1
|
Kühnisch J, Theisen S, Dartsch J, Fritsche-Guenther R, Kirchner M, Obermayer B, Bauer A, Kahlert AK, Rothe M, Beule D, Heuser A, Mertins P, Kirwan JA, Berndt N, MacRae CA, Hubner N, Klaassen S. Prdm16 mutation determines sex-specific cardiac metabolism and identifies two novel cardiac metabolic regulators. Cardiovasc Res 2024; 119:2902-2916. [PMID: 37842925 PMCID: PMC10874277 DOI: 10.1093/cvr/cvad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
AIMS Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.
Collapse
Affiliation(s)
- Jirko Kühnisch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Simon Theisen
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Josephine Dartsch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Raphaela Fritsche-Guenther
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Bauer
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne-Karin Kahlert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
- DZHK German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | | | - Dieter Beule
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arnd Heuser
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Mertins
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer A Kirwan
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam—Rehbruecke (DIfE), Nuthetal, Germany
| | - Calum A MacRae
- Harvard Medical School and Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, USA
| | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sabine Klaassen
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Pediatric Cardiology, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| |
Collapse
|
2
|
Khumukcham SS, Manavathi B. Two decades of a protooncogene HPIP/PBXIP1: Uncovering the tale from germ cell to cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188576. [PMID: 34090932 DOI: 10.1016/j.bbcan.2021.188576] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023]
Abstract
Hematopoietic PBX interacting protein (HPIP or pre-B-cell leukemia transcription factor interacting protein (PBXIP1) was discovered two decades ago as a corepressor of pre-B-cell leukemia homeobox (PBX) 1 with a vital functional role in hematopoiesis. Later it emerged as a potential biomarker of poor prognosis and tumorigenesis for more than a dozen different cancers. It regulates aggressive cancer phenotypes, cell proliferation, metastasis, EMT, etc. The anomaly in the regulation of HPIP is linked with physiological disorders like renal fibrosis, chronic kidney disease and osteoarthritis. Scientists have unraveled more than twenty interacting proteins of HPIP and its functional role in various physiological and cellular processes that involves normal neuronal development, embryogenesis, endometrium decidualization, and germ cell proliferation. Over the past 20 years, we have witnessed the emerging role of HPIP and its association with a myriad of cellular activities ranging from germ cell proliferation to cancer aggressiveness, modulating multitude of signaling cascades like TGF-β1, PI3K/AKT, Wnt, mTOR, and Sonic hedgehog signaling pathways. This review will give the current understanding of HPIP, in terms of its diverse functions, theoretical ideas, and further explore cellular links and promising areas that need to be investigated. We also provide a comprehensive overview of the transcript variants of HPIP and distinct sets of transcription factors regulating their expression, which may help to understand the role of HPIP in various cellular or physiological conditions.
Collapse
Affiliation(s)
- Saratchandra Singh Khumukcham
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Bramanandam Manavathi
- Molecular and Cellular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Build-UPS and break-downs: metabolism impacts on proteostasis and aging. Cell Death Differ 2021; 28:505-521. [PMID: 33398091 PMCID: PMC7862225 DOI: 10.1038/s41418-020-00682-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5′ adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions. ![]()
Collapse
|
4
|
Serrano RL, Chen LY, Lotz MK, Liu-Bryan R, Terkeltaub R. Impaired Proteasomal Function in Human Osteoarthritic Chondrocytes Can Contribute to Decreased Levels of SOX9 and Aggrecan. Arthritis Rheumatol 2018; 70:1030-1041. [PMID: 29457374 DOI: 10.1002/art.40456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) chondrocytes exhibit impairment of autophagy, one arm of the proteostasis network that coordinates proteome and organelle quality control and degradation. Deficient proteostasis impacts differentiation and viability, and inflammatory processes in aging and disease. The present study was undertaken to assess ubiquitin proteasome system proteasomal function in OA chondrocytes. METHODS We evaluated human knee cartilage by immunohistochemistry, and assessed proteasomal function, levels of proteasomal core subunits and chaperones, and autophagy in cultured chondrocytes. Assays included Western blotting, quantitative reverse transcription-polymerase chain reaction, proteasomal protease activity assessment, and cell immunofluorescence analysis. RESULTS Human knee OA cartilage exhibited polyubiquitin accumulation, with increased ubiquitin K48-linked polyubiquitinated proteins in situ, suggesting proteasomal impairment. Cultured OA chondrocytes demonstrated accumulation of K48 polyubiquitinated proteins, significantly reduced 20S proteasome core protease activity, and decreased levels of phosphorylated FOXO4 and proteasome 26S subunit, non-ATPase 11 (PSMD11), a FOXO4-inducible promoter of proteasomal activation. Levels of proteasome subunit β type 3 (PSMB3), PSMB5, PSMB6, and proteasome assembly chaperone 1 were not decreased in OA chondrocytes. In normal chondrocytes, PSMD11 small interfering RNA knockdown stimulated certain autophagy machinery elements, increased extracellular nitric oxide (NO) levels, and reduced chondrocytic master transcription factor SOX9 protein and messenger RNA (mRNA) and aggrecan (AGC1) mRNA. PSMD11 gain-of- function by transfection increased proteasomal function, increased levels of SOX9-induced AGC1 mRNA, stimulated elements of the autophagic machinery, and inhibited extracellular levels of interleukin-1-induced NO and matrix metalloproteinase 13 in OA chondrocytes. CONCLUSION Deficient PSMD11, associated with reduced phosphorylated FOXO4, promotes impaired proteasomal function in OA chondrocytes, dysregulation of chondrocytic homeostasis, and decreased levels of SOX9 mRNA, SOX9 protein, and AGC1 mRNA. Chondrocyte proteasomal impairment may be a therapeutic target for OA.
Collapse
Affiliation(s)
- Ramon L Serrano
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Liang-Yu Chen
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Robert Terkeltaub
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| |
Collapse
|
5
|
Abstract
Mammalian AMP-activated protein kinase (AMPK) is a Ser/Thr protein kinase that acts as a crucial energy sensor in the cell. Since AMPK plays a key role in a multitude of different pathways in the cell, major efforts have been concentrated to elucidate its signaling network, mainly by the identification of AMPK downstream targets. In this chapter we describe a yeast two-hybrid method for the direct evaluation of the interaction between an AMPK subunit and putative substrates.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), University of Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
6
|
He X, Li C, Ke R, Luo L, Huang D. Down-regulation of adenosine monophosphate–activated protein kinase activity: A driver of cancer. Tumour Biol 2017; 39:1010428317697576. [PMID: 28381161 DOI: 10.1177/1010428317697576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine monophosphate–activated protein kinase (AMPK), a serine/threonine protein kinase, is known as “intracellular energy sensor and regulator.” AMPK regulates multiple cellular processes including protein and lipid synthesis, cell proliferation, invasion, migration, and apoptosis. Moreover, AMPK plays a key role in the regulation of “Warburg effect” in cancer cells. AMPK activity is down-regulated in most tumor tissues compared with the corresponding adjacent paracancerous or normal tissues, indicating that the decline in AMPK activity is closely associated with the development and progression of cancer. Therefore, understanding the mechanism of AMPK deactivation during cancer progression is of pivotal importance as it may identify AMPK as a valid therapeutic target for cancer treatment. Here, we review the mechanisms by which AMPK is down-regulated in cancer.
Collapse
Affiliation(s)
- Xiaoling He
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cong Li
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Ke
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingyu Luo
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology and Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Voutsadakis IA. Proteasome expression and activity in cancer and cancer stem cells. Tumour Biol 2017; 39:101042831769224. [DOI: 10.1177/1010428317692248] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste. Marie, ON, Canada
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
8
|
Zhu X, Dahlmans V, Thali R, Preisinger C, Viollet B, Voncken JW, Neumann D. AMP-activated Protein Kinase Up-regulates Mitogen-activated Protein (MAP) Kinase-interacting Serine/Threonine Kinase 1a-dependent Phosphorylation of Eukaryotic Translation Initiation Factor 4E. J Biol Chem 2016; 291:17020-7. [PMID: 27413184 DOI: 10.1074/jbc.c116.740498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a molecular energy sensor that acts to sustain cellular energy balance. Although AMPK is implicated in the regulation of a multitude of ATP-dependent cellular processes, exactly how these processes are controlled by AMPK as well as the identity of AMPK targets and pathways continues to evolve. Here we identify MAP kinase-interacting serine/threonine protein kinase 1a (MNK1a) as a novel AMPK target. Specifically, we show AMPK-dependent Ser(353) phosphorylation of the human MNK1a isoform in cell-free and cellular systems. We show that AMPK and MNK1a physically interact and that in vivo MNK1a-Ser(353) phosphorylation requires T-loop phosphorylation, in good agreement with a recently proposed structural regulatory model of MNK1a. Our data suggest a physiological role for MNK1a-Ser(353) phosphorylation in regulation of the MNK1a kinase, which correlates with increased eIF4E phosphorylation in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases and
| | - Vivian Dahlmans
- Department of Molecular Genetics, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Ramon Thali
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian Preisinger
- the Proteomics Facility, Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Benoit Viollet
- the INSERM U1016, Institut Cochin, Department of Endocrinology, Metabolism and Diabetes, 75014 Paris, France, the CNRS UMR 8104, 75014 Paris, France, and the Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - J Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Dietbert Neumann
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases and the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland,
| |
Collapse
|
9
|
Regulation of Carbohydrate Metabolism, Lipid Metabolism, and Protein Metabolism by AMPK. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:23-43. [PMID: 27812975 DOI: 10.1007/978-3-319-43589-3_2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes AMPK function in the regulation of substrate and energy metabolism with the main emphasis on carbohydrate and lipid metabolism, protein turnover, mitochondrial biogenesis, and whole-body energy homeostasis. AMPK acts as whole-body energy sensor and integrates different signaling pathway to meet both cellular and body energy requirements while inhibiting energy-consuming processes but also activating energy-producing ones. AMPK mainly promotes glucose and fatty acid catabolism, whereas it prevents protein, glycogen, and fatty acid synthesis.
Collapse
|
10
|
cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci U S A 2015; 112:E7176-85. [PMID: 26669444 DOI: 10.1073/pnas.1522332112] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although rates of protein degradation by the ubiquitin-proteasome pathway (UPS) are determined by their rates of ubiquitination, we show here that the proteasome's capacity to degrade ubiquitinated proteins is also tightly regulated. We studied the effects of cAMP-dependent protein kinase (PKA) on proteolysis by the UPS in several mammalian cell lines. Various agents that raise intracellular cAMP and activate PKA (activators of adenylate cyclase or inhibitors of phosphodiesterase 4) promoted degradation of short-lived (but not long-lived) cell proteins generally, model UPS substrates having different degrons, and aggregation-prone proteins associated with major neurodegenerative diseases, including mutant FUS (Fused in sarcoma), SOD1 (superoxide dismutase 1), TDP43 (TAR DNA-binding protein 43), and tau. 26S proteasomes purified from these treated cells or from control cells and treated with PKA degraded ubiquitinated proteins, small peptides, and ATP more rapidly than controls, but not when treated with protein phosphatase. Raising cAMP levels also increased amounts of doubly capped 26S proteasomes. Activated PKA phosphorylates the 19S subunit, Rpn6/PSMD11 (regulatory particle non-ATPase 6/proteasome subunit D11) at Ser14. Overexpression of a phosphomimetic Rpn6 mutant activated proteasomes similarly, whereas a nonphosphorylatable mutant decreased activity. Thus, proteasome function and protein degradation are regulated by cAMP through PKA and Rpn6, and activation of proteasomes by this mechanism may be useful in treating proteotoxic diseases.
Collapse
|
11
|
Obara A, Fujita Y, Abudukadier A, Fukushima T, Oguri Y, Ogura M, Harashima SI, Hosokawa M, Inagaki N. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells. Biochem Biophys Res Commun 2015; 460:1047-52. [PMID: 25843797 DOI: 10.1016/j.bbrc.2015.03.148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy.
Collapse
Affiliation(s)
- Akio Obara
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihito Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Abulizi Abudukadier
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Fukushima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuo Oguri
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahito Ogura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin-Ichi Harashima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaya Hosokawa
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
Ronnebaum SM, Patterson C, Schisler JC. Minireview: hey U(PS): metabolic and proteolytic homeostasis linked via AMPK and the ubiquitin proteasome system. Mol Endocrinol 2014; 28:1602-15. [PMID: 25099013 DOI: 10.1210/me.2014-1180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the master regulators of both glucose and lipid cellular metabolism is 5'-AMP-activated protein kinase (AMPK). As a metabolic pivot that dynamically responds to shifts in nutrient availability and stress, AMPK dysregulation is implicated in the underlying molecular pathology of a variety of diseases, including cardiovascular diseases, diabetes, cancer, neurological diseases, and aging. Although the regulation of AMPK enzymatic activity by upstream kinases is an active area of research, less is known about regulation of AMPK protein stability and activity by components of the ubiquitin-proteasome system (UPS), the cellular machinery responsible for both the recognition and degradation of proteins. Furthermore, there is growing evidence that AMPK regulates overall proteasome activity and individual components of the UPS. This review serves to identify the current understanding of the interplay between AMPK and the UPS and to promote further exploration of the relationship between these regulators of energy use and amino acid availability within the cell.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute (S.M.R., J.C.S.) and Department of Pharmacology (J.C.S.), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Presbyterian Hospital/Weill-Cornell Medical Center (C.P.), New York, New York 10065
| | | | | |
Collapse
|
13
|
p21(WAF1/CIP1) Expression is Differentially Regulated by Metformin and Rapamycin. Int J Chronic Dis 2014; 2014:327640. [PMID: 26464852 PMCID: PMC4590942 DOI: 10.1155/2014/327640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway plays an important role in the development of diabetic nephropathy and other age-related diseases. One of the features of DN is the elevated expression of p21WAF1/CIP1. However, the importance of the mTOR signalling pathway in p21 regulation is poorly understood. Here we investigated the effect of metformin and rapamycin on mTOR-related phenotypes in cell lines of epithelial origin. This study reports that metformin inhibits high glucose-induced p21 expression. High glucose opposed metformin in regulating cell size, proliferation, and protein synthesis. These effects were associated with reduced AMPK activation, affecting downstream mTOR signalling. However, the inhibition of the mTOR pathway by rapamycin did not have a negative effect on p21 expression, suggesting that metformin regulates p21 upstream of mTOR. These findings provide support for the hypothesis that AMPK activation may regulate p21 expression, which may have implications for diabetic nephropathy and other age-related pathologies.
Collapse
|
14
|
Saks V, Schlattner U, Tokarska-Schlattner M, Wallimann T, Bagur R, Zorman S, Pelosse M, Santos PD, Boucher F, Kaambre T, Guzun R. Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of Creatine, Phosphotransfer Pathways, and AMPK Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. FRONTIERS IN PLANT SCIENCE 2014; 5:190. [PMID: 24904600 PMCID: PMC4033248 DOI: 10.3389/fpls.2014.00190] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 05/17/2023]
Abstract
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Collapse
Affiliation(s)
| | | | | | - Américo Rodrigues
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- Escola Superior de Turismo e Tecnologia do Mar de Peniche, Instituto Politécnico de LeiriaPeniche, Portugal
| | | | | | | | - Elena Baena-González
- Instituto Gulbenkian de CiênciaOeiras, Portugal
- *Correspondence: Elena Baena-González, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal e-mail:
| |
Collapse
|
16
|
Sanz P, Rubio T, Garcia-Gimeno MA. AMPKbeta subunits: more than just a scaffold in the formation of AMPK complex. FEBS J 2013; 280:3723-33. [DOI: 10.1111/febs.12364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/15/2013] [Accepted: 05/29/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia; CSIC and Centro de Investigación en Red de Enfermedades Raras (CIBERER); Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia; CSIC and Centro de Investigación en Red de Enfermedades Raras (CIBERER); Spain
| | - Maria Adelaida Garcia-Gimeno
- Instituto de Biomedicina de Valencia; CSIC and Centro de Investigación en Red de Enfermedades Raras (CIBERER); Spain
| |
Collapse
|
17
|
Pla-Martín D, Rueda CB, Estela A, Sánchez-Piris M, González-Sánchez P, Traba J, de la Fuente S, Scorrano L, Renau-Piqueras J, Alvarez J, Satrústegui J, Palau F. Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiol Dis 2013; 55:140-51. [PMID: 23542510 DOI: 10.1016/j.nbd.2013.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 11/25/2022] Open
Abstract
GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell. GDAP1 silencing in the SH-SY5Y cell line induces abnormal distribution of the mitochondrial network, reduces the contact between mitochondria and endoplasmic reticulum (ER) and alters the mobilization of mitochondria towards plasma membrane upon depletion of ER-Ca(2+) stores. GDAP1 silencing does not affect mitochondrial Ca(2+) uptake, ER-Ca(2+), or Ca(2+) flow from ER to mitochondria, but reduces Ca(2+) inflow through store-operated Ca(2+) entry (SOCE) following mobilization of ER-Ca(2+) and SOCE-driven Ca(2+) entry in mitochondria. Our studies suggest that the pathophysiology of GDAP1-related CMT neuropathies may be associated with abnormal distribution and movement of mitochondria throughout cytoskeleton towards the ER and subplasmalemmal microdomains, resulting in a decrease in SOCE activity and impaired SOCE-driven Ca(2+) uptake in mitochondria.
Collapse
Affiliation(s)
- David Pla-Martín
- Laboratory of Genetics and Molecular Medicine, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee JO, Lee SK, Kim N, Kim JH, You GY, Moon JW, Jie S, Kim SJ, Lee YW, Kang HJ, Lim Y, Park SH, Kim HS. E3 ubiquitin ligase, WWP1, interacts with AMPKα2 and down-regulates its expression in skeletal muscle C2C12 cells. J Biol Chem 2013; 288:4673-80. [PMID: 23293026 DOI: 10.1074/jbc.m112.406009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It is known that the activity of AMP-activated protein kinase (AMPKα2) was depressed under high glucose conditions. However, whether protein expression of AMPKα2 is also down-regulated or not remains unclear. In this study, we showed that the expression of AMPKα2 was down-regulated in cells cultured under high glucose conditions. Treatment of proteasome inhibitor, MG132, blocked high glucose-induced AMPKα2 down-regulation. Endogenous AMPKα2 ubiquitination was detected by immunoprecipitation of AMPKα2 followed by immunoblotting detection of ubiquitin. The yeast-two hybrid (YTH) approach identified WWP1, an E3 ubiquitin ligase, as the AMPKα2-interacting protein in skeletal muscle cells. Interaction between AMPKα2 and WWP1 was validated by co-immunoprecipitation. Knockdown of WWP1 blocked high glucose-induced AMPKα2 down-regulation. The overexpression of WWP1 down-regulated AMPKα2. In addition, the expression of WWP1 is increased under high glucose culture conditions in both mRNA and protein levels. The level of AMPKα2 was down-regulated in the quadriceps muscle of diabetic animal model db/db mice. Expression of WWP1 blocked metformin-induced glucose uptake. Taken together, our results demonstrated that WWP1 down-regulated AMPKα2 under high glucose culture conditions via the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Jung Ok Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Changes of the Proteasomal System During the Aging Process. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:249-75. [DOI: 10.1016/b978-0-12-397863-9.00007-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics 2011; 10:R110.006924. [PMID: 21543789 DOI: 10.1074/mcp.m110.006924] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been implicated in aging and many human diseases, notably neurodegenerative disorders and various cancers. The reactive oxygen species that are generated by aerobic metabolism and environmental stressors can chemically modify proteins and alter their biological functions. Cells possess protein repair pathways to rescue oxidized proteins and restore their functions. If these repair processes fail, oxidized proteins may become cytotoxic. Cell homeostasis and viability are therefore dependent on the removal of oxidatively damaged proteins. Numerous studies have demonstrated that the proteasome plays a pivotal role in the selective recognition and degradation of oxidized proteins. Despite extensive research, oxidative stress-triggered regulation of proteasome complexes remains poorly defined. Better understanding of molecular mechanisms underlying proteasome function in response to oxidative stress will provide a basis for developing new strategies aimed at improving cell viability and recovery as well as attenuating oxidation-induced cytotoxicity associated with aging and disease. Here we highlight recent advances in the understanding of proteasome structure and function during oxidative stress and describe how cells cope with oxidative stress through proteasome-dependent degradation pathways.
Collapse
Affiliation(s)
- Charity T Aiken
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA
| | | | | | | |
Collapse
|
21
|
Zungu M, Schisler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:4-11. [PMID: 21224036 DOI: 10.1016/j.ajpath.2010.11.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/13/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
Abstract
The 5'-AMP-activated protein kinase (AMPK) functions as a metabolic fuel gauge that is activated in response to environmental stressors to restore cellular energy balance. In the heart, AMPK coordinates the activation of glucose and fatty acid metabolic pathways to ensure increased production of myocardial ATP when required, such as during cardiac ischemia/reperfusion and hypertrophy, causing an increase in AMPK activity that can be viewed as both protective and maladaptive. While we understand the basic regulation of AMPK activity by kinases, recent studies have introduced the concept that AMPK is regulated by other post-translational modifications, specifically ubiquitination. These studies reported that the ubiquitin ligase cell death-inducing DFFA-like effector a ubiquitinates the β subunit of AMPK to regulate its steady-state protein levels. Other investigators found that AMPK regulatory components, including the AMPK α subunit and AMPK kinases NUAK1 and MARK4, can be ubiquitinated with atypical ubiquitin chains. The USP9X-deubiquitinating enzyme was identified to remove ubiquitination from both NUAK1 and MARK4. Lastly, AMPK activation increases the expression of the ubiquitin ligases MAFBx/Atrogin-1 and MuRF1. These ubiquitin ligases regulate key cardiac transcription factors to control cardiomyocyte mass and remodeling, thus suggesting another mechanism by which AMPK may function in the heart. The relevance of AMPK ubiquitination in cardiac disease has yet to be tested directly, but it likely represents an important mechanism that occurs in common cardiac diseases that may be targeted for therapy.
Collapse
Affiliation(s)
- Makhosazane Zungu
- Discipline of Human Physiology, University of KwaZulu Natal, Durban, South Africa
| | | | | | | | | | | |
Collapse
|