1
|
Lee DW, Lim HM, Lee JY, Min KB, Shin CH, Lee YA, Hong YC. Prenatal exposure to phthalate and decreased body mass index of children: a systematic review and meta-analysis. Sci Rep 2022; 12:8961. [PMID: 35624195 PMCID: PMC9142490 DOI: 10.1038/s41598-022-13154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/29/2022] [Indexed: 01/24/2023] Open
Abstract
Phthalates are well-known endocrine-disrupting chemicals. Many detrimental health effects of phthalates were investigated, but studies on the association of phthalates with obesity in children showed inconsistent results. Thus, this systematic review and meta-analysis were performed to clarify whether prenatal and postnatal exposures to phthalates are associated with physical growth disturbances in children. We performed the systematic review and meta-analysis following the PRISMA 2020 statement guidelines, and found 39 studies that met our inclusion criteria, including 22 longitudinal and 17 cross-sectional studies. We observed a significant negative association between the prenatal exposure to DEHP and the body mass index (BMI) z-score of the offspring (β = - 0.05; 95% CI: - 0.10, - 0.001) in the meta-analysis, while no significant association between the prenatal exposure to DEHP and the body fat percentage of the offspring was observed (β = 0.01; 95% CI: - 0.41, 0.44). In the systematic review, studies on the association between phthalates exposure in childhood and obesity were inconsistent. Prenatal exposure to phthalates was found to be associated with decreased BMI z-score in children, but not associated with body fat percentage. Our findings suggest that phthalates disturb the normal muscle growth of children, rather than induce obesity, as previous studies have hypothesized.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Public Healthcare Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyun-Mook Lim
- COMWEL Daejeon Hospital, Korea Workers' Compensation & Welfare Service, Daejeon, Republic of Korea
| | - Joong-Yub Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyung-Bok Min
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Choong-Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young-Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yun-Chul Hong
- Department of Humans Systems Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Sun L, Fan J, Song G, Cai S, Fan C, Zhong Y, Li Y. Exposure to phthalates is associated with grip strength in US adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111787. [PMID: 33333342 DOI: 10.1016/j.ecoenv.2020.111787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
The potential association of exposure to phthalates with muscle strength was reported in previous animal experiments. However, their association was rarely directly investigated in general populations. Thus, we aimed to ascertain the association of exposure to phthalates with grip strength using cross-sectional analysis which included 2436 individuals aged ≥ 20 years from the National Health and Nutrition Examination Survey (NHANES) during 2011-2014. The multivariable linear regression models were performed with the adjustment of related covariates. The results suggested that a one-unit increase in log-transformed phthalate metabolites (μg/g creatinine) was inversely associated with grip strength, including Mono-(2-ethyl)-hexyl phthalate (β: -2.727 kg, 95% CI: -3.452, -2.002), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (β: -3.721 kg, 95% CI: -4.836, -2.607), Mono-(2-ethyl-5-oxohexl) phthalate (β: -4.669 kg, 95% CI: -5.761, -3.577), Mono-2-ethyl-5-carboxypentyl phthalate (β: -4.756 kg, 95% CI: -5.957, -3.554), Mono-carboxyoctyl phthalate (β: -1.324 kg, 95% CI: -2.412, -0.235), Mono-carboxynonyl phthalate (β: -2.036 kg, 95% CI: -3.185, -0.886), Mono-benzyl phthalate (β: -2.940 kg, 95% CI: -3.853, -2.026), Mono-n-butyl phthalate (β: -2.100 kg, 95% CI: -3.474, -0.726), Mono-isobutyl phthalate (β: -2.982 kg, 95% CI: -4.331, -1.633), and Mono-ethyl phthalate (β: -1.709 kg, 95% CI: -2.368, -1.050). In subgroup analyses, the associations remained largely unchanged when the samples were stratified by gender and age; However they became ambiguous among underweight subjects when the samples were stratified by BMI status. Overall, exposure to phthalates was inversely associated with grip strength among US adults, regardless of their genders and ages. The suggestive potential BMI status-specific effects of phthalates on grip strength were observed.
Collapse
Affiliation(s)
- Lingling Sun
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayao Fan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Guangzhong Song
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Shaofang Cai
- Department of Science and Education, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Chunhong Fan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yaohong Zhong
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
3
|
Tsuruoka K, Kurahara T, Kanamaru H, Takahashi H, Gotoh T. Effect of feeding rice whole crop silage on growth rate, levels of vitamin A, β-carotene, vitamin E and IGF-1 in plasma and skeletal muscle protein degradation in Japanese black calves. Anim Sci J 2019; 90:728-736. [PMID: 31006927 DOI: 10.1111/asj.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
Abstract
This study evaluated the effects of rice whole crop silage (RWCS) on growth, plasma levels of vitamin A, β-carotene, vitamin E and IGF-1, and expression of genes involved in muscle protein degradation and synthesis in Japanese Black calves. Eleven calves were divided into RWCS (fed RWCS ad libitum and concentrate, n = 5) and control groups (fed hay ad libitum and concentrate, n = 6). Final body weight and dairy gain were significantly larger in the RWCS group compared with the control group. Plasma β-carotene and vitamin E concentrations were significantly higher in the RWCS group compared with control group. Although plasma vitamin E concentration in the RWCS group significantly increased from 4 to 9 months of age, it did not increase in the control group. At 6 months of age in the RWCS group, ubiquitin B (p < 0.05) and calpain 1 (p = 0.097) mRNA expression were lower than control group, but they were not different between groups at 9 months of age. These results indicate that RWCS increases plasma β-carotene level and promotes muscle growth because of a decrease in the rate of protein degradation, but the effect is lost with the increase in plasma vitamin E level.
Collapse
Affiliation(s)
- Katsuhiko Tsuruoka
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Takami Kurahara
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Hidenobu Kanamaru
- Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | | | - Takafumi Gotoh
- Kuju Agricultural Research Center, Kyushu University, Oita, Japan.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Al Samid MA, Al-Shanti N, Odeh M. Motor Neuron-Skeletal Muscle Co Culture Model: A Potential Novel in Vitro and Computaional Platform to Investigate Cancer Cachexia. 2018 1ST INTERNATIONAL CONFERENCE ON CANCER CARE INFORMATICS (CCI) 2018. [DOI: 10.1109/cancercare.2018.8618261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Exercise and the control of muscle mass in human. Pflugers Arch 2018; 471:397-411. [DOI: 10.1007/s00424-018-2217-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
|
6
|
Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. Int J Biochem Cell Biol 2015; 62:72-9. [DOI: 10.1016/j.biocel.2015.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 11/17/2022]
|
7
|
Matsumoto Y, Nakano J, Oga S, Kataoka H, Honda Y, Sakamoto J, Okita M. The non-thermal effects of pulsed ultrasound irradiation on the development of disuse muscle atrophy in rat gastrocnemius muscle. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1578-1586. [PMID: 24613643 DOI: 10.1016/j.ultrasmedbio.2013.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 12/10/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
This study examined the effects of therapeutic pulsed ultrasound (US) on the development of disuse muscle atrophy in rat gastrocnemius muscle. Male Wistar rats were randomly distributed into control, immobilization (Im), sham US, and US groups. In the Im, sham US and US groups, the bilateral ankle joints of each rat were immobilized in full plantar flexion with a plaster cast for a 4-wk period. The pulsed US (frequency, 1 MHz; intensity, 1.0 W/cm(2); pulsed mode 1:4; 15 min) was irradiated to the gastrocnemius muscle in the US group over a 4-wk immobilization period. The pulsed US irradiation delivered only non-thermal effects to the muscle. In conjunction with US irradiation, 5-bromo-2'-deoxyuridine (BrdU) was injected subcutaneously to label the nuclei of proliferating satellite cells 1 h before each pulsed US irradiation. Immobilization resulted in significant decreases in the mean diameters of type I, IIA and IIB muscle fibers of the gastrocnemius muscle in the Im, sham US and US groups compared with the control group. However, the degrees of muscle fiber atrophy for all types were significantly lower in the US group compared with the Im and sham US groups. Although the number of capillaries and the concentrations of insulin-like growth factor and basic fibroblast growth factor did not change in the muscle, the number of BrdU-positive nuclei in the muscle was significantly increased by pulsed US irradiation in the US group. The results of this study suggest that pulsed US irradiation inhibits the development of disuse muscle atrophy partly via activation of satellite cells.
Collapse
Affiliation(s)
- Yoko Matsumoto
- Department of Rehabilitation, Saiseikai Nagasaki Hospital, Nagasaki, Japan
| | - Jiro Nakano
- Unit of Physical and Occupational Therapy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Satoshi Oga
- Department of Rehabilitation, Saiseikai Nagasaki Hospital, Nagasaki, Japan
| | - Hideki Kataoka
- Department of Rehabilitation, Nagasaki Memorial Hospital, Nagasaki, Japan; Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuichiro Honda
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junya Sakamoto
- Department of Rehabilitation, Nagasaki University Hospital, Nagasaki, Japan
| | - Minoru Okita
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
8
|
Mangner N, Matsuo Y, Schuler G, Adams V. Cachexia in chronic heart failure: endocrine determinants and treatment perspectives. Endocrine 2013; 43:253-65. [PMID: 22903414 DOI: 10.1007/s12020-012-9767-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022]
Abstract
It is well documented in the current literature that chronic heart failure is often associated with cachexia, defined as involuntary weight loss of 5 % in 12 month or less. Clinical studies unraveled that the presence of cachexia decreases significantly mean survival of the patient. At the molecular level mainly myofibrillar proteins are degraded, although a reduced protein synthesis may also contribute to the loss of muscle mass. Endocrine factors clearly regulate muscle mass and function by influencing the normally precisely controlled balance between protein breakdown and protein synthesis The aim of the present article is to review the knowledge in the field with respect to the role of endocrine factors for the regulation of cachexia in patients with CHF and deduce treatment perspectives.
Collapse
Affiliation(s)
- Norman Mangner
- Heart Center Leipzig, University Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| | | | | | | |
Collapse
|
9
|
Dibutoxybutane Suppresses Protein Degradation and Promotes Growth in Cultured Chicken Muscle Cells. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Lehmann S, Shephard F, Jacobson LA, Szewczyk NJ. Integrated control of protein degradation in C. elegans muscle. WORM 2012; 1:141-50. [PMID: 23457662 PMCID: PMC3583358 DOI: 10.4161/worm.20465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/14/2012] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
Abstract
Protein degradation is a fundamental cellular process, the genomic control of which is incompletely understood. The advent of transgene-coded reporter proteins has enabled the development of C. elegans into a model for studying this problem. The regulation of muscle protein degradation is surprisingly complex, integrating multiple signals from hypodermis, intestine, neurons and muscle itself. Within the muscle, degradation is executed by separately regulated autophagy-lysosomal, ubiquitin-proteasome and calpain-mediated systems. The signal-transduction mechanisms, in some instances, involve modules previously identified for their roles in developmental processes, repurposed in terminally differentiated muscle to regulate the activities of pre-formed proteins. Here we review the genes, and mechanisms, which appear to coordinately control protein degradation within C. elegans muscle. We also consider these mechanisms in the context of development, physiology, pathophysiology and disease models.
Collapse
Affiliation(s)
- Susann Lehmann
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Freya Shephard
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Lewis A. Jacobson
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Nathaniel J. Szewczyk
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| |
Collapse
|
11
|
Shephard F, Adenle AA, Jacobson LA, Szewczyk NJ. Identification and functional clustering of genes regulating muscle protein degradation from amongst the known C. elegans muscle mutants. PLoS One 2011; 6:e24686. [PMID: 21980350 PMCID: PMC3181249 DOI: 10.1371/journal.pone.0024686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/15/2011] [Indexed: 01/08/2023] Open
Abstract
Loss of muscle mass via protein degradation is an important clinical problem but we know little of how muscle protein degradation is regulated genetically. To gain insight our labs developed C. elegans into a model for understanding the regulation of muscle protein degradation. Past studies uncovered novel functional roles for genes affecting muscle and/or involved in signalling in other cells or tissues. Here we examine most of the genes previously identified as the sites of mutations affecting muscle for novel roles in regulating degradation. We evaluate genomic (RNAi knockdown) approaches and combine them with our established genetic (mutant) and pharmacologic (drugs) approaches to examine these 159 genes. We find that RNAi usually recapitulates both organismal and sub-cellular mutant phenotypes but RNAi, unlike mutants, can frequently be used acutely to study gene function solely in differentiated muscle. In the majority of cases where RNAi does not produce organismal level phenotypes, sub-cellular defects can be detected; disrupted proteostasis is most commonly observed. We identify 48 genes in which mutation or RNAi knockdown causes excessive protein degradation; myofibrillar and/or mitochondrial morphologies are also disrupted in 19 of these 48 cases. These 48 genes appear to act via at least three sub-networks to control bulk degradation of protein in muscle cytosol. Attachment to the extracellular matrix regulates degradation via unidentified proteases and affects myofibrillar and mitochondrial morphology. Growth factor imbalance and calcium overload promote lysosome based degradation whereas calcium deficit promotes proteasome based degradation, in both cases myofibrillar and mitochondrial morphologies are largely unaffected. Our results provide a framework for effectively using RNAi to identify and functionally cluster novel regulators of degradation. This clustering allows prioritization of candidate genes/pathways for future mechanistic studies.
Collapse
Affiliation(s)
- Freya Shephard
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Ademola A. Adenle
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Lewis A. Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathaniel J. Szewczyk
- School of Graduate Entry Medicine and Health, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Cleveland BM, Weber GM. Effects of insulin-like growth factor-I, insulin, and leucine on protein turnover and ubiquitin ligase expression in rainbow trout primary myocytes. Am J Physiol Regul Integr Comp Physiol 2009; 298:R341-50. [PMID: 20007517 DOI: 10.1152/ajpregu.00516.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of insulin-like growth factor-I (IGF-I), insulin, and leucine on protein turnover and pathways that regulate proteolytic gene expression and protein polyubiquitination were investigated in primary cultures of 4-day-old rainbow trout myocytes. Supplementing media with 100 nM IGF-I increased protein synthesis by 13% (P < 0.05) and decreased protein degradation by 14% (P < 0.05). Treatment with 1 microM insulin increased protein synthesis by 13% (P < 0.05) and decreased protein degradation by 17% (P < 0.05). Supplementing media containing 0.6 mM leucine with an additional 2.5 mM leucine did not increase protein synthesis rates but reduced rates of protein degradation by 8% (P < 0.05). IGF-I (1 nM-100 nM) and insulin (1 nM-1 microM) independently reduced the abundance of ubiquitin ligase mRNA in a dose-dependent manner, with maximal reductions of approximately 70% for muscle atrophy F-box (Fbx) 32, 40% for Fbx25, and 25% for muscle RING finger-1 (MuRF1, P < 0.05). IGF-I and insulin stimulated phosphorylation of FOXO1 and FOXO4 (P < 0.05), which was inhibited by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, and decreased the abundance of polyubiquitinated proteins by 10-20% (P < 0.05). Supplementing media with leucine reduced Fbx32 expression by 25% (P < 0.05) but did not affect Fbx25 nor MuRF1 transcript abundance. Serum deprivation decreased rates of protein synthesis by 60% (P < 0.05), increased protein degradation by 40% (P < 0.05), and increased expression of all ubiquitin ligases. These data suggest that, similar to mammals, the inhibitory effects of IGF-I and insulin on proteolysis occur via P I3-kinase/protein kinase B signaling and are partially responsible for the ability of these compounds to promote protein accretion.
Collapse
Affiliation(s)
- Beth M Cleveland
- United States Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, USA.
| | | |
Collapse
|
13
|
Bicer S, Reiser PJ, Ching S, Quan N. Induction of muscle weakness by local inflammation: an experimental animal model. Inflamm Res 2009; 58:175-83. [PMID: 19205846 DOI: 10.1007/s00011-008-8093-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE AND DESIGN The objective of this study was to characterize the response of skeletal muscle to a localized inflammation induced by the inflammatory agent casein. METHODS An inflammatory agent, casein, was injected into the right hindlimb and saline was injected into the left hindlimb of normal adult mice, once daily for six consecutive days. Inflammatory response was monitored by immunohistochemical labeling of leukocytes. Muscle protein levels were determined by electrophoresis and muscle function was determined by isometric force measurements. RESULTS Local inflammation was induced by casein in association with the accumulation of extensive neutrophils and macrophages in the soleus muscle. This local inflammation resulted in a shift in myosin heavy chain (MHC) isoform expression and a significant reduction in total MHC concentration in the soleus. Maximal twitch and tetanic forces were significantly reduced in the inflamed soleus. Contractile function in soleus was fully restored after two weeks of recovery, along with the restoration of protein concentration and the disappearance of inflammatory cells. CONCLUSION This study establishes a unique and robust model in which mechanisms of local inflammation induced muscle protein degradation, reduction of contractile force, and subsequent recovery from this condition can be further studied.
Collapse
Affiliation(s)
- S Bicer
- Department of Oral Biology, Ohio State University, Columbus, OH 43210-1247, USA
| | | | | | | |
Collapse
|
14
|
Tesseraud S, Bouvarel I, Collin A, Audouin E, Crochet S, Seiliez I, Leterrier C. Daily variations in dietary lysine content alter the expression of genes related to proteolysis in chicken pectoralis major muscle. J Nutr 2009; 139:38-43. [PMID: 19056657 DOI: 10.3945/jn.108.095752] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Amino acids are known to be anabolic factors that affect protein metabolism, but the response of animals to daily amino acid changes is little understood. We aimed to test the effects of feeding birds with alternations of diets varying in lysine content on the expression of genes related to proteolysis in chicken muscle. Cyclic feeding programs with 2 diets, each given for 24 h during 48-h cycles, were carried out from 10 d of age. Three programs were used: 1) control treatment with continuous distribution of a complete diet containing standard medium lysine level (ML; 11.9 g/kg); 2) alternation of diets with high (HL) and low (LL) lysine levels; 3) alternation of ML and LL diets, where LL = 70%, ML = 100%, HL = 130% of standard lysine level. The Pectoralis major muscles were sampled after 2 wk of cyclic feeding. Measurements included the expression patterns of 6 genes involved in proteolysis, and mammalian target of rapamycin and Forkhead box-O transcription factor (FoxO) signaling. Cathepsin B, m-calpain, and E3 ubiquitin ligases Muscle Ring Finger-1 and Muscle Atrophy F box were significantly overexpressed in chickens transiently fed the LL diet, whereas the mRNA levels of 20S proteasome C2 subunit and ubiquitin remained unchanged. Modifications of E3 ubiquitin ligase expression can be partly explained by significant changes in FoxO phosphorylation with cyclic dietary treatments. Our results suggest timing-sensitive regulation of proteolysis in chicken muscle according to dietary treatment and a high metabolism capacity to compensate for changes in amino acid supply, which might be used for nutritional purposes.
Collapse
|
15
|
Saini A, Al-Shanti N, Faulkner SH, Stewart CE. Pro- and anti-apoptotic roles for IGF-I in TNF-alpha-induced apoptosis: a MAP kinase mediated mechanism. Growth Factors 2008; 26:239-53. [PMID: 18651291 DOI: 10.1080/08977190802291634] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The concept of skeletal muscle homeostasis--often viewed as the net balance between two separate processes, namely protein degradation and protein synthesis--are not occurring independently of each other, but are finely co-ordinated by a web of intricate signalling networks. MATERIALS AND METHODS Using rodent muscle cell lines we have investigated TNF-alpha/IGF-I interactions, in an attempt to mimic and understand mechanisms underlying the wasting process. RESULTS AND CONCLUSION When myoblast cells are incubated with TNF-alpha (10 ng ml(- 1)) maximal damage ( approximately 21% +/- 0.7 myoblast death, p < 0.05) was induced. Co-incubation of TNF-alpha (10 ng ml(- 1)) with IGF-I resulted in cell survival ( approximately 50% reduction in myoblast death, p < 0.05), however, myotube formation was not evident. In contrast, a novel role of IGF-I has been identified whereby co-incubation of muscle cells with IGF-I (1.5 ng ml(- 1)) and a non-apoptotic dose of TNF-alpha (1.25 ng ml(- 1); sufficient to block differentiation) unexpectedly were shown not to rescue a block on differentiation but to facilitate significant myoblast death (p < 0.05). Interestingly, pre-administration of PD98059, a MAPK signal-blocking agent followed by co-incubation of 1.25 ng ml(- 1) TNF-alpha and 1.5 ng ml(- 1) IGF-I, reduced death to baseline levels (p < 0.05). We show for the first time that IGF-I can be apoptotic in the absence of TNF-alpha-induced cell death.
Collapse
Affiliation(s)
- Amarjit Saini
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Cheshire, UK.
| | | | | | | |
Collapse
|
16
|
Arthur PG, Grounds MD, Shavlakadze T. Oxidative stress as a therapeutic target during muscle wasting: considering the complex interactions. Curr Opin Clin Nutr Metab Care 2008; 11:408-16. [PMID: 18542000 DOI: 10.1097/mco.0b013e328302f3fe] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The aim of this overview is to highlight the multiple ways in which oxidative stress could be exacerbating muscle wasting. Understanding these interactions in vivo will assist in identifying opportunities for more targeted therapies to reduce skeletal muscle wasting. RECENT FINDINGS There are many excellent reviews describing how oxidative stress can damage cellular macromolecules, as well as cause deleterious effects through the modulation of signalling pathways. In this overview, we highlight the potential for complex and possibly paradoxical interactions in vivo. Signalling pathways are discussed, using examples involving nuclear factor-kappa B, apoptosis signal-regulating kinase 1 and Akt. Oxidative stress may also be involved in complex interactions with other factors capable of stimulating the loss of muscle mass, possibly through amplifying feedback cycles. This is discussed using examples related to calcium and tumour necrosis factor. SUMMARY There is convincing evidence that oxidative stress can increase protein catabolism. The challenge is to demonstrate that oxidative stress is a significant player in the complex interplay that leads to the in-vivo muscle wasting that is caused by a range of conditions and diseases.
Collapse
Affiliation(s)
- Peter G Arthur
- School of Biomedical, Biomolecular & Chemical Sciences, The University of Western Australia, Crawley, Australia.
| | | | | |
Collapse
|
17
|
Neumann S, Welling H, Bilzer T, Thuere S. Myopathy and alterations in serum 3-methylhistidine in dogs with liver disease. Res Vet Sci 2008; 84:178-84. [PMID: 17643456 DOI: 10.1016/j.rvsc.2007.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 03/01/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Liver disease can influence the metabolism of various other organs. Regarding the influence of liver diseases on muscles, only a few studies done on people exist. The goal of our study was to investigate the influence of liver diseases on muscles in dogs. Twenty-eight dogs with different liver diseases were investigated in this study. The diagnosis of muscle alteration was based on electromyography (EMG), creatine kinase serum activity, 3-methylhistidine serum concentration and a muscle biopsy in some cases. Our results suggest that liver diseases in dogs can be accompanied with muscle alteration. 3-Methylhistidine serum concentration as a new parameter for muscle destruction in dogs was significantly increased compared to clinical healthy dogs and was comparable to those concentrations in dogs with histologically confirmed myopathy of different types. The differentiation of the liver diseases into severe hepatitis, moderate hepatitis and liver tumours showed a significant elevation of 3-methylhistidine serum concentration in cases of liver tumours (P=0.03) and a tendency in cases of severe hepatitis (P=0.07). Based on our study we can conclude that liver diseases have an influence on muscles in dogs and 3-methylhistidine could be a useful parameter for muscle destruction.
Collapse
Affiliation(s)
- Stephan Neumann
- Institute of Veterinary Medicine, University of Goettingen, Burckhardtweg 2, D-37077, Goettingen, Germany.
| | | | | | | |
Collapse
|
18
|
Hasselgren PO. Ubiquitination, phosphorylation, and acetylation--triple threat in muscle wasting. J Cell Physiol 2007; 213:679-89. [PMID: 17657723 DOI: 10.1002/jcp.21190] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Loss of muscle mass is commonly seen in patients with critical illness and is associated with increased expression of multiple genes controlling protein breakdown. Transcription factors that are activated during muscle wasting include NF-kB and members of the FOXO and C/EBP transcription factor families. The activity of these transcription factors is regulated by multiple posttranslational modifications, including ubiquitination, phosphorylation, and acetylation, providing for a complex and integrated network of regulatory mechanisms in muscle wasting. Targeting posttranslational modifications of transcription factors may prove important in the prevention and treatment of the debilitating consequences of muscle wasting.
Collapse
Affiliation(s)
- Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
19
|
Nury D, Doucet C, Coux O. Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting. BMC BIOCHEMISTRY 2007; 8 Suppl 1:S7. [PMID: 18047744 PMCID: PMC2106371 DOI: 10.1186/1471-2091-8-s1-s7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle wasting, characterized by the loss of protein mass in myofibers, is in most cases largely due to the activation of intracellular protein degradation by the ubiquitin proteasome system (UPS). During the last decade, mechanisms contributing to this activation have been unraveled and key mediators of this process identified. Even though much remains to be understood, the available information already suggests screens for new compounds inhibiting these mechanisms and highlights the potential for pharmaceutical drugs able to treat muscle wasting when it becomes deleterious. This review presents an overview of the main pathways contributing to UPS activation in muscle and describes the present state of efforts made to develop new strategies aimed at blocking or slowing muscle wasting. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- David Nury
- CRBM-CNRS UMR5237, IFR22, 1919 route de Mende, 34000 Montpellier, France.
| | | | | |
Collapse
|
20
|
Métayer S, Seiliez I, Collin A, Duchêne S, Mercier Y, Geraert PA, Tesseraud S. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J Nutr Biochem 2007; 19:207-15. [PMID: 17707628 DOI: 10.1016/j.jnutbio.2007.05.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/05/2007] [Accepted: 05/02/2007] [Indexed: 01/20/2023]
Abstract
Amino acids regulate protein synthesis and breakdown (i.e., protein turnover) and consequently protein deposition, which corresponds to the balance between the two processes. Elucidating the mechanisms involved in such regulation is important from fundamental and applied points of view since it can provide a basis to optimize amino acid requirements and to control protein mass, body composition and so forth. Amino acids, which have long been considered simply as precursors of protein synthesis, are now recognized to exert other significant influences; that is, they are precursors of essential molecules, act as mediators or signal molecules and affect numerous functions. For example, amino acids act as mediators of metabolic pathways in the same manner as certain hormones. Thus, they modulate the activity of intracellular protein kinases involved in the regulation of metabolic pathways such as mRNA translation. We provide here an overview of the roles of amino acids as regulators of protein metabolism, by focusing particularly on sulfur amino acids. The potential importance of methionine as a "nutrient signal" is discussed in the light of recent findings. Emphasis is also placed on mechanisms controlling oxidative status since sulfur amino acids are involved in the synthesis of intracellular antioxidants (glutathione, taurine etc.) and in the methionine sulfoxide reductase antioxidant system.
Collapse
|
21
|
Tesseraud S, Métayer S, Duchêne S, Bigot K, Grizard J, Dupont J. Regulation of protein metabolism by insulin: value of different approaches and animal models. Domest Anim Endocrinol 2007; 33:123-42. [PMID: 16876379 DOI: 10.1016/j.domaniend.2006.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/09/2006] [Accepted: 06/09/2006] [Indexed: 01/06/2023]
Abstract
Insulin induces protein accretion by stimulating protein synthesis and inhibiting proteolysis. However, the mechanisms of regulation of protein metabolism by insulin are complex and still not completely understood. The use of approaches combining hyperinsulinemic clamp and isotopic methods, or measurement of the activation of intracellular kinases involved in insulin signaling, in addition to the use of different animal models in a comparative physiology process, provide better understanding of the potential regulation of protein metabolism by insulin. Studies using the clamp technique in lactating goats have shown a clear inhibitory effect of insulin on proteolysis, with an interaction between the effects of insulin and amino acids. Such studies revealed that the insulin-inhibited proteolysis is improved in lactating goats, this adaptative process limiting the mobilization of body protein under the conditions of amino acid deficit which occurs during early lactation. Insulin signaling studies in growing chickens have also provided some interesting features of insulin regulation compared to mammals. Refeeding or insulin injection leads to the activation of the early steps of insulin receptor signaling in the liver but not in the muscle. Muscle p70 S6 kinase, a kinase involved in the insulin activation of protein synthesis, was found to be markedly activated in response to insulin and to refeeding, suggesting that other signaling pathways than those classically described in mammalian muscles may be involved in signal transduction. Finally, although the role of insulin has been doubtful and has long been considered to be minor in ruminants and in avian species, this hormone clearly regulates protein metabolism in both species.
Collapse
|
22
|
Doucet M, Russell AP, Léger B, Debigaré R, Joanisse DR, Caron MA, LeBlanc P, Maltais F. Muscle Atrophy and Hypertrophy Signaling in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2007; 176:261-9. [PMID: 17478621 DOI: 10.1164/rccm.200605-704oc] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE The molecular mechanisms of muscle atrophy in chronic obstructive pulmonary disease (COPD) are poorly understood. In wasted animals, muscle mass is regulated by several AKT-related signaling pathways. OBJECTIVES To measure the protein expression of AKT, forkhead box class O (FoxO)-1 and -3, atrogin-1, the phosphophrylated form of AKT, p70(S6K) glycogen synthase kinase-3beta (GSK-3beta), eukaryotic translation initiation factor 4E binding protein-1 (4E-BP1), and the mRNA expression of atrogin-1, muscle ring finger (MuRF) protein 1, and FoxO-1 and -3 in the quadriceps of 12 patients with COPD with muscle atrophy and 10 healthy control subjects. Five patients with COPD with preserved muscle mass were subsequently recruited and were compared with six patients with low muscle mass. METHODS Protein contents and mRNA expression were measured by Western blot and quantitative polymerase chain reaction, respectively. MEASUREMENTS AND MAIN RESULTS The levels of atrogin-1 and MuRF1 mRNA, and of phosphorylated AKT and 4E-BP1 and FoxO-1 proteins, were increased in patients with COPD with muscle atrophy compared with healthy control subjects, whereas atrogin-1, p70(S6K), GSK-3beta, and FoxO-3 protein levels were similar. Patients with COPD with muscle atrophy showed an increased expression of p70(S6K), GSK-3beta, and 4E-BP1 compared with patients with COPD with preserved muscle mass. CONCLUSIONS An increase in atrogin-1 and MuRF1 mRNA and FoxO-1 protein content was observed in the quadriceps of patients with COPD. The transcriptional regulation of atrogin-1 and MuRF1 may occur via FoxO-1, but independently of AKT. The overexpression of the muscle hypertrophic signaling pathways found in patients with COPD with muscle atrophy could represent an attempt to restore muscle mass.
Collapse
Affiliation(s)
- Mariève Doucet
- Centre de Recherche de l'Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Laval, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tesseraud S, Métayer-Coustard S, Boussaid S, Crochet S, Audouin E, Derouet M, Seiliez I. Insulin and amino acid availability regulate atrogin-1 in avian QT6 cells. Biochem Biophys Res Commun 2007; 357:181-6. [PMID: 17418104 DOI: 10.1016/j.bbrc.2007.03.131] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 03/20/2007] [Indexed: 02/01/2023]
Abstract
New evidence has demonstrated that the expression of major genes, termed atrogenes, controls the ubiquitin-proteasome proteolytic pathway. The present work aimed to study the impact of insulin and amino acids on the expression of one of these atrogenes, the E3 ubiquitin ligase Muscle Atrophy F box (MAFbx, also called atrogin-1), in quail muscle (QT6) fibroblasts. First, we characterized atrogin-1 in QT6 cells and demonstrated the insulin sensitivity of these cells. Second, we showed that insulin reduced atrogin-1 mRNA via the phosphatidylinositol-3'kinase (PI3K)/protein kinase B (PKB or AKT)/target of rapamycin (TOR) pathway. Atrogin-1 expression also depended on the availability of an individual amino acid, i.e., methionine. Moreover, the amino acid-induced reduction of atrogin-1 was inhibited by rapamycin, indicating the involvement of the TOR pathway in such regulation. In conclusion, expression of the ubiquitin ligase atrogin-1 is regulated by both insulin and amino acids through the TOR pathway.
Collapse
|
24
|
FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension. BMC Musculoskelet Disord 2007; 8:32. [PMID: 17425786 PMCID: PMC1853093 DOI: 10.1186/1471-2474-8-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 04/10/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs) and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. METHODS We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. RESULTS We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. CONCLUSION These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight.
Collapse
|
25
|
Szewczyk NJ, Peterson BK, Barmada SJ, Parkinson LP, Jacobson LA. Opposed growth factor signals control protein degradation in muscles of Caenorhabditis elegans. EMBO J 2007; 26:935-43. [PMID: 17290229 PMCID: PMC1852841 DOI: 10.1038/sj.emboj.7601540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 12/10/2006] [Indexed: 02/06/2023] Open
Abstract
In addition to contractile function, muscle provides a metabolic buffer by degrading protein in times of organismal need. Protein is also degraded during adaptive muscle remodeling upon exercise, but extreme degradation in diverse clinical conditions can compromise function(s) and threaten life. Here, we show how two independent signals interact to control protein degradation. In striated muscles of Caenorhabditis elegans, reduction of insulin-like signaling via DAF-2 insulin/IGF receptor or its intramuscular effector PtdIns-3-kinase (PI3K) causes unexpected activation of MAP kinase (MAPK), consequent activation of pre-existing systems for protein degradation, and progressive impairment of mobility. Degradation is prevented by mutations that increase signal downstream of PI3K or by disruption of autocrine signal from fibroblast growth factor (FGF) via the FGF receptor and its effectors in the Ras-MAPK pathway. Thus, the activity of constitutive protein degradation systems in normal muscle is minimized by a balance between directly interacting signaling pathways, implying that physiological, pathological, or therapeutic alteration of this balance may contribute to muscle remodeling or wasting.
Collapse
Affiliation(s)
- Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brant K Peterson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sami J Barmada
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah P Parkinson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lewis A Jacobson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA. Tel.: +1 412 624 4647; Fax: +1 412 624 4759; E-mail:
| |
Collapse
|
26
|
Higashibata A, Szewczyk NJ, Conley CA, Imamizo-Sato M, Higashitani A, Ishioka N. Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight. J Exp Biol 2006; 209:3209-18. [PMID: 16888068 DOI: 10.1242/jeb.02365] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
SUMMARY
The molecular mechanisms underlying muscle atrophy during spaceflight are not well understood. We have analyzed the effects of a 10-day spaceflight on Caenorhabditis elegans muscle development. DNA microarray, real-time quantitative PCR, and quantitative western blot analyses revealed that the amount of MHC in both body-wall and pharyngeal muscle decrease in response to spaceflight. Decreased transcription of the body-wall myogenic transcription factor HLH-1 (CeMyoD) and of the three pharyngeal myogenic transcription factors, PEB-1, CEH-22 and PHA-4 were also observed. Upon return to Earth animals displayed reduced rates of movement, indicating a functional defect. These results demonstrate that C. elegans muscle development is altered in response to spaceflight. This altered development occurs at the level of gene transcription and was observed in the presence of innervation,not simply in isolated cells. This important finding coupled with past observations of decreased levels of the same myogenic transcription factions in vertebrates after spaceflight raises the possibility that altered muscle development is a contributing factor to spaceflight-induced muscle atrophy in vertebrates.
Collapse
Affiliation(s)
- Akira Higashibata
- Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | | | | | | | | | | |
Collapse
|