1
|
Coorssen JR, Padula MP. Proteomics-The State of the Field: The Definition and Analysis of Proteomes Should Be Based in Reality, Not Convenience. Proteomes 2024; 12:14. [PMID: 38651373 PMCID: PMC11036260 DOI: 10.3390/proteomes12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
With growing recognition and acknowledgement of the genuine complexity of proteomes, we are finally entering the post-proteogenomic era. Routine assessment of proteomes as inferred correlates of gene sequences (i.e., canonical 'proteins') cannot provide the necessary critical analysis of systems-level biology that is needed to understand underlying molecular mechanisms and pathways or identify the most selective biomarkers and therapeutic targets. These critical requirements demand the analysis of proteomes at the level of proteoforms/protein species, the actual active molecular players. Currently, only highly refined integrated or integrative top-down proteomics (iTDP) enables the analytical depth necessary to provide routine, comprehensive, and quantitative proteome assessments across the widest range of proteoforms inherent to native systems. Here we provide a broad perspective of the field, taking in historical and current realities, to establish a more balanced understanding of where the field has come from (in particular during the ten years since Proteomes was launched), current issues, and how things likely need to proceed if necessary deep proteome analyses are to succeed. We base this in our firm belief that the best proteomic analyses reflect, as closely as possible, the native sample at the moment of sampling. We also seek to emphasise that this and future analytical approaches are likely best based on the broad recognition and exploitation of the complementarity of currently successful approaches. This also emphasises the need to continuously evaluate and further optimize established approaches, to avoid complacency in thinking and expectations but also to promote the critical and careful development and introduction of new approaches, most notably those that address proteoforms. Above all, we wish to emphasise that a rigorous focus on analytical quality must override current thinking that largely values analytical speed; the latter would certainly be nice, if only proteoforms could thus be effectively, routinely, and quantitatively assessed. Alas, proteomes are composed of proteoforms, not molecular species that can be amplified or that directly mirror genes (i.e., 'canonical'). The problem is hard, and we must accept and address it as such, but the payoff in playing this longer game of rigorous deep proteome analyses is the promise of far more selective biomarkers, drug targets, and truly personalised or even individualised medicine.
Collapse
Affiliation(s)
- Jens R. Coorssen
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
- Institute for Globally Distributed Open Research and Education (IGDORE), St. Catharines, ON L2N 4X2, Canada
| | - Matthew P. Padula
- School of Life Sciences and Proteomics, Lipidomics and Metabolomics Core Facility, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Furber KL, Backlund PS, Yergey AL, Coorssen JR. Unbiased Thiol-Labeling and Top-Down Proteomic Analyses Implicate Multiple Proteins in the Late Steps of Regulated Secretion. Proteomes 2019; 7:proteomes7040034. [PMID: 31569819 PMCID: PMC6958363 DOI: 10.3390/proteomes7040034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Regulated exocytosis enables temporal and spatial control over the secretion of biologically active compounds; however, the mechanism by which Ca2+ modulates different stages of exocytosis is still poorly understood. For an unbiased, top-down proteomic approach, select thiol- reactive reagents were used to investigate this process in release-ready native secretory vesicles. We previously characterized a biphasic effect of these reagents on Ca2+-triggered exocytosis: low doses potentiated Ca2+ sensitivity, whereas high doses inhibited Ca2+ sensitivity and extent of vesicle fusion. Capitalizing on this novel potentiating effect, we have now identified fluorescent thiol- reactive reagents producing the same effects: Lucifer yellow iodoacetamide, monobromobimane, and dibromobimane. Top-down proteomic analyses of fluorescently labeled proteins from total and cholesterol-enriched vesicle membrane fractions using two-dimensional gel electrophoresis coupled with mass spectrometry identified several candidate targets, some of which have been previously linked to the late steps of regulated exocytosis and some of which are novel. Initial validation studies indicate that Rab proteins are involved in the modulation of Ca2+ sensitivity, and thus the efficiency of membrane fusion, which may, in part, be linked to their previously identified upstream roles in vesicle docking.
Collapse
Affiliation(s)
- Kendra L Furber
- Northern Medical Program, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada.
| | - Peter S Backlund
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alfred L Yergey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences and Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
3
|
Abbineni PS, Coorssen JR. Sphingolipids modulate docking, Ca 2+ sensitivity and membrane fusion of native cortical vesicles. Int J Biochem Cell Biol 2018; 104:43-54. [PMID: 30195064 DOI: 10.1016/j.biocel.2018.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 12/16/2022]
Abstract
Docking, priming, and membrane fusion of secretory vesicles (i.e. regulated exocytosis) requires lipids and proteins. Sphingolipids, in particular, sphingosine and sphingosine-1-phosphate, have been implicated in the modulation of exocytosis. However, the specific exocytotic steps that sphingolipids modulate and the enzymes that regulate sphingolipid concentrations on native secretory vesicle membranes remain unknown. Here we use tightly coupled functional and molecular analyses of fusion-ready cell surface complexes and cortical vesicles isolated from oocytes to assess the role of sphingolipids in the late, Ca2+-triggered steps of exocytosis. The molecular changes resulting from treatments with sphingolipid modifying compounds coupled with immunoblotting analysis revealed the presence of sphingosine kinase on native vesicles; the presence of a sphingosine-1-phosphate phosphatase is also indicated. Changes in sphingolipid concentrations on vesicles altered their docking/priming, Ca2+-sensitivity, and ability to fuse, indicating that sphingolipid concentrations are tightly regulated and maintained at optimal levels and ratios to ensure efficient exocytosis.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, and the WSU Molecular Medicine Research Group, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences, Department of Biology, Faculty of Mathematics and Science, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
4
|
Rogasevskaia TP, Coorssen JR. The Role of Phospholipase D in Regulated Exocytosis. J Biol Chem 2015; 290:28683-96. [PMID: 26433011 DOI: 10.1074/jbc.m115.681429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Indexed: 11/06/2022] Open
Abstract
There are a diversity of interpretations concerning the possible roles of phospholipase D and its biologically active product phosphatidic acid in the late, Ca(2+)-triggered steps of regulated exocytosis. To quantitatively address functional and molecular aspects of the involvement of phospholipase D-derived phosphatidic acid in regulated exocytosis, we used an array of phospholipase D inhibitors for ex vivo and in vitro treatments of sea urchin eggs and isolated cortices and cortical vesicles, respectively, to study late steps of exocytosis, including docking/priming and fusion. The experiments with fluorescent phosphatidylcholine reveal a low level of phospholipase D activity associated with cortical vesicles but a significantly higher activity on the plasma membrane. The effects of phospholipase D activity and its product phosphatidic acid on the Ca(2+) sensitivity and rate of fusion correlate with modulatory upstream roles in docking and priming rather than to direct effects on fusion per se.
Collapse
Affiliation(s)
| | - Jens R Coorssen
- Department of Molecular Physiology, School of Medicine and the Molecular Medicine Research Group, Western Sydney University, Penrith NSW 2751, Australia
| |
Collapse
|
5
|
Abbineni PS, Hibbert JE, Coorssen JR. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms. THE BIOLOGICAL BULLETIN 2013; 224:200-217. [PMID: 23995744 DOI: 10.1086/bblv224n3p200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulated exocytosis is one of the defining features of eukaryotic cells, underlying many conserved and essential functions. Definitively assigning specific roles to proteins and lipids in this fundamental mechanism is most effectively accomplished using a model system in which distinct stages of exocytosis can be effectively separated. Here we discuss the establishment of sea urchin cortical vesicle fusion as a model to study regulated exocytosis-a system in which the docked, release-ready, and late Ca(2+)-triggered steps of exocytosis are isolated and can be quantitatively assessed using the rigorous coupling of functional and molecular assays. We provide an overview of the insights this has provided into conserved molecular mechanisms and how these have led to and integrate with findings from other regulated exocytotic cells.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, School of Medicine, University of Western Sydney, NSW, Australia
| | | | | |
Collapse
|
6
|
Rogasevskaia TP, Churchward MA, Coorssen JR. Anionic lipids in Ca(2+)-triggered fusion. Cell Calcium 2012; 52:259-69. [PMID: 22516687 DOI: 10.1016/j.ceca.2012.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/20/2012] [Accepted: 03/25/2012] [Indexed: 01/30/2023]
Abstract
Anionic lipids are native membrane components that have a profound impact on many cellular processes, including regulated exocytosis. Nonetheless, the full nature of their contribution to the fast, Ca(2+)-triggered fusion pathway remains poorly defined. Here we utilize the tightly coupled quantitative molecular and functional analyses enabled by the cortical vesicle model system to elucidate the roles of specific anionic lipids in the docking, priming and fusion steps of regulated release. Studies with cholesterol sulfate established that effectively localized anionic lipids could contribute to Ca(2+)-sensing and even bind Ca(2+) directly as effectors of necessary membrane rearrangements. The data thus support a role for phosphatidylserine in Ca(2+) sensing. In contrast, phosphatidylinositol would appear to serve regulatory functions in the physiological fusion machine, contributing to priming and thus the modulation and tuning of the fusion process. We note the complexities associated with establishing the specific roles of (anionic) lipids in the native fusion mechanism, including their localization and interactions with other critical components that also remain to be more clearly and quantitatively defined.
Collapse
Affiliation(s)
- Tatiana P Rogasevskaia
- Department of Chemical & Biological Sciences, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6 Canada
| | | | | |
Collapse
|
7
|
Rogasevskaia TP, Coorssen JR. A new approach to the molecular analysis of docking, priming, and regulated membrane fusion. J Chem Biol 2011; 4:117-36. [PMID: 22315653 DOI: 10.1007/s12154-011-0056-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022] Open
Abstract
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca(2+)-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca(2+)-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.
Collapse
|
8
|
Fifadara NH, Beer F, Ono S, Ono SJ. Interaction between activated chemokine receptor 1 and FcepsilonRI at membrane rafts promotes communication and F-actin-rich cytoneme extensions between mast cells. Int Immunol 2010; 22:113-28. [PMID: 20173038 DOI: 10.1093/intimm/dxp118] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemokines play important regulatory roles in immunity, but their contributions to mast cell function remain poorly understood. We examined the effects of FcepsilonRI-chemokine receptor (CCR) 1 co-stimulation on receptor localization and cellular morphology of bone marrow-derived mast cells. Whereas FcepsilonRI and CCR1 co-localized at the plasma membrane in unsensitized cells, sensitization with IgE promoted internalization of CCR1 molecules. Co-stimulation of FcepsilonRI and CCR1 with antigen and macrophage inflammatory protein-1alpha was more effective than FcepsilonRI stimulation alone in causing leading edge formation, flattened morphology, membrane ruffles and ganglioside (GM1(+)) lipid mediator release. Co-stimulation resulted in phalloidin-positive cytoneme-like cellular extensions, also known as tunneling nanotubes, which originated at points of calcium accumulation. This is the first report of cytoneme formation by mast cells. To determine the importance of lipid rafts for mast cell function, the cells were cholesterol depleted. Cholesterol depletion enhanced degranulation in resting, sensitized and co-stimulated cells, but not in FcepsilonRI-cross-linked cells, and inhibited formation of filamentous actin(+) cytonemes but not GM1(+) cytonemes. Treatment with latrunculin A to sequester globular-actin abolished cytoneme formation. The cytonemes may participate in intercellular communication during allergic and inflammatory responses, and their presence in the co-stimulated mast cells suggests new roles for CCRs in immunopathology.
Collapse
Affiliation(s)
- Nimita H Fifadara
- Dobbs Ocular Immunology Laboratories, Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
10
|
Furber KL, Dean KT, Coorssen JR. Dissecting the mechanism of Ca2+-triggered membrane fusion: probing protein function using thiol reactivity. Clin Exp Pharmacol Physiol 2009; 37:208-17. [PMID: 19671061 DOI: 10.1111/j.1440-1681.2009.05278.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Ca(2+)-triggered membrane fusion involves the coordinated actions of both lipids and proteins, but the specific mechanisms remain poorly understood. The urchin cortical vesicle model is a stage-specific native preparation fully enabling the directly coupled functional-molecular analyses necessary to identify critical components of fast triggered membrane fusion. 2. Recent work on lipidic components has established a direct role for cholesterol in the fusion mechanism via local contribution of negative curvature to readily enable the formation of transient lipidic fusion intermediates. In addition, cholesterol- and sphingomyelin-enriched domains regulate the efficiency of fusion by focally organizing other components to ensure an optimized response to the triggering Ca(2+) transient. 3. There is less known about the identity of proteins involved in the Ca(2+)-triggering steps of membrane fusion. Thiol reagents can be used as unbiased tools to probe protein functions. Comparisons of several thiol-reactive reagents have identified different effects on Ca(2+) sensitivity and the extent of fusion, suggesting that there are at least two distinct thiol sites that participate in the fusion mechanism: one that regulates the efficiency of Ca(2+) sensing/triggering and one that may function during the membrane merger event itself. 4. To identify the proteins that regulate Ca(2+) sensitivity, the fluorescent thiol reagent Lucifer yellow iodoacetamide was used to potentiate fusion and simultaneously tag the proteins involved. Ongoing work involves the isolation of cholesterol-enriched membrane fractions to reduce the complexity of the labelled proteome, narrowing the number of candidate proteins.
Collapse
Affiliation(s)
- Kendra L Furber
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
11
|
Furber KL, Brandman DM, Coorssen JR. Enhancement of the Ca(2+)-triggering steps of native membrane fusion via thiol-reactivity. J Chem Biol 2008; 2:27-37. [PMID: 19568790 DOI: 10.1007/s12154-008-0013-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 09/17/2008] [Indexed: 12/01/2022] Open
Abstract
Ca(2+)-triggered membrane fusion is the defining step of exocytosis. Isolated urchin cortical vesicles (CV) provide a stage-specific preparation to study the mechanisms by which Ca(2+) triggers the merger of two apposed native membranes. Thiol-reactive reagents that alkylate free sulfhydryl groups on proteins have been consistently shown to inhibit triggered fusion. Here, we characterize a novel effect of the alkylating reagent iodoacetamide (IA). IA was found to enhance the kinetics and Ca(2+) sensitivity of both CV-plasma membrane and CV-CV fusion. If Sr(2+), a weak Ca(2+) mimetic, was used to trigger fusion, the potentiation was even greater than that observed for Ca(2+), suggesting that IA acts at the Ca(2+)-sensing step of triggered fusion. Comparison of IA to other reagents indicates that there are at least two distinct thiol sites involved in the underlying fusion mechanism: one that regulates the efficiency of fusion and one that interferes with fusion competency.
Collapse
Affiliation(s)
- Kendra L Furber
- Department of Physiology and Biophysics, University of Calgary Faculty of Medicine, Calgary, AB, T2N 4N1, Canada
| | | | | |
Collapse
|
12
|
Copper (II) sulfate charring for high sensitivity on-plate fluorescent detection of lipids and sterols: quantitative analyses of the composition of functional secretory vesicles. J Chem Biol 2008; 1:79-87. [PMID: 19568800 DOI: 10.1007/s12154-008-0007-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/20/2008] [Accepted: 05/23/2008] [Indexed: 10/21/2022] Open
Abstract
A wide range of methods exist for the on-plate detection of lipids resolved by thin layer chromatography. Fluorescence generally offers improvements in sensitivity over methods that use colorimetric or simple densitometric detection. In this paper, we report that a classic cupric sulfate charring protocol produces a fluorescent signal that sensitively and quantitatively detects a wide range of phospholipids, neutral lipids, and sterols after automated, multi-development high performance thin layer chromatography. The measured lower limits of detection and quantification, respectively, were, on average, 80 and 210 pmol for phospholipids and 43 fmol and 8.7 pmol for sterols. The simple, inexpensive, and highly sensitive approach described here was used to quantitatively analyze the lipid and sterol composition of sea urchin cortical vesicles, a stage-specific model system used to study the mechanism of regulated membrane fusion.
Collapse
|
13
|
Specific lipids supply critical negative spontaneous curvature--an essential component of native Ca2+-triggered membrane fusion. Biophys J 2008; 94:3976-86. [PMID: 18227127 DOI: 10.1529/biophysj.107.123984] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ca(2+)-triggered merger of two apposed membranes is the defining step of regulated exocytosis. CHOL is required at critical levels in secretory vesicle membranes to enable efficient, native membrane fusion: CHOL-sphingomyelin enriched microdomains organize the site and regulate fusion efficiency, and CHOL directly supports the capacity for membrane merger by virtue of its negative spontaneous curvature. Specific, structurally dissimilar lipids substitute for CHOL in supporting the ability of vesicles to fuse: diacylglycerol, alphaT, and phosphatidylethanolamine support triggered fusion in CHOL-depleted vesicles, and this correlates quantitatively with the amount of curvature each imparts to the membrane. Lipids of lesser negative curvature than cholesterol do not support fusion. The fundamental mechanism of regulated bilayer merger requires not only a defined amount of membrane-negative curvature, but this curvature must be provided by molecules having a specific, critical spontaneous curvature. Such a local lipid composition is energetically favorable, ensuring the necessary "spontaneous" lipid rearrangements that must occur during native membrane fusion-Ca(2+)-triggered fusion pore formation and expansion. Thus, different fusion sites or vesicle types can use specific alternate lipidic components, or combinations thereof, to facilitate and modulate the fusion pore.
Collapse
|