1
|
Corteselli EM, Sharafi M, Hondal R, MacPherson M, White S, Lam YW, Gold C, Manuel AM, van der Vliet A, Schneebeli ST, Anathy V, Li J, Janssen-Heininger YMW. Structural and functional fine mapping of cysteines in mammalian glutaredoxin reveal their differential oxidation susceptibility. Nat Commun 2023; 14:4550. [PMID: 37507364 PMCID: PMC10382592 DOI: 10.1038/s41467-023-39664-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Protein-S-glutathionylation is a post-translational modification involving the conjugation of glutathione to protein thiols, which can modulate the activity and structure of key cellular proteins. Glutaredoxins (GLRX) are oxidoreductases that regulate this process by performing deglutathionylation. However, GLRX has five cysteines that are potentially vulnerable to oxidative modification, which is associated with GLRX aggregation and loss of activity. To date, GLRX cysteines that are oxidatively modified and their relative susceptibilities remain unknown. We utilized molecular modeling approaches, activity assays using recombinant GLRX, coupled with site-directed mutagenesis of each cysteine both individually and in combination to address the oxidizibility of GLRX cysteines. These approaches reveal that C8 and C83 are targets for S-glutathionylation and oxidation by hydrogen peroxide in vitro. In silico modeling and experimental validation confirm a prominent role of C8 for dimer formation and aggregation. Lastly, combinatorial mutation of C8, C26, and C83 results in increased activity of GLRX and resistance to oxidative inactivation and aggregation. Results from these integrated computational and experimental studies provide insights into the relative oxidizability of GLRX's cysteines and have implications for the use of GLRX as a therapeutic in settings of dysregulated protein glutathionylation.
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Robert Hondal
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Maximilian MacPherson
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Sheryl White
- Neuroscience Cellular and Molecular Core, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Ying-Wai Lam
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT, 05405, USA
| | - Clarissa Gold
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT, 05405, USA
| | - Allison M Manuel
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Severin T Schneebeli
- Department of Industrial and Physical Pharmacy and Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
2
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
3
|
Zhao H, Xu C, Wang T, Liu J. Biomimetic Construction of Artificial Selenoenzymes. Biomimetics (Basel) 2023; 8:biomimetics8010054. [PMID: 36810385 PMCID: PMC9944854 DOI: 10.3390/biomimetics8010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Selenium exists in the form of selenocysteines in selenoproteins and plays a pivotal role in the catalytic process of the antioxidative enzymes. In order to study the structural and functional properties of selenium in selenoproteins, explore the significance of the role of selenium in the fields of biology and chemistry, scientists conducted a series of artificial simulations on selenoproteins. In this review, we sum up the progress and developed strategies in the construction of artificial selenoenzyme. Using different mechanisms from different catalytic angles, selenium-containing catalytic antibodies, semi-synthetic selenonezyme, and the selenium-containing molecularly imprinted enzymes have been constructed. A variety of synthetic selenoenzyme models have been designed and constructed by selecting host molecules such as cyclodextrins, dendrimers, and hyperbranched polymers as the main scaffolds. Then, a variety of selenoprotein assemblies as well as cascade antioxidant nanoenzymes were built by using electrostatic interaction, metal coordination, and host-guest interaction. The unique redox properties of selenoenzyme glutathione peroxidase (GPx) can be reproduced.
Collapse
|
4
|
Hypoxia Affects the Antioxidant Activity of Glutaredoxin 3 in Scylla paramamosain through Hypoxia Response Elements. Antioxidants (Basel) 2022; 12:antiox12010076. [PMID: 36670937 PMCID: PMC9855028 DOI: 10.3390/antiox12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is a major environmental stressor that can damage the oxidation metabolism of crustaceans. Glutaredoxin (Grx) is a key member of the thioredoxin superfamily and plays an important role in the host's defense against oxidative stress. At present, the role of Grx in response to hypoxia in crustaceans remains unclear. In this study, the full-length cDNA of Grx3 (SpGrx3) was obtained from the mud crab Scylla paramamosain, which contains a 129-bp 5' untranslated region, a 981-bp open reading frame, and a 1,183-bp 3' untranslated region. The putative SpGrx3 protein contains an N-terminal thioredoxin domain and two C-terminal Grx domains. SpGrx3 was expressed in all tissues examined, with the highest expression in the anterior gills. After hypoxia, SpGrx3 expression was significantly up-regulated in the anterior gills of mud crabs. The expression of Grx2 and glutathione S-transferases was decreased, while the expression of glutathione peroxidases was increased following hypoxia when SpGrx3 was silenced in vivo. In addition, the total antioxidant capacity of SpGrx3-interfered mud crabs was significantly decreased, and the malondialdehyde content was significantly increased during hypoxia. The subcellular localization data indicated that SpGrx3 was predominantly localized in the nucleus when expressed in Drosophila Schneider 2 (S2) cells. Moreover, overexpression of SpGrx3 reduced the content of reactive oxygen species in S2 cells during hypoxia. To further investigate the transactivation mechanism of SpGrx3 during hypoxia, the promoter region of the SpGrx3 was obtained by Genome Walking and three hypoxia response elements (HREs) were predicted. Dual-luciferase reporter assay results demonstrated that SpGrx3 was likely involved in the hypoxia-inducible factor-1 (HIF-1) pathway during hypoxia, which could be mediated through HREs. The results indicated that SpGrx3 is involved in regulating the antioxidant system of mud crabs and plays a critical role in the response to hypoxia.
Collapse
|
5
|
Li S, Xu W, Chu S, Ma N, Liu S, Li X, Wang T, Jiang X, Li F, Li Y, Zhang D, Luo Q, Liu J. Computational Design and Study of Artificial Selenoenzyme with Controllable Activity Based on an Allosteric Protein Scaffold. Chemistry 2019; 25:10350-10358. [DOI: 10.1002/chem.201901480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Siyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Wanjia Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Shengnan Chu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Ningning Ma
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Tingting Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Dongmei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin University 2699 Qianjin Road Changchun 130012 China
| |
Collapse
|
6
|
Stanford KR, Ajmo JM, Bahia PK, Hadley SH, Taylor-Clark TE. Improving redox sensitivity of roGFP1 by incorporation of selenocysteine at position 147. BMC Res Notes 2018; 11:827. [PMID: 30466490 PMCID: PMC6249920 DOI: 10.1186/s13104-018-3929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022] Open
Abstract
Objective Redox-sensitive green fluorescent protein (roGFP) is a genetically-encoded redox-sensitive protein used to detect cellular oxidative stress associated with reactive oxygen species production. Here we replaced the cysteine at position 147 of roGFP1 (variant of roGFP) with selenocysteine in order to increase redox sensitivity of the redox reporter. Results Expression of roGFP1 selenoprotein (roGFP1-Se147) in HEK293 cells required the presence of a selenocysteine insertion sequence and was augmented by co-expression with SBP2. roGFP1-Se147 demonstrated a similar excitation and emission spectra to roGFP1. Although expression of roGFP1-Se147 was limited, it was sufficient enough to perform live cell imaging to evaluate sensitivity to oxidation and reduction. roGFP1-Se147 exhibited a 100-fold increase in sensitivity to oxidation with H2O2 in comparison to roGFP1 as well as a 20-fold decrease in the EC50 of H2O2. Furthermore, roGFP1-Se147, unlike roGFP1, was able to detect oxidation caused by the mitochondrial electron transport complex III inhibitor antimycin A. Unfortunately roGFP-Se147 exhibited a diminished dynamic range and photoinstability. Electronic supplementary material The online version of this article (10.1186/s13104-018-3929-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine R Stanford
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Joanne M Ajmo
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Parmvir K Bahia
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Stephen H Hadley
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Cordeau E, Arnaudguilhem C, Bouyssiere B, Hagège A, Martinez J, Subra G, Cantel S, Enjalbal C. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels. PLoS One 2016; 11:e0157943. [PMID: 27336163 PMCID: PMC4918930 DOI: 10.1371/journal.pone.0157943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC) associated with elemental mass spectrometry (ICP-MS) to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP)/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se) was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully validated and applied to the measurement of the vasopressin ligand affinity for its V1A receptor through the determination of the dissociation constant (Kd) which was compared to the one recorded with conventional radioactivity assays.
Collapse
Affiliation(s)
- Emmanuelle Cordeau
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Carine Arnaudguilhem
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement LCABIE-IPREM, UMR 5254, Hélioparc, 2 av. Pr. Angot, 64053 Pau, France
| | - Brice Bouyssiere
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement LCABIE-IPREM, UMR 5254, Hélioparc, 2 av. Pr. Angot, 64053 Pau, France
| | - Agnès Hagège
- Institute of Analytical Sciences (ISA), UMR 5280, CNRS, Université Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Christine Enjalbal
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- * E-mail:
| |
Collapse
|
8
|
Zhang C, Pan T, Salesse C, Zhang D, Miao L, Wang L, Gao Y, Xu J, Dong Z, Luo Q, Liu J. Reversible Ca2+Switch of An Engineered Allosteric Antioxidant Selenoenzyme. Angew Chem Int Ed Engl 2014; 53:13536-9. [DOI: 10.1002/anie.201407135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Indexed: 11/11/2022]
|
9
|
Zhang C, Pan T, Salesse C, Zhang D, Miao L, Wang L, Gao Y, Xu J, Dong Z, Luo Q, Liu J. Reversible Ca2+Switch of An Engineered Allosteric Antioxidant Selenoenzyme. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Miao L, Zhang X, Si C, Gao Y, Zhao L, Hou C, Shoseyov O, Luo Q, Liu J. Construction of a highly stable artificial glutathione peroxidase on a protein nanoring. Org Biomol Chem 2014; 12:362-9. [DOI: 10.1039/c3ob41561a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Dobrovolska O, Shumilina E, Gladyshev VN, Dikiy A. Structural analysis of glutaredoxin domain of Mus musculus thioredoxin glutathione reductase. PLoS One 2012; 7:e52914. [PMID: 23300818 PMCID: PMC3530482 DOI: 10.1371/journal.pone.0052914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/22/2012] [Indexed: 11/24/2022] Open
Abstract
Thioredoxin glutathione reductase (TGR) is a member of the mammalian thioredoxin reductase family that has a monothiol glutaredoxin (Grx) domain attached to the thioredoxin reductase module. Here, we report a structure of the Grx domain of mouse TGR, determined through high resolution NMR spectroscopy to the final backbone RMSD value of 0.48±0.10 Å. The structure represents a sandwich-like molecule composed of a four stranded β-sheet flanked by five α–helixes, with the CxxS active motif located on the catalytic loop. We structurally characterized the glutathione-binding site in the protein and describe sequence and structural relationships of the domain with glutaredoxins. The structure illuminates a key functional center that evolved in mammalian TGRs to act in thiol-disulfide reactions. Our study allows us to hypothesize that Cys105 might be functionally relevant for TGR catalysis. In addition, the data suggest that the N-terminus of Grx acts as a possible regulatory signal also protecting the protein active site from unwanted interactions in cellular cytosol.
Collapse
Affiliation(s)
- Olena Dobrovolska
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Shumilina
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vadim N. Gladyshev
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander Dikiy
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
12
|
|
13
|
Hou C, Luo Q, Liu J, Miao L, Zhang C, Gao Y, Zhang X, Xu J, Dong Z, Liu J. Construction of GPx active centers on natural protein nanodisk/nanotube: a new way to develop artificial nanoenzyme. ACS NANO 2012; 6:8692-8701. [PMID: 22992167 DOI: 10.1021/nn302270b] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Construction of catalytic centers on natural protein aggregates is a challenging topic in biomaterial and biomedicine research. Here we report a novel construction of artificial nanoenzyme with glutathione peroxidase (GPx)-like function. By engineering the surface of tobacco mosaic virus (TMV) coat protein, the main catalytic components of GPx were fabricated on TMV protein monomers. Through direct self-assembly of the functionalized viral coat proteins, the multi-GPx centers were installed on these well-defined nanodisks or nanotubes. With the help of muti-selenoenzyme centers, the resulting organized nanoenzyme exhibited remarkable GPx activity, even approaching the level of natural GPx. The antioxidation study on subcell mitochondrial level demonstrated that virus-based nanoenzyme exerted excellent capacity for protecting cell from oxidative damage. This strategy represents a new way to develop artificial nanoenzymes.
Collapse
Affiliation(s)
- Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Liu H, Yin L, Board PG, Han X, Fan Z, Fang J, Lu Z, Zhang Y, Wei J. Expression of selenocysteine-containing glutathione S-transferase in eukaryote. Protein Expr Purif 2012; 84:59-63. [PMID: 22561244 DOI: 10.1016/j.pep.2012.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 11/16/2022]
Abstract
Glutathione peroxidase (GPX) is a crucial antioxidant selenocysteine (Sec) containing enzyme which plays a significant role in protecting cells against oxidative damage by catalyzing the reduction of hydroperoxides with glutathione (GSH). Several methods have been used to generate GPX mimics, however, only a few of these methods involved genetic engineering and none of them have achieved specific site-directed incorporation of Sec without other modifications, which has hampered further structure-function studies. Here, we report for the first time the conversion of human glutathione transferase Zeta (hGSTZ1-1) into seleno-hGSTZ1-1 by means of genetic engineering in eukaryotes. Fluorescence microscopy images of the expression of Seleno-GST-green fluorescent protein chimaera indicated that we successfully achieved the read-through of the UGA codon to specifically incorporate Sec. Therefore, we achieved the conversion of human glutathione transferase Zeta (hGSTZ1-1) into a seleno-GST (seleno-hGSTZ1-1) by means of genetic engineering in eukaryotes. These results show that recombinant selenoproteins with incorporation of specific selenocysteine residues may be heterologously produced in eukaryotes by using a Sec insertion sequence in the 3' untranslated region (3'-UTR) of the mRNA, and the recombinant selenoproteins is single catalytically active residue and well-characterized structure. In this case a novel GPX activity of 2050±225 U/μmol was introduced into hGSTZ1-1 by substitution of serine 15 by Sec 15. This result will lay a foundation for preparing much smaller GPX mimics with higher activity.
Collapse
Affiliation(s)
- Huijuan Liu
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang W, Luo Q, Wang X, Zhang D, Miao L, Xu J, Luo G, Shen J, Liu J. Engineering human seleno-glutaredoxin containing consecutive rare codons as an artificial glutathione peroxidase. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-011-4711-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
DESIGN OF GLUTATHIONE PEROXIDASE MIMICS BASED ON PROTEIN SCAFFOLDS. ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.11170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Kim MJ, Lee BC, Jeong J, Lee KJ, Hwang KY, Gladyshev VN, Kim HY. Tandem use of selenocysteine: adaptation of a selenoprotein glutaredoxin for reduction of selenoprotein methionine sulfoxide reductase. Mol Microbiol 2011; 79:1194-203. [PMID: 21210868 DOI: 10.1111/j.1365-2958.2010.07500.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several engineered selenocysteine (Sec)-containing glutaredoxins (Grxs) and their enzymatic properties have been reported, but natural selenoprotein Grxs have not been previously characterized. We expressed a bacterial selenoprotein Grx from Clostridium sp. (also known as Alkaliphilus oremlandii) OhILAs in Escherichia coli and characterized this selenoenzyme and its natural Cys homologues in Clostridium and E. coli. The selenoprotein Grx had a 200-fold higher activity than its Sec-to-Cys mutant form, suggesting that Sec is essential for catalysis by this thiol-disulfide oxidoreductase. Kinetic analysis also showed that the selenoprotein Grx had a 10-fold lower K(m) than Cys homologues. Interestingly, this selenoenzyme efficiently reduced a Clostridium selenoprotein methionine sulfoxide reductase A (MsrA), suggesting that it is the natural reductant for the protein that is not reducible by thioredoxin, a common reductant for Cys-containing MsrAs. We also found that the selenoprotein Grx could not efficiently reduce a Cys version of Clostridium MsrA, whereas natural Clostridium and E. coli Cys-containing Grxs, which efficiently reduce Cys-containing MsrAs, poorly acted on the selenoprotein MsrA. This specificity for MsrA reduction could explain why Sec is utilized in Clostridium Grx and more generally provides a novel example of the use of Sec in biological systems.
Collapse
Affiliation(s)
- Moon-Jung Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Huang X, Liu X, Luo Q, Liu J, Shen J. Artificial selenoenzymes: Designed and redesigned. Chem Soc Rev 2011; 40:1171-84. [DOI: 10.1039/c0cs00046a] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Yin Y, Huang X, Lv C, Wang L, Yu S, Luo Q, Xu J, Liu J. Construction of an Artificial Glutathione Peroxidase Active Site on Copolymer Vesicles. Macromol Biosci 2010; 10:1505-16. [DOI: 10.1002/mabi.201000179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Indexed: 11/09/2022]
|
21
|
Xu J, Song J, Su J, Wei J, Yu Y, Lv S, Li W, Nie G. A new human catalytic antibody Se-scFv-2D8 and its selenium-containing single domains with high GPX activity. J Mol Recognit 2009; 23:352-9. [DOI: 10.1002/jmr.1001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|