1
|
Alic L, Dendinovic K, Papac-Milicevic N. The complement system in lipid-mediated pathologies. Front Immunol 2024; 15:1511886. [PMID: 39635529 PMCID: PMC11614835 DOI: 10.3389/fimmu.2024.1511886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The complement system, a coordinator and facilitator of the innate immune response, plays an essential role in maintaining host homeostasis. It promotes clearance of pathogen- and danger-associated molecular patterns, regulates adaptive immunity, and can modify various metabolic processes such as energy expenditure, lipid metabolism, and glucose homeostasis. In this review, we will focus on the intricate interplay between complement components and lipid metabolism. More precisely, we will display how alterations in the activation and regulation of the complement system affect pathological outcome in lipid-associated diseases, such as atherosclerosis, obesity, metabolic syndrome, age-related macular degeneration, and metabolic dysfunction-associated steatotic liver disease. In addition to that, we will present and evaluate underlying complement-mediated physiological mechanisms, observed both in vitro and in vivo. Our manuscript will demonstrate the clinical significance of the complement system as a bridging figure between innate immunity and lipid homeostasis.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Kristina Dendinovic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Devi NN, Sapana Devi M, Thounaojam RS, Singh KB, Singh TB, Chanu LB, Gupta A. Toxic effects of chlorpyrifos on biochemical composition, enzyme activity and gill surface ultrastructure of three species of small fishes from India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35498-7. [PMID: 39547993 DOI: 10.1007/s11356-024-35498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
The effects of chlorpyrifos, a frequently detected organophosphate in aquatic ecosystems, on biochemical (protein and glycogen) contents and oxidative enzyme activities (catalase and lipid peroxidation) in liver, muscle and gill tissues of three freshwater fish Trichogaster fasciata, Mystus vittatus and Heteropneustes fossilis were evaluated after 21-day exposure to 1 and 10% of 96 h LC50 of this pesticide, which were 1.63 and 16.3 µg L-1; 5.87 and 58.7 µg L-1 and 2.12 and 21.2 µg L-1, respectively. On comparing with control, significant reductions in protein concentration were found in liver, muscle and gill of the three fishes treated with both higher as well as lower concentrations of the pesticide except in gill of M. vittatus and liver of H. fossilis treated with the lower concentrations. Glycogen content reductions were significant in the liver and muscle of the fishes, as well as gill tissue of T. fasciata treated with the two pesticide concentrations. Significant elevations of catalase activity were found in liver of the three fishes treated with the higher concentrations, in muscle tissues of both T. fasciata and M. vittatus treated with both the concentrations and in gills of the three fishes except H. fossilis treated with the lower concentration of the pesticide. Significant elevations of lipid peroxidation level were also found in liver of all the three fish species treated with the higher concentrations, in the muscle tissue of M. vittatus as well as in the gill of T. fasciata and H. fossilis treated with both the concentrations of the pesticide. Chlorpyrifos exposed gill ultrastructure of T. fasciata, M. vittatus and H. fossilis revealed concentration-dependent effects of the pesticide on gill surface ultrastructure which include distortion of primary and secondary lamellae, deterioration of pavement cell and microridge structures, extrusion of red blood cells (RBCs), secretion of mucous layer on filament, sloughing of primary lamellae and clumping of secondary lamellae. The present study parameters could serve as useful biomarkers for evaluating the risk of pesticide toxicity to fish. These findings also point out the possible health risks to the consumers of these fish captured from contaminated water bodies.
Collapse
Affiliation(s)
| | - Maisnam Sapana Devi
- Department of Environmental Science, Thambal Marik College, Oinam, 795134, Manipur, India.
| | | | | | | | - Laitonjam Bedabati Chanu
- Department of Environmental Science, Ng. Mani College, Khurai Chairenthong, Imphal East, 795010, Manipur, India
| | - Abhik Gupta
- Department of Ecology & Environmental Science, Assam University, Silchar, 788011, Assam, India
| |
Collapse
|
3
|
Arbatskiy M, Balandin D, Akberdin I, Churov A. A Systems Biology Approach Towards a Comprehensive Understanding of Ferroptosis. Int J Mol Sci 2024; 25:11782. [PMID: 39519341 PMCID: PMC11546516 DOI: 10.3390/ijms252111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis is a regulated cell death process characterized by iron ion catalysis and reactive oxygen species, leading to lipid peroxidation. This mechanism plays a crucial role in age-related diseases, including cancer and cardiovascular and neurological disorders. To better mimic iron-induced cell death, predict the effects of various elements, and identify drugs capable of regulating ferroptosis, it is essential to develop precise models of this process. Such drugs can be tested on cellular models. Systems biology offers a powerful approach to studying biological processes through modeling, which involves accumulating and analyzing comprehensive research data. Once a model is created, it allows for examining the system's response to various stimuli. Our goal is to develop a modular framework for ferroptosis, enabling the prediction and screening of compounds with geroprotective and antiferroptotic effects. For modeling and analysis, we utilized BioUML (Biological Universal Modeling Language), which supports key standards in systems biology, modular and visual modeling, rapid simulation, parameter estimation, and a variety of numerical methods. This combination fulfills the requirements for modeling complex biological systems. The integrated modular model was validated on diverse datasets, including original experimental data. This framework encompasses essential molecular genetic processes such as the Fenton reaction, iron metabolism, lipid synthesis, and the antioxidant system. We identified structural relationships between molecular agents within each module and compared them to our proposed system for regulating the initiation and progression of ferroptosis. Our research highlights that no current models comprehensively cover all regulatory mechanisms of ferroptosis. By integrating data on ferroptosis modules into an integrated modular model, we can enhance our understanding of its mechanisms and assist in the discovery of new treatment targets for age-related diseases. A computational model of ferroptosis was developed based on a modular modeling approach and included 73 differential equations and 93 species.
Collapse
Affiliation(s)
- Mikhail Arbatskiy
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| | - Dmitriy Balandin
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| | - Ilya Akberdin
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Alexey Churov
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| |
Collapse
|
4
|
Brinholi FF, Vasupanrajit A, Semeão LDO, Michelin AP, Matsumoto AK, Almulla AF, Tunvirachaisakul C, Barbosa DS, Maes M. Increased malondialdehyde and nitric oxide formation, lowered total radical trapping capacity coupled with psychological stressors are strongly associated with the phenome of first-episode mild depression in undergraduate students. Neuroscience 2024; 554:52-62. [PMID: 38992564 DOI: 10.1016/j.neuroscience.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Undergraduate students are frequently afflicted by major depressive disorder (MDD). Oxidative and nitrosative stress (O&NS) has been implicated in the pathophysiology of MDD. There is no information regarding whether mild outpatient MDD (SDMD) and first episode SDMD (FE-SDMD) are accompanied by O&NS. The current study compared lipid hydroperoxides (LOOH), malondialdehyde (MDA), advanced protein oxidation products, nitric oxide metabolites (NOx), thiol groups, plasma total antioxidant potential (TRAP), and paraoxonase 1 activities among SDMD and FE-SDMD patients versus healthy controls. We found that SDMD and FE-SDMD exhibit elevated MDA and NOx, and decreased TRAP and LOOH as compared with controls. There was a significant and positive correlation between O&NS biomarkers and adverse childhood experiences (ACEs), and negative life events (NLEs). O&NS pathways, NLEs and ACEs accounted for 51.7 % of the variance in the phenome of depression, and O&NS and NLS explained 42.9 % of the variance in brooding. Overall, these results indicate that SDMD and FE-SDMD are characterized by reduced total antioxidant defenses and increased aldehyde and NOx production. The combined effects of oxidative and psychological stressors are substantially associated with the manifestation of SDMD.
Collapse
Affiliation(s)
- Francis F Brinholi
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Laura de O Semeão
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ana Paula Michelin
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Andressa K Matsumoto
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Décio S Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Research and Innovation Program for the Development of MU - PLOVDIV- (SRIPD-MUP), Creation of a network of research higher schools, National plan for recovery and sustainability, European Union - NextGenerationEU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
5
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
6
|
Zhou D, Qiu S, Li M, Shan W, Chen Z, Wu Z, Ge S. Physiological responses and molecular mechanism of Chlorella sorokiniana to surgical mask exudates in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132891. [PMID: 37939560 DOI: 10.1016/j.jhazmat.2023.132891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Microalgae-based bioremediation is likely to be challenged by the microplastics (MPs) in wastewater induced by the widely use of surgical masks (SMs) during COVID-19. However, such toxic impact was generally evaluated under high exposure concentrations of MPs, which was not in agreement with the actual wastewater environments. Therefore, this study investigated the microalgal cellular responses to the surgical mask exudates (SMEs) in wastewater and explored the underlying inhibitory mechanism from the molecular perspective. Specifically, 390 items/L SMEs (including 200 items/L MPs which was the actual MP level in wastewater) significantly inhibited nutrient uptake and photosynthetic activities interrupted peroxisome biogenesis and induced oxidative stress which destroyed the structure of cell membrane. Moreover, the SMEs exposure also affected carbon fixation pathways, suppressed ABC transporters while promoted oxidative phosphorylation processes for the ATP accumulation These comprehensive processes led to an 8.5% reduced microalgae growth and variations of cellular biocomponents including lipid, carbohydrate, and protein. The increased carotenoids and consumed unsaturated fatty acid were considered to alleviate the SMEs-induced stress, and the enhanced EPS secretion facilitated the homogeneous aggregation. These findings will enhance current understandings of the SMEs effects in wastewater on microalgae and further improve the practical relevance of microalgae wastewater bioremediation technology.
Collapse
Affiliation(s)
- Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Wenju Shan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
7
|
Chakraborty N, Mitra R, Dasgupta D, Ganguly R, Acharya K, Minkina T, Popova V, Churyukina E, Keswani C. Unraveling lipid peroxidation-mediated regulation of redox homeostasis for sustaining plant health. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108272. [PMID: 38100892 DOI: 10.1016/j.plaphy.2023.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Lipid peroxidation (LPO) is a complex process that, depending on the context, can either result in oxidative injury or promote redox homeostasis. LPO is a series of reactions in which polyunsaturated fatty acids are attacked by free radicals that result in the synthesis of lipid peroxides. LPO can alter membrane fluidity and operation and produce secondary products that amplify oxidative stress. LPO can activate cellular signaling pathways that promote antioxidant defense mechanisms that provide oxidative stress protection by elevating antioxidant enzyme action potentials. Enzymatic and nonenzymatic mechanisms tightly regulate LPO to prevent excessive LPO and its adverse consequences. This article emphasizes the dual nature of LPO as a mechanism that can both damage cells and regulate redox homeostasis. In addition, it also highlights the major enzymatic and nonenzymatic mechanisms that tightly regulate LPO to prevent excessive oxidative damage. More importantly, it emphasizes the importance of understanding the cellular and biochemical complexity of LPO for developing strategies targeting this process for efficient management of plant stress.
Collapse
Affiliation(s)
- Nilanjan Chakraborty
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Rusha Mitra
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Disha Dasgupta
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Retwika Ganguly
- Department of Botany, Scottish Church College (affiliated to University of Calcutta), Kolkata, 700006, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344000, Russia
| | - Victoria Popova
- Rostov Research Institute of Obstetrics and Pediatrics, Rostov-on-Don, 344012, Russia
| | - Ella Churyukina
- Rostov State Medical University, Rostov-on-Don, 344000, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344000, Russia.
| |
Collapse
|
8
|
Guo M, Wang Z, Gao Z, Ma J, Huangfu W, Niu J, Liu B, Li D, Zhu X, Sun H, Ma S, Shi Y. Alfalfa leaf meal as a new protein feedstuff improves meat quality by modulating lipid metabolism and antioxidant capacity of finishing pigs. Food Chem X 2023; 19:100815. [PMID: 37780297 PMCID: PMC10534147 DOI: 10.1016/j.fochx.2023.100815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 10/03/2023] Open
Abstract
The effects of alfalfa leaf meal (ALM) on the meat quality of finishing pigs are largely unknown. Here, we investigated the effects of ALM diet on meat quality by replacing 0%, 25%, 50%, and 75% of soybean meal in the diet of finishing pigs, respectively. The findings showed that 25% ALM diet increased the IMF, cooked meat rate, a* and antioxidant capacity of longissimus dorsi (LD), improved amino acid composition, increased MUFA content, and increased LD lipid synthesis and mRNA expression of antioxidation-related genes. At the same time, ALM diet altered serum lipid metabolism (TG, FFA). Correlation analysis showed that antioxidant capacity was positively correlated with meat quality. In addition, metabolomic analysis of LD showed that the main metabolites of 25% ALM diet altered stachydrine and l-carnitine were associated with meat quality and antioxidant capacity. In conclusion, ALM replacing 25% soybean meal diet can improve the meat quality of pigs.
Collapse
Affiliation(s)
- Ming Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhichang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Zimin Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jixiang Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Weikang Huangfu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jiakuan Niu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Boshuai Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Xiaoyan Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Hao Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, Henan 450002, China
- Henan Herbage Engineering Technology Research Center, Zhengzhou, Henan 450002, China
| |
Collapse
|
9
|
Popoola OK, Marnewick JL, Iwuoha EI, Hussein AA. Methoxylated Flavonols and ent-Kaurane Diterpenes from the South African Helichrysum rutilans and Their Cosmetic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2870. [PMID: 37571023 PMCID: PMC10421400 DOI: 10.3390/plants12152870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Chromatographic fractionation of a methanol extract of Helichrysum rutilans afforded seven known compounds. The isolated compounds were identified as 5,7,8-trihydroxy-3,6-dimethoxyflavone-8-O-2-methyl-2-butanoate (C-1), 5,7-dihydroxy-3,6,8-trimethoxyflavone (C-2), 5-hydroxy-3,6,7,8-tetramethoxyflavone (C-3), 5-hydroxy-3,6,7-trimethoxyflavone (C-4), ent-kaurenoic acid (C-5), ent-kauran-18-al (C-6), and 15-α-hydroxy-(-)-ent-kaur-16-en-19-oic acid (C-7). Compounds C-1-C-4 demonstrated high antioxidant capacities on ORAC hydroxyl radical (2.114 ± 4.01; 2.413 ± 6.20; 1.924 ± 16.40; 1.917 ± 3.91) × 106; ORAC peroxyl radical (3.523 ± 3.22; 2.935 ± 0.13; 2.431 ± 8.63; 2.814 ± 5.20) × 103 µMTE/g; and FRAP (1251.45 ± 4.18; 1402.62 ± 5.77) µMAAE/g, respectively. Moderate inhibitory activities against Fe2+-induced lipid peroxidation were observed for C-1-C-4 as IC50 values of 13.123 ± 0.34, 16.421 ± 0.92, 11.64 ± 1.72, 14.90 ± 0.06 µg/mL, respectively, while their respective anti-tyrosinase activities with IC50 values of 25.735 ± 9.62, 24.062 ± 0.61, 39.03 ± 13.12, 37.67 ± 0.98 µg/mL were also observed. All compounds demonstrated TEAC values within the range of 1105-1424 µMTE/g. The result is an indication that a methanol extract of H. rutilans might possibly be a good source of natural antioxidants against ailments caused by cellular oxidative stress and as inhibitors against skin depigmentation, as well as possible raw materials needed for slowing down perishable agricultural products. This is the first report on the phytochemical and biological evaluation of H. rutilans.
Collapse
Affiliation(s)
- Olugbenga K. Popoola
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Emmanuel I. Iwuoha
- Chemistry Department, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa;
| |
Collapse
|
10
|
Mortensen MS, Ruiz J, Watts JL. Polyunsaturated Fatty Acids Drive Lipid Peroxidation during Ferroptosis. Cells 2023; 12:804. [PMID: 36899940 PMCID: PMC10001165 DOI: 10.3390/cells12050804] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ferroptosis is a form of regulated cell death that is intricately linked to cellular metabolism. In the forefront of research on ferroptosis, the peroxidation of polyunsaturated fatty acids has emerged as a key driver of oxidative damage to cellular membranes leading to cell death. Here, we review the involvement of polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), lipid remodeling enzymes and lipid peroxidation in ferroptosis, highlighting studies revealing how using the multicellular model organism Caenorhabditis elegans contributes to the understanding of the roles of specific lipids and lipid mediators in ferroptosis.
Collapse
Affiliation(s)
| | | | - Jennifer L. Watts
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
12
|
Yapca OE, Yildiz GA, Mammadov R, Kurt N, Gundogdu B, Arslan YK, Suleyman H, Cetin N. The effects of metyrosine on ischemia-reperfusion-induced oxidative ovarian injury in rats: Biochemical and histopathological assessment. AN ACAD BRAS CIENC 2023; 95:e20201586. [PMID: 37018835 DOI: 10.1590/0001-3765202320201586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/08/2020] [Indexed: 04/07/2023] Open
Abstract
The aim of this study is to investigate the effect of metyrosine on ischemia-reperfusion (I/R) induced ovarian injury in rats in terms of biochemistry and histopathology. Rats were divided into: ovarian I/R (OIR), ovarian I/R+50 mg/kg metyrosine (OIRM) and sham (SG) operations. OIRM group received 50 mg/kg metyrosine one hour before the application of the anesthetic agent, OIR and SG group rats received equal amount of distilled water to be used as a solvent orally through cannula. Following the application of the anesthetic agent, ovaries of OIRM and OIR group rats were subjected to ischemia and reperfusion, each of which took two hours. This biochemical experiment findings revealed high levels of malondialdehyde (MDA) and cyclo-oxygenase-2 (COX-2) and low levels of total glutathione (tGSH), superoxide dismutase (SOD) and cyclo-oxygenase-1 (COX-1) in the ovarian tissue of OIR group, with significant histopathological injury. In metyrosine group, MDA and COX-2 levels were lower than the OIR group whereas tGSH, SOD and COX-1 levels were higher, with slighter histopathological injury. Our experimental findings indicate that metyrosine inhibits oxidative and pro-inflammatory damage associated with ovarian I/R in rats. These findings suggest that metyrosine could be useful in the treatment of ovarian injury associated with I/R.
Collapse
Affiliation(s)
- Omer E Yapca
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Gulsah A Yildiz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Renad Mammadov
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Betul Gundogdu
- Department of Pathology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Yusuf K Arslan
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Nihal Cetin
- Department of Pharmacology, Faculty of Medicine, Selcuk University, 42131, Konya, Turkey
| |
Collapse
|
13
|
Mardones JI, Flores-Leñero A, Pinto-Torres M, Paredes-Mella J, Fuentes-Alburquenque S. Mitigation of Marine Dinoflagellates Using Hydrogen Peroxide (H 2O 2) Increases Toxicity towards Epithelial Gill Cells. Microorganisms 2022; 11:microorganisms11010083. [PMID: 36677374 PMCID: PMC9864867 DOI: 10.3390/microorganisms11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Hydrogen peroxide (H2O2) has been shown to efficiently remove toxic microalgae from enclosed ballast waters and brackish lakes. In this study, in vitro experiments were conducted to assess the side effects of mitigating toxic and non-toxic dinoflagellates with H2O2. Five H2O2 concentrations (50 to 1000 ppm) were used to control the cell abundances of the toxic dinoflagellates Alexandrium catenella and Karenia selliformis and the non-toxic dinoflagellates Lepidodinium chlorophorum and Prorocentrum micans. Photosynthetic efficiency and staining dye measurements showed the high efficiency of H2O2 for mitigating all dinoflagellate species at only 50 ppm. In a bioassay carried out to test cytotoxicity using the cell line RTgill-W1, control experiments (only H2O2) showed cytotoxicity in a concentration- and time- (0 to 24 h) dependent manner. The toxic dinoflagellates, especially K. selliformis, showed basal cytotoxicity that increased with the application of hydrogen peroxide. Unexpectedly, the application of a low H2O2 concentration increased toxicity, even when mitigating non-toxic dinoflagellates. This study suggests that the fatty acid composition of toxic and non-toxic dinoflagellate species can yield toxic aldehyde cocktails after lipoperoxidation with H2O2 that can persist in water for days with different half-lives. Further studies are needed to understand the role of lipoperoxidation products as acute mediators of disease and death in aquatic environments.
Collapse
Affiliation(s)
- Jorge I. Mardones
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt 5501679, Chile
- CAICAI Foundation, Puerto Varas 5550000, Chile
- Centro de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5110566, Chile
- Correspondence:
| | - Ana Flores-Leñero
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt 5501679, Chile
| | - Marco Pinto-Torres
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt 5501679, Chile
| | - Javier Paredes-Mella
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt 5501679, Chile
- CAICAI Foundation, Puerto Varas 5550000, Chile
| | - Sebastián Fuentes-Alburquenque
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
- Departamento de Matemáticas y Ciencias de la Ingeniería, Facultad de Ingeniería Ciencia y Tecnología, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| |
Collapse
|
14
|
Stancic A, Velickovic K, Markelic M, Grigorov I, Saksida T, Savic N, Vucetic M, Martinovic V, Ivanovic A, Otasevic V. Involvement of Ferroptosis in Diabetes-Induced Liver Pathology. Int J Mol Sci 2022; 23:ijms23169309. [PMID: 36012572 PMCID: PMC9409200 DOI: 10.3390/ijms23169309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cell death plays an important role in diabetes-induced liver dysfunction. Ferroptosis is a newly defined regulated cell death caused by iron-dependent lipid peroxidation. Our previous studies have shown that high glucose and streptozotocin (STZ) cause β-cell death through ferroptosis and that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, improves β-cell viability, islet morphology, and function. This study was aimed to examine in vivo the involvement of ferroptosis in diabetes-related pathological changes in the liver. For this purpose, male C57BL/6 mice, in which diabetes was induced with STZ (40 mg/kg/5 consecutive days), were treated with Fer-1 (1 mg/kg, from day 1–21 day). It was found that in diabetic mice Fer-1 improved serum levels of ALT and triglycerides and decreased liver fibrosis, hepatocytes size, and binucleation. This improvement was due to the Fer-1-induced attenuation of ferroptotic events in the liver of diabetic mice, such as accumulation of pro-oxidative parameters (iron, lipofuscin, 4-HNE), decrease in expression level/activity of antioxidative defense-related molecules (GPX4, Nrf2, xCT, GSH, GCL, HO-1, SOD), and HMGB1 translocation from nucleus into cytosol. We concluded that ferroptosis contributes to diabetes-related pathological changes in the liver and that the targeting of ferroptosis represents a promising approach in the management of diabetes-induced liver injury.
Collapse
Affiliation(s)
- Ana Stancic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
- Correspondence: (A.S.); (V.O.); Tel.: +381-11-207-8430 (A.S. & V.O.); Fax: +381-11-276-1433 (A.S. & V.O.)
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, 11060 Belgrade, Serbia
| | - Milica Markelic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade, 11060 Belgrade, Serbia
| | - Ilijana Grigorov
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Nevena Savic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Milica Vucetic
- Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
| | - Vesna Martinovic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Andjelija Ivanovic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Vesna Otasevic
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
- Correspondence: (A.S.); (V.O.); Tel.: +381-11-207-8430 (A.S. & V.O.); Fax: +381-11-276-1433 (A.S. & V.O.)
| |
Collapse
|
15
|
Torres-Rêgo M, Aquino-Vital AKSD, Cavalcanti FF, Rocha EEA, Daniele-Silva A, Furtado AA, Silva DPD, Ururahy MAG, Silveira ER, Fernandes-Pedrosa MDF, Araújo RM. Phytochemical analysis and preclinical toxicological, antioxidant, and anti-inflammatory evaluation of hydroethanol extract from the roots of Harpalyce brasiliana Benth (Leguminosae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115364. [PMID: 35551979 DOI: 10.1016/j.jep.2022.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Harpalyce brasiliana Benth (Leguminosae) is a shrub endemic to Brazil, popularly known as "snake's root." This species is used in folk medicine for the treatment of inflammation and snakebites. However, up to now there is no scientific research to justify its popular use. The study aimed to characterize the phytochemical profile of the hydroethanol extract from the roots of H. brasiliana (Hb), to evaluate its antioxidant and anti-inflammatory potential, as well as to investigate its cytotoxicity and acute toxicity. MATERIALS AND METHODS The extract was obtained by maceration method using a solution of ethanol:water (70: 30, v/v). The phytochemical profile was obtained by liquid chromatography coupled to mass spectrometry. The cytotoxicity of extract (31-2000 μg/mL) was evaluated in vitro, by the 3-methyl-[4-5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method using murine macrophage and fibroblast cell lines (RAW 247.6 and 3T3, respectively) and by the hemolytic assay. For the in vivo acute toxicity, the extract (2000 mg/kg) was administered and after 14 days the weight (body and organs) and hematological and biochemical parameters were analyzed. Chemical free radical scavenging effect of the extract (125-2000 μg/mL) was investigated through diphenylpicryl hydrazine reduction, total antioxidant capacity, reducing power, hydroxyl radical scavenging, and iron and copper chelating assays. In vitro anti-inflammatory effect of the extract (125, 500, and 2000 μg/mL) was demonstrated through of nitric oxide (NO) analyzed in lipopolysaccharides stimulated RAW 264.7 cells. In vivo anti-inflammatory activities were evaluated in carrageenan-induced paw edema and zymosan-air-pouch models, with gavage administration (post-treatment) of extract at 100, 200, and 400 mg/kg. For the first animal model, the anti-edematogenic activity and myeloperoxidase (MPO) levels were investigated, while in the zymosan-air-pouch model the leukocyte number, MPO, total protein and pro-inflammatory cytokine (IL-1β, IL-6, and TNF-α) levels were quantified. In addition, the oxidative parameters such as malondialdehyde (MDA) and reduced glutathione (GSH) were determined. RESULTS The phytochemical profile revealed the presence of 20 compounds, mainly prenylated and geranylated pterocarpans. The extract demonstrated no cytotoxicity in erythrocytes, macrophages and fibroblasts cells at the tested concentrations, as well as no sign of toxicity and mortality or significant alterations on the hematological and biochemical parameters in the acute toxicity model. The extract was also able to neutralize chemical free radicals, with copper and iron chelating effect. For the NO dosage, the extract evidenced the reduction of expression of NO after the administration of the extract (500 and 2000 μg/mL). The edematogenic model revealed a decrease in paw edema and MPO level, while the zymosan-air-pouch model evidenced a reduction of leukocyte number (especially of polymorphornuclears), MPO production, and total protein and cytokine levels, and demonstrated the antioxidant effect through a decrease in MDA and increase in GSH parameters. CONCLUSION This approach demonstrates for the first time that Hb is not cytotoxic, has low acute toxicity, and possesses antioxidant and anti-inflammatory properties in preclinical analyses, corroborating its popular use.
Collapse
Affiliation(s)
- Manoela Torres-Rêgo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Ana Karoline Silva de Aquino-Vital
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Felipe França Cavalcanti
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Enos Emanuel Azevedo Rocha
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Marcela Abbott Galvão Ururahy
- Department of Clinical Analysis and Toxicology, College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Edilberto Rocha Silveira
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Humberto Monte Street, S/N, Campus Pici, Pici, Fortaleza, 60021-970, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Street, S/N, Petrópolis, Natal, 59012-570, Brazil.
| | - Renata Mendonça Araújo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal, 59072-970, Brazil.
| |
Collapse
|
16
|
Gültiken N, Gürler H, Yarım GF, Binli F, Tuncay M, Büyükbudak F, Gökçeoğlu A, Anadol E. Antioxidant and analgesic potential of butorphanol in dogs undergoing ovariohysterectomy. Theriogenology 2022; 190:1-7. [PMID: 35849850 DOI: 10.1016/j.theriogenology.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
The aim of this study was to evaluate the postoperative analgesic and antioxidant effects of butorphanol given in the preoperative or early postoperative period. Twenty-seven healthy female dogs undergoing ovariohysterectomy were randomly divided into three groups as before surgery group (BSG, n = 7) received butorphanol 30 min before preanesthetic administration, after surgery group (ASG, n = 10) received butorphanol during the last skin suture and the control group (CG, n = 10) received no butorphanol. Pain was assessed with short form of the Glasgow composite pain scale (CMPS-SF). Serum concentration of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase activities (GPx) were quantified by spectrophotometric methods to assess oxidative stress status. The pain score increased rapidly at 1 h after surgery and then decreased gradually towards to 24 h in all groups. There was no statistical difference among the groups in terms of CMPS-SF scores (P > 0.05). Serum concentration of MDA was lower in ASG than in BSG and CG from 1 h to 24 h after surgery. Serum activity of GPx was higher in ASG than in BSG and CG from 2 h to 24 h (P < 0.05). Serum activity of SOD was higher in ASG than in BSG and CG from 1 h to 24 h after surgery (P < 0.05). Serum SOD activity at different time points in ASG did not differ compared to preoperative level though it decreased significantly from 1 h onwards both in CT and BSG. The results indicate that single butorphanol administration either before or after the operation might not provide sufficient analgesia, however, it seems that it has antioxidant potential and may protect tissues by reducing oxidative stress when administered early postoperative period following ovariohysterectomy.
Collapse
Affiliation(s)
- Nilgün Gültiken
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey.
| | - Hande Gürler
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Gül Fatma Yarım
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Firdevs Binli
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Müge Tuncay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Fatih Büyükbudak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Ayris Gökçeoğlu
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Elvan Anadol
- Laboratory Animal Breeding and Experimental Researches Centre, Gazi University, 06510, Ankara, Turkey
| |
Collapse
|
17
|
Silonov SB, Kryvenko EO, Silonova NB, Shevchenko TM. The effect of vitamin E on the lipid environment of rat hepatocyte membranes. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tocopherol is one of the known beneficial natural antioxidants ensuring the optimal level of functioning of mammalian organisms. Numerous in vitro and in vivo experiments have shown that the biological role of vitamin E is to prevent the development of pathologies caused by oxidative stress. In particular, the role of enzymatic factors of lipid peroxidation and related inflammation as a result of eicosanoid synthesis was clearly shown. We studied changes in the structural and functional state of hepatocyte membranes in the classical model of E-hypovitaminosis caused by long-term (70 days) insufficient intake of vitamin E in the diet of rats. The test components were determined spectrophotometrically after appropriate chromatographic procedures. The amount of total and individual leukotrienes was determined by ELISA. Prolonged tocopherol deficiency in rats caused a 49.4% decrease in tocopherol, more than 27.0% – in cholesterol. Of the 8 individual phospholipids studied, 6 showed significant changes: a decrease in cardiolipin and phosphatidylserine, and an increase in phosphatidylethanolamine by 3.24 times, an increse in lysophosphatidylcholine by 86.9%, in phosphatidylcholine by 52.8%, and in sphingomyelin by 30.6%, relative to control. There were changes in the levels of unsaturated fatty acids playing a significant role in the development of functional disorders in cells and affecting the metabolism of ecosanoids derived from arachidonic acid by the 5-lipoxygenase oxidation pathway. Changes in the levels of total and individual cysteinyl leukotrienes in the state of E-hypovitaminosis were revealed. Restoration of vitamin E intake returns most of the studied indicators such as tocopherol, cholesterol, polyunsaturated fatty acids to the control levels and activates the processes of sequential conversion of leukotrienes in the body of rats. The obtained results indicate the potentiating effect of vitamin E on metabolic processes in the body as a whole and in hepatocytes and eicosanoid metabolism. The degree of tocopherol intake allows one to influence the course of inflammatory processes associated with eicosanoids, not only through the impact on precursors, but also on the utilization of metabolites, including leukotrienes.
Collapse
|
18
|
KAÇMAZ F, OZCAN O, ARPACI A, AYAZ E, BAYRAKTAR HS, GÖRÜR S. Investigation of the Effects of Lipoic Acid and Dihydrolipoate on Experimental Renal Ischemia-Reperfusion Model. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2022. [DOI: 10.17944/mkutfd.1012649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Retinal damage related to high-intensity light-emitting diode exposure: An in vivo study. Am J Orthod Dentofacial Orthop 2021; 161:e353-e360. [PMID: 34955363 DOI: 10.1016/j.ajodo.2021.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 01/01/2021] [Accepted: 01/01/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The objective of this investigation was to evaluate the effects of high-intensity light-emitting diode (LED) light from a curing device on the retinas of Wistar rats. METHODS Six male Wistar rats were used, and their ocular structures were the focus of this study. During the photostimulation of each animal, the right eye of the animal, considered the control sample, was covered with a removable polyvinyl chloride cap, and the contralateral eye, the experimental sample, was exposed to high-intensity LED light, 3200 mW/cm2 (VALO Ortho; Ultradent Products, South Jordan, Utah) for 144 seconds from a distance of 30 cm. The animals were exposed to the LED light 3 times on the same day to investigate if any acute inflammatory changes in the retina occurred. Seven days after the photostimulation sessions, the animals were anesthetized and perfused with paraformaldehyde solution. After which, the eyes were resected and processed histologically. The histologic sections were analyzed stereologically and histomorphometrically to measure the parameters of the retina under investigation. RESULTS There was a statistically significant increase in total retinal volume in the experimental group because of the increased volume of the ganglion cell layers, inner plexiform layers, outer nuclear layers, and the cone and rod extensions. There was no statistically significant difference in terms of density. However, there was a statistically significant increase in the nuclear area of the cells in all the studied layers in the group exposed to high-intensity LED light. In addition, hyperchromatic cells that are suggestive of pyknosis were observed. CONCLUSIONS An acute but short protocol of exposure of high-intensity LED light to the eye caused morphometric alterations in the retinal structures, specifically in the nuclear area of the photosensitive cells.
Collapse
|
20
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
Camacho SA, Kobal MB, Moreira LG, Bistaffa MJ, Roque TC, Pazin WM, Toledo KA, Oliveira ON, Aoki PHB. The efficiency of photothermal action of gold shell-isolated nanoparticles against tumor cells depends on membrane interactions. Colloids Surf B Biointerfaces 2021; 211:112301. [PMID: 34968778 DOI: 10.1016/j.colsurfb.2021.112301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Photoinduced hyperthermia with nanomaterials has been proven effective in photothermal therapy (PTT) of tumor tissues, but a precise control in PTT requires determination of the molecular-level mechanisms. In this paper, we determined the mechanisms responsible for the action of photoexcited gold shell-isolated nanoparticles (AuSHINs) in reducing the viability of MCF7 (glandular breast cancer) and especially A549 (lung adenocarcinoma) cells in vitro experiments, while the photoinduced damage to healthy cells was much smaller. The photoinduced effects were more significant than using other nanomaterials, and could be explained by the different effects from incorporating AuSHINs on Langmuir monolayers from lipid extracts of tumoral (MCF7 and A549) and healthy cells. The incorporation of AuSHINs caused similar expansion of the Langmuir monolayers, but Fourier-transform infrared spectroscopy (FTIR) data of Langmuir-Schaefer films (LS) indicated distinct levels of penetration into the monolayers. AuSHINs penetrated deeper into the A549 extract monolayers, affecting the vibrational modes of polar groups and carbon chains, while in MCF7 monolayers penetration was limited to the surroundings of the polar groups. Even smaller insertion was observed for monolayers of the healthy cell extract. The photochemical reactions were modulated by AuSHINs penetration, since upon irradiation the surface area of A549 monolayer decreased owing to lipid chain cleavage by oxidative reactions. For MCF7 monolayers, hydroperoxidation under illumination led to a ca. 5% increase in surface area. The monolayers of healthy cell lipid extract were barely affected by irradiation, consistent with the lowest degree of AuSHINs insertion. In summary, efficient photothermal therapy may be devised by producing AuSHINs capable of penetrating the chain region of tumor cell membranes.
Collapse
Affiliation(s)
- Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Lucas G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Maria J Bistaffa
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Thamires C Roque
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Wallance M Pazin
- IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil; São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Letters and Exact Sciences, São José do Rio Preto 15054-000, Brazil
| | - Osvaldo N Oliveira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil; IFSC, São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
22
|
Kalugina OV, Mikhailova TA, Afanasyeva LV, Gurina VV, Ivanova MV. Changes in the fatty acid composition of pine needle lipids under the aluminum smelter emissions. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2083-2095. [PMID: 34546442 DOI: 10.1007/s10646-021-02479-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Changes in the fatty acid (FA) composition of total lipids of Pinus sylvestris needles at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. In the needles of trees from unpolluted (background) territories, the FA spectrum is represented by 24 acids with prevalence of unsaturated FAs (71.6%). The main unsaturated FA are represented by oleic (C18: 1ω9), linoleic (C18: 2ω6), and α-linolenic (C18: 3ω3) acids. Under the influence of BrAS emissions, the total amount of identified FAs in the needles and the proportion of unsaturated FAs decrease, while the fraction of saturated FAs, on the contrary, increases from 25.4% in unpolluted needles to 33.2% in polluted ones. The content of palmitic FA (C16:0) in the needles exceeds background values by 1.5 times, behenic acid (C22:0) - by 1.6-2.5 times, arachidic acid (C20:0) - by 1.5 times, palmitic margaric acid (C17:0) - by 1.5-2.3 times. These FAs play the important role in the protection of plant membranes from the effects of abiotic stress factors, making them less permeable. The sum of short-chain saturated FAs (C12:0, C14:0, C15:0) increase by 4.8 times in needles of trees that are highly polluted. Pentadecanoic (C15:0) acid is found in the needles only in the background areas and at the low pollution level. With a more severe pollution, C15:0 is not identified, but lauric acid with the cis-configuration of double bonds in the structure (izo-C12:0) appears. The presence of "relict" ∆5-polymethylene FAs in the composition of pine needle membrane lipids is determined. In the background areas, they account for 12.9% of the total FAs. With the industrial pollution intensification, their total content increases and reaches 14.1%. ∆5-polymethylene FAs are also able to protect membranes against negative influences. Thus, changes in the quantitative and qualitative FA composition of pine needle total lipids indicate the activation of the stabilization mechanisms of membrane lipids due to their tight packing in a bilayer. It is one of the adaptive reactions of Pinus sylvestris in response to the impact of the aluminum industry emissions.
Collapse
Affiliation(s)
- Olga Vladimirovna Kalugina
- The Natural and Anthropogenic Ecosystems Laboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Tatiana Alekseevna Mikhailova
- The Natural and Anthropogenic Ecosystems Laboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Larisa Vladimirovna Afanasyeva
- Laboratory of Floristics and Geobotany, Institute of General and Experimental Biology Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia, 6, Sakhyanova str., 670047, Ulan-Ude, Russia.
| | - Veronika Valerievna Gurina
- Laboratory of Plant Cell Physiology, Siberian Instititue of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Maria Vladimirovna Ivanova
- Laboratory of Ecosystems Bioindication, Siberian Instititue of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| |
Collapse
|
23
|
Exogenous Application of Proline and L-Cysteine Alleviates Internal Browning and Maintains Eating Quality of Cold Stored Flat ‘Maleki’ Peach Fruits. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The postharvest life of flat peach fruit is limited by the appearance of chilling injury symptoms, especially internal browning. In this study, impacts of the exogenous application of proline (0, 5, 10, and 15 mM) and L-cysteine (0, 0.2, 0.4 and 0.6%) on attenuating chilling injury of flat peach fruit were evaluated all over the cold storage. The results demonstrated that the fruits treated with 15 mM proline and 0.4 % L-cysteine showed lower levels of internal browning and these treatments prevented the excess enhancement of total soluble solids (TSS), the decline of titratable acidity (TA) content and the loss of fruit firmness during storage time. A lower accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA), electrolyte leakage, and higher activity of antioxidant enzymes, along with higher ascorbic acid content and antioxidant capacity, were observed in treated fruits. Treated fruits also showed higher activity of phenylalanine ammonia lyase (PAL) and conversely lower activity of polyphenol oxidase (PPO), which led to a higher accumulation of total phenols and flavonoids. Moreover, a higher accumulation of endogenous proline was observed in 15 mM proline treated fruits. Eventually, according to our results, the exogenous administration of proline and L-cysteine as safe, natural and environmentally friendly treatments, preserved the nutritional quality of flat peach fruits during long-term cold storage.
Collapse
|
24
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
25
|
Liang R, Zhao Q, Zhu Q, He X, Gao M, Wang Y. Lycium barbarum polysaccharide protects ARPE‑19 cells against H 2O 2‑induced oxidative stress via the Nrf2/HO‑1 pathway. Mol Med Rep 2021; 24:769. [PMID: 34490478 PMCID: PMC8436232 DOI: 10.3892/mmr.2021.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is a global health problem. Lycium barbarum polysaccharide (LBP), a traditional Chinese herbal medicine, has been proven to be effective against several eye diseases. However, only a few studies have investigated the effectiveness of LBP for AMD. In the present study, the human retinal epithelial cell line, ARPE-19, was pretreated with LBP for 24 h before exposure to H2O2 (500 µM). Cell viability was assessed, and a series of oxidative and antioxidant indicators were evaluated to determine the influence of LBP on H2O2-triggered oxidative stress. The present study also determined the apoptosis status, as well as the expression levels of apoptotic proteins and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway proteins. The present study aimed to determine the protective role for LBP pretreatment and its underlying molecular mechanism. The results of the present study suggest that pretreatment of ARPE-19 cells with LBP exhibit high efficacy at reducing oxidative damage and inhibiting cell apoptosis. Furthermore, LBP may modulate the expression of proteins involved in the apoptotic pathway and activate the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ran Liang
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Qi Zhao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Qing Zhu
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Xin He
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Mingjun Gao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Yiru Wang
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| |
Collapse
|
26
|
Mendez KM, Kim J, Laíns I, Nigalye A, Katz R, Pundik S, Kim IK, Liang L, Vavvas DG, Miller JB, Miller JW, Lasky-Su JA, Husain D. Association of Human Plasma Metabolomics with Delayed Dark Adaptation in Age-Related Macular Degeneration. Metabolites 2021; 11:metabo11030183. [PMID: 33801085 PMCID: PMC8003957 DOI: 10.3390/metabo11030183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 01/16/2023] Open
Abstract
The purpose of this study was to analyze the association between plasma metabolite levels and dark adaptation (DA) in age-related macular degeneration (AMD). This was a cross-sectional study including patients with AMD (early, intermediate, and late) and control subjects older than 50 years without any vitreoretinal disease. Fasting blood samples were collected and used for metabolomic profiling with ultra-performance liquid chromatography-mass spectrometry (LC-MS). Patients were also tested with the AdaptDx (MacuLogix, Middletown, PA, USA) DA extended protocol (20 min). Two measures of dark adaptation were calculated and used: rod-intercept time (RIT) and area under the dark adaptation curve (AUDAC). Associations between dark adaption and metabolite levels were tested using multilevel mixed-effects linear modelling, adjusting for age, gender, body mass index (BMI), smoking, race, AMD stage, and Age-Related Eye Disease Study (AREDS) formulation supplementation. We included a total of 71 subjects: 53 with AMD (13 early AMD, 31 intermediate AMD, and 9 late AMD) and 18 controls. Our results revealed that fatty acid-related lipids and amino acids related to glutamate and leucine, isoleucine and valine metabolism were associated with RIT (p < 0.01). Similar results were found when AUDAC was used as the outcome. Fatty acid-related lipids and amino acids are associated with DA, thus suggesting that oxidative stress and mitochondrial dysfunction likely play a role in AMD and visual impairment in this condition.
Collapse
Affiliation(s)
- Kevin M. Mendez
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Janice Kim
- Harvard Medical School, Boston, MA 02114, USA;
| | - Inês Laíns
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
| | - Archana Nigalye
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
| | - Raviv Katz
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
| | - Shrinivas Pundik
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye & Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02114, USA;
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02114, USA
| | - Demetrios G. Vavvas
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
| | - John B. Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
| | - Joan W. Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02114, USA;
| | - Deeba Husain
- Retina Service, Massachusetts Eye and Ear, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; (K.M.M.); (I.L.); (A.N.); (R.K.); (I.K.K.); (D.G.V.); (J.B.M.); (J.W.M.)
- Correspondence: ; Tel.: +1-617-573-4371
| |
Collapse
|
27
|
Immunoregulation induced by autologous serum collected after acute exercise in obese men: a randomized cross-over trial. Sci Rep 2020; 10:21735. [PMID: 33303928 PMCID: PMC7729871 DOI: 10.1038/s41598-020-78750-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we evaluated the effects of autologous serum collected after two types of exercise on the in vitro inflammatory profile and T cell phenotype of resting peripheral blood mononuclear cells (PBMCs) in obese men. Serum samples and PBMCs were obtained from eight obese men who performed two exercise bouts—high intensity interval exercise (HIIE) and exhaustive exercise session to voluntary fatigue—in a randomized cross-over trial. Pre-exercise PBMCs were incubated with 50% autologous serum (collected before and after each exercise bout) for 4 h. In vitro experiments revealed that post-HIIE serum reduced the histone H4 acetylation status and NF-κB content of PBMCs and suppressed the production of both TNF-α and IL-6 by PBMCs, while increasing IL-10 production. Post-exhaustive exercise serum induced histone H4 hyperacetylation and mitochondrial depolarization in lymphocytes and increased TNF-α production. In vitro post-HIIE serum incubation resulted in an increase in the frequencies of CD4 + CTLA-4 + and CD4 + CD25+ T cells expressing CD39 and CD73. Post-exhaustive exercise serum decreased the frequency of CD4 + CD25 + CD73+ T cells but increased CD4 + CD25-CD39 + T cell frequency. Both post-exercise serums increased the proportions of CD4 + PD-1 + and CD8 + PD-1+ T cells. Blood serum factors released during exercise altered the immune response and T cell phenotype. The type of exercise impacted the immunomodulatory activity of the post-exercise serum on PBMCs.
Collapse
|
28
|
Haque MM, Mosharaf MK, Khatun M, Haque MA, Biswas MS, Islam MS, Islam MM, Shozib HB, Miah MMU, Molla AH, Siddiquee MA. Biofilm Producing Rhizobacteria With Multiple Plant Growth-Promoting Traits Promote Growth of Tomato Under Water-Deficit Stress. Front Microbiol 2020; 11:542053. [PMID: 33324354 PMCID: PMC7727330 DOI: 10.3389/fmicb.2020.542053] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth but also control phytopathogens and mitigate abiotic stresses, including water-deficit stress. In this study, 21 (26.9%) rhizobacterial strains isolated from drought-prone ecosystems of Bangladesh were able to form air–liquid (AL) biofilms in the glass test tubes containing salt-optimized broth plus glycerol (SOBG) medium. Based on 16S rRNA gene sequencing, Pseudomonas chlororaphis (ESR3 and ESR15), P. azotoformans ESR4, P. poae ESR6, P. fluorescens (ESR7 and ESR25), P. gessardii ESR9, P. cedrina (ESR12, ESR16, and ESR23), P. veronii (ESR13 and ESR21), P. parafulva ESB18, Stenotrophomonas maltophilia ESR20, Bacillus cereus (ESD3, ESD21, and ESB22), B. horikoshii ESD16, B. aryabhattai ESB6, B. megaterium ESB9, and Staphylococcus saprophyticus ESD8 were identified. Fourier transform infrared spectroscopy studies showed that the biofilm matrices contain proteins, polysaccharides, nucleic acids, and lipids. Congo red binding results indicated that these bacteria produced curli fimbriae and nanocellulose-rich polysaccharides. Expression of nanocellulose was also confirmed by Calcofluor binding assays and scanning electron microscopy. In vitro studies revealed that all these rhizobacterial strains expressed multiple plant growth-promoting traits including N2 fixation, production of indole-3-acetic acid, solubilization of nutrients (P, K, and Zn), and production of ammonia, siderophores, ACC deaminase, catalases, lipases, cellulases, and proteases. Several bacteria were also tolerant to multifarious stresses such as drought, high temperature, extreme pH, and salinity. Among these rhizobacteria, P. cedrina ESR12, P. chlororaphis ESR15, and B. cereus ESD3 impeded the growth of Xanthomonas campestris pv. campestris ATCC 33913, while P. chlororaphis ESR15 and B. cereus ESD21 prevented the progression of Ralstonia solanacearum ATCC® 11696TM. In a pot experiment, tomato plants inoculated with P. azotoformans ESR4, P. poae ESR6, P. gessardii ESR9, P. cedrina ESR12, P. chlororaphis ESR15, S. maltophilia ESR20, P. veronii ESR21, and B. aryabhattai ESB6 exhibited an increased plant growth compared to the non-inoculated plants under water deficit-stressed conditions. Accordingly, the bacterial-treated plants showed a higher antioxidant defense system and a fewer tissue damages than non-inoculated plants under water-limiting conditions. Therefore, biofilm-producing PGPR can be utilized as plant growth promoters, suppressors of plant pathogens, and alleviators of water-deficit stress.
Collapse
Affiliation(s)
- Md Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Moriom Khatun
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Amdadul Haque
- Department of Agro-Processing, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Sanaullah Biswas
- Department of Horticulture, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | | | - Md Mynul Islam
- Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Habibul Bari Shozib
- Grain Quality and Nutrition Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md Main Uddin Miah
- Department of Agroforestry and Environment, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abul Hossain Molla
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Muhammad Ali Siddiquee
- Grain Quality and Nutrition Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| |
Collapse
|
29
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
30
|
Alexander A, Singh VK, Mishra A. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Front Microbiol 2020; 11:568289. [PMID: 33162950 PMCID: PMC7591470 DOI: 10.3389/fmicb.2020.568289] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/22/2020] [Indexed: 01/25/2023] Open
Abstract
Arachis hypogaea (Peanut) is one of the most important cash crops grown for food and oil production. Salinity is a major constraint for loss of peanut productivity, and halotolerant plant growth promoting bacteria not only enhance plant-growth but also provide tolerance against salt stress. The potential of halotolerant bacterium Stenotrophomonas maltophilia BJ01 isolated from saline-soil was explored to enhance the growth of peanut plants under salt stress conditions. Interaction of S. maltophilia BJ01 enhances the growth of the peanut plants and protects photosynthetic pigments under salt stress. Lower electrolyte leakage (about 20%), lipid peroxidation (2.1 μmol g-1 Fw), proline (2.9 μg mg-1 Fw) content and H2O2 (55 μmol g-1 Fw) content were observed in plants, co-cultivated with PGPR compared to untreated plants under stress condition. The growth hormone auxin (0.4 mg g-1 Fw) and total amino acid content (0.3 mg g-1 Fw) were enhanced in plants co-cultivated with PGPR under stress conditions. Overall, these results indicate the beneficial effect of S. maltophilia BJ01 on peanut plants under salt (100 mM NaCl) stress conditions. In conclusion, bacterium S. maltophilia BJ01 could be explored further as an efficient PGPR for growing legumes especially peanuts under salt stress conditions. However, a detailed agronomic study would be needed to ascertain its commercial role.
Collapse
Affiliation(s)
- Ankita Alexander
- Division of Applied Phycology and Biotechnology, CSIR – Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Vijay K. Singh
- Division of Applied Phycology and Biotechnology, CSIR – Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR – Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| |
Collapse
|
31
|
Peres A, Da Silva IM, Santos M, Beretta Â, Andrade VM, RomãO PRT, Dorneles GP. DNA damage in mononuclear cells following maximal exercise in sedentary and physically active lean and obese men. Eur J Sport Sci 2020; 21:1073-1082. [DOI: 10.1080/17461391.2020.1801850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alessandra Peres
- Cellular and Molecular Immunology Lab, Federal University of Health Sciences of Porto Alegre (UFCSPA). Porto Alegre, Brazil
| | - Igor M. Da Silva
- Cellular and Molecular Immunology Lab, Federal University of Health Sciences of Porto Alegre (UFCSPA). Porto Alegre, Brazil
| | - Maeli Santos
- Cellular and Molecular Immunology Lab, Federal University of Health Sciences of Porto Alegre (UFCSPA). Porto Alegre, Brazil
| | - Ângela Beretta
- Laboratory of Molecular and Celular Biology, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Vanessa Moraes Andrade
- Laboratory of Molecular and Celular Biology, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Pedro R. T. RomãO
- Cellular and Molecular Immunology Lab, Federal University of Health Sciences of Porto Alegre (UFCSPA). Porto Alegre, Brazil
| | - Gilson P. Dorneles
- Cellular and Molecular Immunology Lab, Federal University of Health Sciences of Porto Alegre (UFCSPA). Porto Alegre, Brazil
| |
Collapse
|
32
|
Camacho SA, Kobal MB, Almeida AM, Toledo KA, Oliveira ON, Aoki PHB. Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells. Colloids Surf B Biointerfaces 2020; 194:111189. [PMID: 32580142 DOI: 10.1016/j.colsurfb.2020.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Metallic nanoparticles are promising agents for photothermal cancer therapy (PTT) owing to their photostability and efficient light-to-heat conversion, but their possible aggregation remains an issue. In this paper, we report on the photoinduced heating of gold shell-isolated nanoparticles (AuSHINs) in in vitro experiments to kill human oropharyngeal (HEp-2) and breast (BT-474 and MCF-7) carcinoma cells, with cell viability reducing below 50 % with 2.2 × 1012 AuSHINs/mL and 6 h of incubation. This toxicity to cancer cells is significantly higher than in previous works with gold nanoparticles. Considering the AuSHINs dimensions we hypothesize that cell uptake is not straightforward, and the mechanism of action involves accumulation on phospholipid membranes as the PTT target for photoinduced heating and subsequent generation of reactive oxygen species (ROS). Using Langmuir monolayers as simplified membrane models, we confirmed that AuSHINs have a larger effect on 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), believed to represent cancer cell membranes, than on 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) taken as representative of healthy eukaryotic cells. In particular, data from polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) revealed an increased conformational order of DOPS tails due to the stronger adsorption of AuSHINs. Furthermore, light irradiation reduced the stability of AuSHINs containing DOPC and DOPS monolayers owing to oxidative reactions triggered by ROS upon photoinduced heating. Compared to DOPC, DOPS lost nearly twice as much material to the subphase, which is consistent with a higher rate of ROS formation in the vicinity of the DOPS monolayer.
Collapse
Affiliation(s)
- Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil; São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Alexandre M Almeida
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), CP 369, São Carlos, SP, 13566-590, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP, 19806-900, Brazil.
| |
Collapse
|
33
|
Lutein Supplementation for Eye Diseases. Nutrients 2020; 12:nu12061721. [PMID: 32526861 PMCID: PMC7352796 DOI: 10.3390/nu12061721] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Lutein is one of the few xanthophyll carotenoids that is found in high concentration in the macula of human retina. As de novo synthesis of lutein within the human body is impossible, lutein can only be obtained from diet. It is a natural substance abundant in egg yolk and dark green leafy vegetables. Many basic and clinical studies have reported lutein's anti-oxidative and anti-inflammatory properties in the eye, suggesting its beneficial effects on protection and alleviation of ocular diseases such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, myopia, and cataract. Most importantly, lutein is categorized as Generally Regarded as Safe (GRAS), posing minimal side-effects upon long term consumption. In this review, we will discuss the chemical structure and properties of lutein as well as its application and safety as a nutritional supplement. Finally, the effects of lutein consumption on the aforementioned eye diseases will be reviewed.
Collapse
|
34
|
Abokyi S, To CH, Lam TT, Tse DY. Central Role of Oxidative Stress in Age-Related Macular Degeneration: Evidence from a Review of the Molecular Mechanisms and Animal Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7901270. [PMID: 32104539 PMCID: PMC7035553 DOI: 10.1155/2020/7901270] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/18/2020] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD) is a common cause of visual impairment in the elderly. There are very limited therapeutic options for AMD with the predominant therapies targeting vascular endothelial growth factor (VEGF) in the retina of patients afflicted with wet AMD. Hence, it is important to remind readers, especially those interested in AMD, about current studies that may help to develop novel therapies for other stages of AMD. This study, therefore, provides a comprehensive review of studies on human specimens as well as rodent models of the disease, to identify and analyze the molecular mechanisms behind AMD development and progression. The evaluation of this information highlights the central role that oxidative damage in the retina plays in contributing to major pathways, including inflammation and angiogenesis, found in the AMD phenotype. Following on the debate of oxidative stress as the earliest injury in the AMD pathogenesis, we demonstrated how the targeting of oxidative stress-associated pathways, such as autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, might be the futuristic direction to explore in the search of an effective treatment for AMD, as the dysregulation of these mechanisms is crucial to oxidative injury in the retina. In addition, animal models of AMD have been discussed in great detail, with their strengths and pitfalls included, to assist inform in the selection of suitable models for investigating any of the molecular mechanisms.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- Department of Optometry, University of Cape Coast, Ghana
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Tim T. Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Dennis Y. Tse
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
35
|
Abstract
Energy stress disturbs cellular homeostasis and induces cell death. Our recent study revealed that ferroptosis (a non-apoptotic cell death) is an energy-requiring process, and energy stress-mediated activation of adenosine monophosphate-activated protein kinase (AMPK) inhibits ferroptosis. Mechanistically, AMPK regulates ferroptosis through acetyl-CoA carboxylase (ACC) and polyunsaturated fatty acid (PUFA) biosynthesis.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- CONTACT Boyi Gan; Email Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX77030
| |
Collapse
|
36
|
From international ophthalmology to space ophthalmology: the threats to vision on the way to Moon and Mars colonization. Int Ophthalmol 2019; 40:775-786. [PMID: 31722052 DOI: 10.1007/s10792-019-01212-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE To report the ophthalmological risks of space travel. METHODS The literature about the effect of microgravity and cosmic radiation on the human eye has been reviewed, focusing on the so-called "spaceflight related neuro-ocular syndrome (SANS)", and possible remedies. RESULTS The eye is the major candidate to suffer from the adverse space conditions, so much so that SANS is the main concern of the National Aeronautics and Space Administration (NASA). SANS, that affects astronauts engaged in long-duration spaceflights, is characterized by optic nerve head swelling, flattening of the posterior region of the scleral shell, choroidal folds, retinal cotton wool spots, and hyperopic shift. Even if it seems related to an increased volume of the cerebrospinal fluid in the brain and the optic nerve sheaths, its pathogenesis is still unclear. In addition, cataract is related to the effect of galactic cosmic rays on the lens. Centrifuges, pressurizing chambers, and mechanical counter-pressure suits have been advanced to counteract the upward fluid shift responsible for the SANS syndrome. Shields with a high content of hydrogen, magnetic shielding systems, and wearable radiation shielding devices are under study to mitigate the exposure to galactic cosmic rays. CONCLUSIONS Since 1961, the year of the first manned mission outside the Earth, history has shown that the human being may venture in space. Yet, visual impairment is the top health risk for long-duration spaceflight. Effective remediation is mandatory in anticipation of long space missions and Moon and Mars colonization.
Collapse
|
37
|
Protective effects of delphinidin against H 2O 2-induced oxidative injuries in human retinal pigment epithelial cells. Biosci Rep 2019; 39:BSR20190689. [PMID: 31345961 PMCID: PMC6695502 DOI: 10.1042/bsr20190689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/20/2019] [Accepted: 07/14/2019] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration (AMD) is now one of the leading causes of blindness in the elderly population and oxidative stress-induced damage to retinal pigment epithelial (RPE) cells occurs as part of the pathogenesis of AMD. In the present study, we evaluated the protective effect of delphinidin (2-(3,4,5-trihydroxyphenyl) chromenylium-3,5,7-triol) against hydrogen peroxide (H2O2)-induced toxicity in human ARPE-19 cells and its molecular mechanism. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry demonstrated that pretreatment of ARPE-19 cells with delphinidin (25, 50, and 100 μg/ml) significantly increased cell viability and reduced the apoptosis from H2O2 (0.5 mM)-induced oxidative stress in a concentration-dependent manner, which was achieved by the inhibition of Bax, cytochrome c, and caspase-3 protein expression and enhancement of Bcl-2 protein. The same tendency was observed in ARPE-19 cells pre-treated with 15 mM of N-acetylcysteine (NAC) before the addition of H2O2. Furthermore, pre-incubation of ARPE-19 cells with delphinidin markedly inhibited the intracellular reactive oxygen species (ROS) generation and Nox1 protein expression induced by H2O2. Moreover, the decreased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT), and glutathione-peroxidase (GSH-PX) and elevated (MDA) level in H2O2-treated cells were reversed to the normal standard by the addition of delphinidin, which was regulated by increasing nuclear Nrf2 protein expression in ARPE-19 cells. Our results suggest that delphinidin effectively protects human ARPE-19 cells from H2O2-induced oxidative damage via anti-apoptotic and antioxidant effects.
Collapse
|
38
|
Pugh EN. The mechanism of photon-like dark noise in rod photoreceptors. J Gen Physiol 2019; 151:875-877. [PMID: 31171571 PMCID: PMC6605688 DOI: 10.1085/jgp.201912376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Pugh highlights recent work ruling out a role for ultraweak photon emission in spontaneous photon-like events in retinal rods.
Collapse
Affiliation(s)
- Edward N Pugh
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| |
Collapse
|
39
|
Rozanowska M, Edge R, Land EJ, Navaratnam S, Sarna T, Truscott TG. Scavenging of Retinoid Cation Radicals by Urate, Trolox, and α-, β-, γ-, and δ-Tocopherols. Int J Mol Sci 2019; 20:ijms20112799. [PMID: 31181693 PMCID: PMC6600601 DOI: 10.3390/ijms20112799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Retinoids are present in human tissues exposed to light and under increased risk of oxidative stress, such as the retina and skin. Retinoid cation radicals can be formed as a result of the interaction between retinoids and other radicals or photoexcitation with light. It has been shown that such semi-oxidized retinoids can oxidize certain amino acids and proteins, and that α-tocopherol can scavenge the cation radicals of retinol and retinoic acid. The aim of this study was to determine (i) whether β-, γ-, and δ-tocopherols can also scavenge these radicals, and (ii) whether tocopherols can scavenge the cation radicals of another form of vitamin A—retinal. The retinoid cation radicals were generated by the pulse radiolysis of benzene or aqueous solution in the presence of a selected retinoid under oxidizing conditions, and the kinetics of retinoid cation radical decays were measured in the absence and presence of different tocopherols, Trolox or urate. The bimolecular rate constants are the highest for the scavenging of cation radicals of retinal, (7 to 8) × 109 M−1·s−1, followed by retinoic acid, (0.03 to 5.6) × 109 M−1·s−1, and retinol, (0.08 to 1.6) × 108 M−1·s−1. Delta-tocopherol is the least effective scavenger of semi-oxidized retinol and retinoic acid. The hydrophilic analogue of α-tocopherol, Trolox, is substantially less efficient at scavenging retinoid cation radicals than α-tocopherol and urate, but it is more efficient at scavenging the cation radicals of retinoic acid and retinol than δ-tocopherol. The scavenging rate constants indicate that tocopherols can effectively compete with amino acids and proteins for retinoid cation radicals, thereby protecting these important biomolecules from oxidation. Our results provide another mechanism by which tocopherols can diminish the oxidative damage to the skin and retina and thereby protect from skin photosensitivity and the development and/or progression of changes in blinding retinal diseases such as Stargardt’s disease and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Malgorzata Rozanowska
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Wales CF10 3AX, UK.
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales CF24 4HQ, UK.
| | - Ruth Edge
- Dalton Cumbrian Facility, The University of Manchester, Westlakes Science Park, Moor Row, Cumbria CA24 3HA, UK.
| | - Edward J Land
- Free Radical Research Facility, Science and Technology Facilities Council (STFC) Daresbury Laboratory, Warrington WA4 4AD, UK.
| | - Suppiah Navaratnam
- Biomedical Sciences Research Institute, University of Salford, Manchester M5 4WT, UK.
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - T George Truscott
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire ST5 5BG, UK.
| |
Collapse
|
40
|
Barsukova ME, Veselova IA, Shekhovtsova TN. Main Methods and Approaches to the Determination of Markers of Oxidative Stress—Organic Peroxide Compounds and Hydrogen Peroxide. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819020035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Baksheeva VE, Tiulina VV, Tikhomirova NK, Gancharova OS, Komarov SV, Philippov PP, Zamyatnin AA, Senin II, Zernii EY. Suppression of Light-Induced Oxidative Stress in the Retina by Mitochondria-Targeted Antioxidant. Antioxidants (Basel) 2018; 8:E3. [PMID: 30577635 PMCID: PMC6356525 DOI: 10.3390/antiox8010003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023] Open
Abstract
Light-induced oxidation of lipids and proteins provokes retinal injuries and results in progression of degenerative retinal diseases, such as, for instance, iatrogenic photic maculopathies. Having accumulated over years retinal injuries contribute to development of age-related macular degeneration (AMD). Antioxidant treatment is regarded as a promising approach to protecting the retina from light damage and AMD. Here, we examine oxidative processes induced in rabbit retina by excessive light illumination with or without premedication using mitochondria-targeted antioxidant SkQ1 (10-(6'-plastoquinonyl)decyltriphenyl-phosphonium). The retinal extracts obtained from animals euthanized within 1⁻7 days post exposure were analyzed for H₂O₂, malondialdehyde (MDA), total antioxidant activity (AOA), and activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) using colorimetric and luminescence assays. Oxidation of visual arrestin was monitored by immunoblotting. The light exposure induced lipid peroxidation and H₂O₂ accumulation in the retinal cells. Unexpectedly, it prominently upregulated AOA in retinal extracts although SOD and GPx activities were compromised. These alterations were accompanied by accumulation of disulfide dimers of arrestin revealing oxidative stress in the photoreceptors. Premedication of the eyes with SkQ1 accelerated normalization of H₂O₂ levels and redox-status of lipids and proteins, contemporarily enhancing AOA and, likely, sustaining normal activity of GPx. Thus, SkQ1 protects the retina from light-induced oxidative stress and could be employed to suppress oxidative damage of proteins and lipids contributing to AMD.
Collapse
Affiliation(s)
- Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Natalia K Tikhomirova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Olga S Gancharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Sergey V Komarov
- Department of Biology and Pathology of Domestic, Laboratory and Exotic Animals, Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow 109472, Russia.
| | - Pavel P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
42
|
Zeinsteger PA, Barberón JL, Leaden PJ, Palacios A. Antioxidant properties of Calendula officinalis L. (Asteraceae) on Fe2+-initiated peroxidation of rat brain mitochondria. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Ramalho TC, de Castro AA, Tavares TS, Silva MC, Silva DR, Cesar PH, Santos LA, da Cunha EFF, Nepovimova E, Kuca K. Insights into the pharmaceuticals and mechanisms of neurological orphan diseases: Current Status and future expectations. Prog Neurobiol 2018; 169:135-157. [PMID: 29981392 DOI: 10.1016/j.pneurobio.2018.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
Abstract
Several rare or orphan diseases have been characterized that singly affect low numbers of people, but cumulatively reach ∼6%-10% of the population in Europe and in the United States. Human genetics has shown to be broadly effective when evaluating subjacent genetic defects such as orphan genetic diseases, but on the other hand, a modest progress has been achieved toward comprehending the molecular pathologies and designing new therapies. Chemical genetics, placed at the interface of chemistry and genetics, could be employed to understand the molecular mechanisms of subjacent illnesses and for the discovery of new remediation processes. This review debates current progress in chemical genetics, and how a variety of compounds and reaction mechanisms can be used to study and ultimately treat rare genetic diseases. We focus here on a study involving Amyotrophic lateral sclerosis (ALS), Duchenne Muscular Dystrophy (DMD), Spinal muscular atrophy (SMA) and Familial Amyloid Polyneuropathy (FAP), approaching different treatment methods and the reaction mechanisms of several compounds, trying to elucidate new routes capable of assisting in the treatment profile.
Collapse
Affiliation(s)
- Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | | | - Tássia S Tavares
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Maria C Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Daniela R Silva
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Pedro H Cesar
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Lucas A Santos
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras, 37200-000, Lavras, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
44
|
Berberine Protects Human Retinal Pigment Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Damage through Activation of AMPK. Int J Mol Sci 2018; 19:ijms19061736. [PMID: 29895743 PMCID: PMC6032421 DOI: 10.3390/ijms19061736] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of central vision loss in the elderly with less effective treatment, especially for dry AMD (90% of AMD). Although the etiology of this disease is not well elucidated, increasing evidences indicate that excessive reactive oxygen species (ROS) impairing the physiological functions of retinal pigment epithelium (RPE) cells may be one of the main causes. Therefore, it could be a great strategy to find some drugs that can effectively protect RPE cells from oxidative damage which is desired to treat and slow the process of AMD. In the present study, a well-known traditional Chinese medicine berberine (BBR) was found to suppress hydrogen peroxide (H2O2)-induced oxidative damage in D407 cells, a human RPE cell line. Pre-treatment of D407 cells with BBR significantly suppressed H2O2-induced cell apoptosis by restoring abnormal changes in nuclear morphology, preventing the decline of mitochondrial membrane potential, reducing lactate dehydrogenase release and inhibiting caspase 3/7 activities induced by H2O2. Western blot analysis showed that BBR was able to stimulate the phosphorylation/activation of AMPK in a time- and dose-dependent manner in D407 cells, while treatment of cells with AMPK pathway inhibitor Compound C, or knockdown of the AMPK by specific siRNA blocked the effect of BBR. Similar results were obtained in primary cultured human RPE cells. Taken together, these results demonstrated that BBR was able to protect RPE cells against oxidative stress via the activation of AMPK pathway. Our findings also indicate the potential application of BBR in AMD treatment.
Collapse
|
45
|
Sharma S, Uttam KN. Early Diagnosis of Mercury Stress of Wheat Seedlings Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1383411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sweta Sharma
- Department of Botany, University of Allahabad, Allahabad, India
| | - K. N. Uttam
- Saha’s Spectroscopy Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| |
Collapse
|
46
|
Abnormal lipid metabolism in a rat model of arthritis: one possible pathway. Mol Cell Biochem 2018; 448:107-124. [PMID: 29468503 DOI: 10.1007/s11010-018-3318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Abstract
Collagen-induced arthritis (CIA) animal model is associated with systemic manifestations, including alteration of lipid metabolism. In the present study, one possible pathway of altered lipid metabolism is proposed. Specimens of joint tissue and plasma were collected from the CIA and control rats, and quantitative analysis of lipid components was performed by nuclear magnetic resonance (NMR) spectroscopy technique. Correlation analysis was performed between the level of lipid components and antioxidant enzymes, lactate dehydrogenase (LDH), lipid peroxidation (LP), and cytokines in joint tissue and plasma. Differentiation between the CIA and control rats was established on the basis of the quantity of lipid components in the joint tissue and plasma. Positive correlation was observed for all the enzymes vs. lipid components as well as LP vs. lipid components in plasma and joint tissue. Positive correlation was observed for enzymes in plasma and joint tissue. A negative correlation was observed in between the plasma and joint tissue with the level of lipid components. Cytokine levels were also correlated with the level of lipid components and ratios of saturated fatty acids/unsaturated fatty acids in plasma and joint tissue. Inflammatory disease activity in CIA rats with synovitis brought about a significant change in lipid metabolism. Taken together, the results of our study are delineating a possible pathway of altered lipid metabolism in the CIA rat model, thereby contributing further to an understanding of the pathophysiology of rheumatoid arthritis (RA).
Collapse
|
47
|
Yadav RK, Singh M, Roy S, Ansari MN, Saeedan AS, Kaithwas G. Modulation of oxidative stress response by flaxseed oil: Role of lipid peroxidation and underlying mechanisms. Prostaglandins Other Lipid Mediat 2018; 135:21-26. [PMID: 29452256 DOI: 10.1016/j.prostaglandins.2018.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFA's) are majorly classified as ω-3 and ω-6 fatty acids. The eicosapentaenoic acid (EPA, ω-3:20-5), docosahexaenoic acid (DHA, ω-3:22-6) and alpha-linolenic acid (ALA, ω-3:18-3) are known ω-3 fatty acids, extracted from animal (e.g fish oil) and plant sources (e.g flaxseed oil). Furthermore, linoleic acid (LA, ω-6:18-2) is recognized as ω-6 fatty acid and the most prominent biological fatty acid with a pro-inflammatory response. Flaxseed oil has variety of biological roles, due to the significant amount of ω-3/ω-6 fatty acids. Numerous studies have reported that ALA (ω-3:18-3) and LA (ω-6:18-2) has diverse pharmacological activities. The ALA (ω-3:18-3) and LA (ω-6:18-2) are recognised to be the pharmacological antagonist. For example, ALA (ω-3:18-3) is recognised as anti-inflammatory, whereas LA (ω-6:18-2) is considered to be pro-inflammatory. PUFA's get oxidized in three ways; firstly, free radical-mediated pathway, secondly non-free radical non-enzymatic metabolism, and lastly enzymatic degradation. The present report is an attempt to summarize various modes of PUFA's metabolism and elaborate biological effects of the associated metabolites concerning flaxseed oil.
Collapse
Affiliation(s)
- Rajnish Kumar Yadav
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, UP, India.
| |
Collapse
|
48
|
Császár N, Scholkmann F, Salari V, Szőke H, Bókkon I. Phosphene perception is due to the ultra-weak photon emission produced in various parts of the visual system: glutamate in the focus. Rev Neurosci 2018; 27:291-9. [PMID: 26544101 DOI: 10.1515/revneuro-2015-0039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022]
Abstract
Phosphenes are experienced sensations of light, when there is no light causing them. The physiological processes underlying this phenomenon are still not well understood. Previously, we proposed a novel biopsychophysical approach concerning the cause of phosphenes based on the assumption that cellular endogenous ultra-weak photon emission (UPE) is the biophysical cause leading to the sensation of phosphenes. Briefly summarized, the visual sensation of light (phosphenes) is likely to be due to the inherent perception of UPE of cells in the visual system. If the intensity of spontaneous or induced photon emission of cells in the visual system exceeds a distinct threshold, it is hypothesized that it can become a conscious light sensation. Discussing several new and previous experiments, we point out that the UPE theory of phosphenes should be really considered as a scientifically appropriate and provable mechanism to explain the physiological basis of phosphenes. In the present paper, we also present our idea that some experiments may support that the cortical phosphene lights are due to the glutamate-related excess UPE in the occipital cortex.
Collapse
|
49
|
Bókkon I, Scholkmann F, Salari V, Császár N, Kapócs G. Endogenous spontaneous ultraweak photon emission in the formation of eye-specific retinogeniculate projections before birth. Rev Neurosci 2018; 27:411-9. [PMID: 26656799 DOI: 10.1515/revneuro-2015-0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/25/2015] [Indexed: 11/15/2022]
Abstract
In 1963, it was suggested [Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703-710.] that molecular cues can direct the development of orderly connections between the eye and the brain (the "chemoaffinity hypothesis"). In the same year, the amazing degree of functional accuracy of the visual pathway in the absence of any external light/photon perception prior to birth [Wiesel, T.N and Hubel, D.H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003-1017.] was discovered. These recognitions revealed that the wiring of the visual system relies on innate cues. However, how the eye-specific retinogeniculate pathway can be developed before birth without any visual experience is still an unresolved issue. In the present paper, we suggest that Müller cells (functioning as optical fibers), Müller cell cone (i.e. the inner half of the foveola that is created of an inverted cone-shaped zone of Müller cells), discrete retinal noise of rods, and intrinsically photosensitive retinal ganglion cells might have key functions by means of retinal spontaneous ultraweak photon emission in the development of eye-specific retinogeniculate pathways prior to birth.
Collapse
|
50
|
Bisevac JP, Djukic M, Stanojevic I, Stevanovic I, Mijuskovic Z, Djuric A, Gobeljic B, Banovic T, Vojvodic D. Association Between Oxidative Stress and Melanoma Progression. J Med Biochem 2018; 37:12-20. [PMID: 30581337 PMCID: PMC6294103 DOI: 10.1515/jomb-2017-0040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Overproduction of free radicals accompanied with their insufficient removal/neutralization by antioxidative defense system impairs redox hemostasis in living organisms. Oxidative stress has been shown to be involved in all the stages of carcinogenesis and malignant melanocyte transformation. The aim of this study was to examine association between oxidative stress development and different stages of melanoma. METHODS The measured oxidative stress parameters included: superoxide anion radical, total and manganese superoxide dismutase, catalase and malondialdehyde. Oxidative stress parameters were measured spectrophotometrically in serum samples from melanoma patients (n=72) and healthy control subjects (n=30). Patients were classified according to AJCC clinical stage. RESULTS Average superoxide anion and malondialdehyde concentrations were significantly higher in melanoma patients than in control group, with the highest value of superoxide anion in stage III, while malondialdehyde highest value was in stage IV. The activity of total and manganese superoxide dismutase was insignificantly higher in melanoma patients than in control group, while catalase activity was significantly higher. The highest activity of total activity of manganese superoxide dismutase was in stage IV. Catalase activity was increasing with the disease progression achieving the maximum in stage III. CONCLUSION Results of our study suggest that melanoma is oxidative stress associated disease, as well as deteriorated cell functioning at mitochondrial level.
Collapse
Affiliation(s)
| | - Mirjana Djukic
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Ivan Stanojevic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Zeljko Mijuskovic
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
- Clinic of Dermatology, Military Medical Academy, Belgrade, Serbia
| | - Ana Djuric
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Borko Gobeljic
- Department of Toxicology, Faculty of Pharmacy, University of BelgradeBelgrade, Serbia
| | - Tatjana Banovic
- Department of Immunology, SA Pathology, Royal Adelaide Hospital, Adelaide, Australia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty, University of Defense, Ministry of Defense, Belgrade, Serbia
| |
Collapse
|