1
|
Ljubica J, Dragar Č, Potrč T, Matjaž MG, Gašperlin M, Nodilo LN, Pepić I, Lovrić J, Kocbek P. Preparation of dried nanoemulsion formulation by electrospinning. Eur J Pharm Sci 2025; 206:107015. [PMID: 39818363 DOI: 10.1016/j.ejps.2025.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/03/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Dry eye disease is a multifactorial condition characterized by a loss of homeostasis of the tear film. Among the various treatment approaches, the application of ophthalmic oil-in-water nanoemulsions with incorporated anti-inflammatory drugs represents one of the most advanced approaches. However, the liquid nature of nanoemulsions limits their retention time at the ocular surface. Transforming the nanoemulsions into a dry form that would disperse rapidly in the tear fluid would improve the retention of the drug at the ocular surface. The aim of this study was to investigate electrospinning as a method for the preparation of a solid eye preparation based on nanoemulsion loaded with the anti-inflammatory drug loteprednol etabonate. Four nanoemulsions differing in oil-to-surfactant ratios were incorporated in hydrophilic nanofibers based on polyethylene oxide, poloxamer 188, and Soluplus®. The dried nanoemulsions in the form of nanofibers dispersed readily on contact with aqueous medium, resulting in a dispersion of nanometre-sized droplets with average size comparable to the average droplet size of the initial nanoemulsions. A rheological study revealed the predominant elastic behavior of the dispersed nanofibers, which indicates the formation of a weak gel after the dispersion of the dried nanoemulsion in tear fluid at the ocular surface. The biocompatibility of the dried nanoemulsions in the form of nanofibers after a single and multiple-dose application was confirmed using the 3D HCE-T model of the stratified epithelium of the human cornea, suggesting that this innovative solid eye preparation could represent a new approach to the treatment of dry eye disease.
Collapse
Affiliation(s)
- Josip Ljubica
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Črt Dragar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Tanja Potrč
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Laura Nižić Nodilo
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Ivan Pepić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Jasmina Lovrić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Petra Kocbek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Curr Eye Res 2025; 50:1-17. [PMID: 39261982 DOI: 10.1080/02713683.2024.2396385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE This comprehensive review is designed to elucidate the transformative role and multifaceted applications of ocular hydrogels in contemporary ophthalmic therapeutic strategies, with a particular emphasis on their capability to revolutionize drug delivery mechanisms and optimize patient outcomes. METHODS A systematic and structured methodology is employed, initiating with a succinct exploration of prevalent ocular pathologies and delineating the corresponding therapeutic agents. This serves as a precursor for an extensive examination of the diverse methodologies and fabrication techniques integral to the design, development, and application of hydrogels specifically tailored for ophthalmic pharmaceutical delivery. The review further scrutinizes the pivotal manufacturing processes that significantly influence hydrogel efficacy and delves into an analysis of the current spectrum of hydrogel-centric ocular formulations. RESULTS The review yields illuminating insights into the escalating prominence of ocular hydrogels within the medical community, substantiated by a plethora of ongoing clinical investigations. It reveals the dynamic and perpetually evolving nature of hydrogel research and underscores the extensive applicability and intricate progression of transposing biologics-loaded hydrogels from theoretical frameworks to practical clinical applications. CONCLUSIONS This review accentuates the immense potential and promising future of ocular hydrogels in the realm of ophthalmic care. It not only serves as a comprehensive guide but also as a catalyst for recognizing the transformative potential of hydrogels in augmenting drug delivery mechanisms and enhancing patient outcomes. Furthermore, it draws attention to the inherent challenges and considerations that necessitate careful navigation by researchers and clinicians in this progressive field.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Vanasthali, India
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, India
| | | | | |
Collapse
|
3
|
Mousavi Z, Bagheri M, Rostaminasab G, Mikaeili A, Djalilian AR, Rezakhani L. Tissue engineering strategies for ocular regeneration; from bench to the bedside. Heliyon 2024; 10:e39398. [PMID: 39497964 PMCID: PMC11532841 DOI: 10.1016/j.heliyon.2024.e39398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Millions globally suffer from visual impairment, complicating the management of eye diseases due to various ocular barriers. The eye's complex structure and the limitations of existing treatments have spurred interest in tissue engineering (TE) as a solution. This approach offers new functionalities and improves therapeutic outcomes over traditional drug delivery methods, creating opportunities for treating various eye disorders, from corneal injuries to retinal degeneration. In our review of recent articles concerning the use of scaffolds for eye repair, we categorized scaffolds employed in eye TE from recent studies into four types based on tissue characteristics: natural, synthetic, biohybrid, and decellularized tissue. Additionally, we gathered data on the cell types and animal models associated with each scaffold. This allowed us to gather valuable insights into the benefits and drawbacks of each material. Our research elucidates that, in comparison to conventional treatment modalities, scaffolds in TE emulate the extracellular matrix (ECM) of the eye and facilitate cell proliferation and tissue regeneration. These scaffolds can be precisely tailored to incorporate growth factors that augment the healing process while also providing considerable advantages such as bacterial inhibition, biocompatibility, and enhanced durability. However, they also have drawbacks, such as potential immune responses, poor tissue integration, complex and costly manufacturing, and inconsistent degradation rates that can affect their effectiveness. In this review, we provide an overview of the present condition of eye regenerative treatments, assess notable preclinical and clinical research endeavors, contemplate the obstacles encountered, and speculate on potential advancements in the upcoming decade.
Collapse
Affiliation(s)
- Zeinab Mousavi
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masood Bagheri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah, University of Medical Sciences, Kermanshah, Iran
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Wu J, Yu F, Shao M, Zhang T, Lu W, Chen X, Wang Y, Guo Y. Electrospun Nanofiber Scaffold for Skin Tissue Engineering: A Review. ACS APPLIED BIO MATERIALS 2024; 7:3556-3567. [PMID: 38777621 DOI: 10.1021/acsabm.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Skin tissue engineering (STE) is widely regarded as an effective approach for skin regeneration. Several synthetic biomaterials utilized for STE have demonstrated favorable fibrillar characteristics, facilitating the regeneration of skin tissue at the site of injury, yet they have exhibited a lack of in situ degradation. Various types of skin regenerative materials, such as hydrogels, nanofiber scaffolds, and 3D-printing composite scaffolds, have recently emerged for use in STE. Electrospun nanofiber scaffolds possess distinct advantages, such as their wide availability, similarity to natural structures, and notable tissue regenerative capabilities, which have garnered the attention of researchers. Hence, electrospun nanofiber scaffolds may serve as innovative biological materials possessing the necessary characteristics and potential for use in tissue engineering. Recent research has demonstrated the potential of electrospun nanofiber scaffolds to facilitate regeneration of skin tissues. Nevertheless, there is a need to enhance the rapid degradation and limited mechanical properties of electrospun nanofiber scaffolds in order to strengthen their effectiveness in soft tissue engineering applications in clinical settings. This Review centers on advanced research into electrospun nanofiber scaffolds, encompassing preparation methods, materials, fundamental research, and preclinical applications in the field of science, technology, and engineering. The existing challenges and prospects of electrospun nanofiber scaffolds in STE are also addressed.
Collapse
Affiliation(s)
- Jingwen Wu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Fenglin Yu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weipeng Lu
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Company Hangzhou 310000, P. R. China
| | - Xin Chen
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yihu Wang
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Taghe S, Mirzaeei S, Hosseinkhani T. Design and development of dual drug-loaded nanofibrous inserts for ophthalmic sustained delivery of AMK and VAN: Pharmacokinetic study in rabbit's eye. Int J Pharm 2024; 656:124056. [PMID: 38548072 DOI: 10.1016/j.ijpharm.2024.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.
Collapse
Affiliation(s)
- Shiva Taghe
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Tanin Hosseinkhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Mishra S, Manzanares MA, Prater J, Culp D, Gold LI. Calreticulin accelerates corneal wound closure and mitigates fibrosis: Potential therapeutic applications. J Cell Mol Med 2024; 28:e18027. [PMID: 37985392 PMCID: PMC10902309 DOI: 10.1111/jcmm.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
The processes involved in regeneration of cutaneous compared to corneal tissues involve different intrinsic mechanisms. Importantly, cutaneous wounds involve healing by angiogenesis but vascularization of the cornea obscures vision. Previous studies showed that topically applied calreticulin (CALR) healed full-thickness excisional animal wounds by a tissue regenerative process markedly enhancing repair without evoking angiogenesis. In the current study, the application of CALR in a rabbit corneal injury model: (1) accelerated full wound closure by 3 days (2) accelerated delayed healing caused by corticosteroids, routinely used to prevent post-injury inflammation, by 6 days and (3) healed wounds without vascularization or fibrosis/hazing. In vitro, CALR stimulated proliferation of human corneal epithelial cells (CE) and corneal stromal cells (keratocytes) by 1.5-fold and 1.4-fold, respectively and induced migration of CE cells and keratocytes, by 72% and 85% compared to controls of 44% and 59%, respectively. As a marker of decreased fibrosis, CALR treated corneal wounds showed decreased immunostaining for α-smooth muscle actin (α-SMA) by keratocytes and following CALR treatment in vitro, decreased the levels of TGF-β2 in human CE cells and α-SMA in keratocytes. CALR has the potential to be a novel therapeutic both, to accelerate corneal healing from various injuries and in conjunction with corticosteroids.
Collapse
Affiliation(s)
- Sarita Mishra
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| | - Miguel A. Manzanares
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| | - Justin Prater
- Powered Research, Research Triangle ParkNorth CarolinaNew YorkUSA
| | - David Culp
- Powered Research, Research Triangle ParkNorth CarolinaNew YorkUSA
| | - Leslie I. Gold
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
- Department of PathologyNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| |
Collapse
|
7
|
Venugopal D, Vishwakarma S, Sharma N, Kaur I, Samavedi S. Evaluating the protective effects of dexamethasone and electrospun mesh combination on primary human mixed retinal cells under hyperglycemic stress. Int J Pharm 2024; 651:123768. [PMID: 38176477 DOI: 10.1016/j.ijpharm.2024.123768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Chronic inflammation is a leading cause of neurodegeneration and vision loss in hyperglycemia-associated conditions such as diabetic retinopathy. Corticosteroid injections are widely used for treatment but suffer from limitations such as rapid drug clearance, short drug half-lives and frequent administration. While drug release from biomaterial carriers can overcome these shortcomings, evaluating the combined effects of corticosteroids and polymeric matrices under hyperglycemic stress is an important step towards aiding translation. In this study, we investigated the effects of dexamethasone (DEX) and electrospun mesh combination on primary human mixed retinal cells under normal and hyperglycemic culture conditions. DEX-incorporated poly(lactide-co-glycolide) (PLGA) meshes were prepared and characterized for architecture, chemistry, drug distribution and in vitro release. The meshes exhibited cumulative in vitro drug release of 39.5 % over 2 months at a near constant rate. Under normal culture conditions, DEX-PLGA meshes promoted significantly higher viability of mixed retinal cells than the control groups but without adverse phenotypic activation. Under hyperglycemic conditions, DEX supplementation resulted in higher viability than the control, although the highest viability was achieved only when DEX was added to cells cultured on PLGA fibers. The combination of DEX and PLGA fibers also promoted higher mRNA expression of the antioxidant GSH under hyperglycemia. Importantly, the largest reduction in the production of pro-inflammatory cytokines viz., MMP-9, IL-6, IL-8 and VEGF-R1 was observed for the DEX and PLGA combination. Our study reveals a combined effect of DEX and electrospun fibers in combating hyperglycemia-driven pro-inflammatory responses, which can aid the development of DEX-loaded electrospun implants for diabetes-driven retinal conditions.
Collapse
Affiliation(s)
- Dhivya Venugopal
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, India
| | - Sushma Vishwakarma
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neha Sharma
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Inderjeet Kaur
- Prof Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India.
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, India.
| |
Collapse
|
8
|
de Carvalho ACW, Paiva NF, Demonari IK, Duarte MPF, do Couto RO, de Freitas O, Vicentini FTMDC. The Potential of Films as Transmucosal Drug Delivery Systems. Pharmaceutics 2023; 15:2583. [PMID: 38004562 PMCID: PMC10675688 DOI: 10.3390/pharmaceutics15112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Pharmaceutical films are polymeric formulations used as a delivery platform for administration of small and macromolecular drugs for local or systemic action. They can be produced by using synthetic, semi-synthetic, or natural polymers through solvent casting, electrospinning, hot-melt extrusion, and 3D printing methods, and depending on the components and the manufacturing methods used, the films allow the modulation of drug release. Moreover, they have advantages that have drawn interest in the development and evaluation of film application on the buccal, nasal, vaginal, and ocular mucosa. This review aims to provide an overview of and critically discuss the use of films as transmucosal drug delivery systems. For this, aspects such as the composition of these formulations, the theories of mucoadhesion, and the methods of production were deeply considered, and an analysis of the main transmucosal pathways for which there are examples of developed films was conducted. All of this allowed us to point out the most relevant characteristics and opportunities that deserve to be taken into account in the use of films as transmucosal drug delivery systems.
Collapse
Affiliation(s)
- Ana Clara Wada de Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Natália Floriano Paiva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Isabella Kriunas Demonari
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Maíra Peres Ferreira Duarte
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Renê Oliveira do Couto
- Campus Centro-Oeste Dona Lindu (CCO), Universidade Federal de São João del-Rei (UFSJ), Divinópolis 35501-296, MG, Brazil
| | - Osvaldo de Freitas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | | |
Collapse
|
9
|
Liu L, Tang H, Wang Y. Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment. Heliyon 2023; 9:e21544. [PMID: 38034809 PMCID: PMC10682535 DOI: 10.1016/j.heliyon.2023.e21544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Polymeric biomaterials have emerged as a highly promising candidate for drug delivery systems (DDS), exhibiting significant potential to enhance the therapeutic landscape of osteoarthritis (OA) therapy. Their remarkable capacity to manifest desirable physicochemical attributes, coupled with their excellent biocompatibility and biodegradability, has greatly expanded their utility in pharmacotherapeutic applications. Nevertheless, an urgent necessity exists for a comprehensive synthesis of the most recent advances in polymeric DDS, providing valuable guidance for their implementation in the context of OA therapy. This review is dedicated to summarizing and examining recent developments in the utilization of polymeric DDS for OA therapy. Initially, we present an overview of the intricate pathophysiology characterizing OA and underscore the prevailing limitations inherent to current treatment modalities. Subsequently, we introduce diverse categories of polymeric DDS, including hydrogels, nanofibers, and microspheres, elucidating their inherent advantages and limitations. Moreover, we discuss and summarize the delivery of bioactive agents through polymeric biomaterials for OA therapy, emphasizing key findings and emerging trends. Finally, we highlight prospective directions for advancing polymeric DDS, offering a promising approach to enhance their translational potential for OA therapy.
Collapse
Affiliation(s)
- Lin Liu
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| | - Haifeng Tang
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| | - Yanjun Wang
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| |
Collapse
|
10
|
Chen L, Nabil A, Fujisawa N, Oe E, Li K, Ebara M. A facile, flexible, and multifunctional thermo-chemotherapy system for customized treatment of drug-resistant breast cancer. J Control Release 2023; 363:550-561. [PMID: 37804880 DOI: 10.1016/j.jconrel.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Anticancer drug resistance invariably emerges and poses a significant barrier to curative therapy for various breast cancers. This results in a lack of satisfactory therapeutic medicine for cancer treatment. Herein, a universal vector system for drug-resistance breast cancer was designed to meet the needs of reversed multidrug resistance, thermo-chemotherapy, and long-term drug release behavior. The vector system comprises polycaprolactone (PCL) nanofiber mesh and magnetic nanoparticles (MNPs). PCL has excellent biocompatibility and electrospinning performance. In this study, MNPs were tailored to be thermogenic in response to an alternating magnetic field (AMF). PCL nanofiber can deliver various chemotherapy drugs, and suitable MNPs encapsulated in the nanofiber can generate hyperthermia and synergistic effect with those chemotherapy drugs. Therefore, a more personalized treatment system can be developed for different breast malignancies. In addition, the PCL nanofiber mesh (NFM) enables sustained release of the drugs for up two months, avoiding the burden on patients caused by repeated administration. Through model drugs doxorubicin (DOX) and chemosensitizers curcumin (CUR), we systematically verified the therapeutic effect of DOX-resistance breast cancer and inhibition of tumor generation in vivo. These findings represent a multifaceted platform of importance for validating strategic reversed MDR in pursuit of promoted thermo-chemotherapeutic outcomes. More importantly, the low cost and excellent safety and efficacy of this nanofiber mesh demonstrate that this can be customized multi-function vector system may be a promising candidate for refractory cancer therapy in clinical.
Collapse
Affiliation(s)
- Lili Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nanami Fujisawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Emiho Oe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Kai Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan; Department of Materials Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan.
| |
Collapse
|
11
|
Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. J Nanobiotechnology 2023; 21:282. [PMID: 37598148 PMCID: PMC10440041 DOI: 10.1186/s12951-023-01974-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 08/21/2023] Open
Abstract
Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose considerable challenges to effective management and treatment. This review article investigates the potential of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaustive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify promising avenues for future research and clinical applications. The review commences with a detailed exploration of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and pathophysiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regulatory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in redefining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory disorders.
Collapse
Affiliation(s)
- Jing Wei
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinyu Mu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
12
|
Adhikari B, Stager MA, Krebs MD. Cell-instructive biomaterials in tissue engineering and regenerative medicine. J Biomed Mater Res A 2023; 111:660-681. [PMID: 36779265 DOI: 10.1002/jbm.a.37510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
The field of biomaterials aims to improve regenerative outcomes or scientific understanding for a wide range of tissue types and ailments. Biomaterials can be fabricated from natural or synthetic sources and display a plethora of mechanical, electrical, and geometrical properties dependent on their desired application. To date, most biomaterial systems designed for eventual translation to the clinic rely on soluble signaling moieties, such as growth factors, to elicit a specific cellular response. However, these soluble factors are often limited by high cost, convoluted synthesis, low stability, and difficulty in regulation, making the translation of these biomaterials systems to clinical or commercial applications a long and arduous process. In response to this, significant effort has been dedicated to researching cell-directive biomaterials which can signal for specific cell behavior in the absence of soluble factors. Cells of all tissue types have been shown to be innately in tune with their microenvironment, which is a biological phenomenon that can be exploited by researchers to design materials that direct cell behavior based on their intrinsic characteristics. This review will focus on recent developments in biomaterials that direct cell behavior using biomaterial properties such as charge, peptide presentation, and micro- or nano-geometry. These next generation biomaterials could offer significant strides in the development of clinically relevant medical devices which improve our understanding of the cellular microenvironment and enhance patient care in a variety of ailments.
Collapse
Affiliation(s)
- Bikram Adhikari
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Melissa D Krebs
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
13
|
Bioactive-loaded nanovesicles embedded within electrospun plant protein nanofibers; a double encapsulation technique. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|