescence-based techniques beneficial for qualitatively and quantitatively determining RB delivered to the skin. Notably, the development and validation of a fluorescence-coupled HPLC method to quantify RB within the skin matrix are herein described for the first time. The method was validated based on the ICH, FDA and EMA guidelines, and the validated parameters included specificity, linearity, LOD, LLOQ, accuracy and precision, and carry-over and dilution integrity. Finally, the method was applied to evaluate RB's ex vivo permeation and deposition profiles when loaded into dermatological formulations. Concerning qualitative determination, multiphoton microscopy was used to track the RB distribution within the skin strata, and fluorescence emission spectra were investigated to evaluate RB's behaviour when interacting with different environments. The analytical method proved specific, precise, accurate and sensitive to analyse RB in the skin. In addition, qualitative side-analytical techniques were revealed to play an essential role in evaluating the performance of RB's dermatological formulation.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Sara Demartis
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Huanhuan Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Piazza Università 21, 07100 Sassari, Italy
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (E.G.); (R.F.D.); Tel.: +39-079-228752 (E.G.); +44-(0)-2890-972-251 (R.F.D.)
| |
Collapse
|