1
|
Mao R, Wang Y, Wang F, Zhou L, Yan S, Lu S, Shi W, Zhang Y. Identification of Four Biomarkers of Human Skin Aging by Comprehensive Single Cell Transcriptome, Transcriptome, and Proteomics. Front Genet 2022; 13:881051. [PMID: 36081986 PMCID: PMC9445490 DOI: 10.3389/fgene.2022.881051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Aging is characterized by the gradual loss of physiological integrity, resulting in impaired function and easier death. This deterioration is a major risk factor for major human pathological diseases, including cancer, diabetes, cardiovascular disease and neurodegenerative diseases. It is very important to find biomarkers that can prevent aging.Methods: Q-Exactive-MS was used for proteomic detection of young and senescence fibroblast. The key senescence-related molecules (SRMs) were identified by integrating transcriptome and proteomics from aging tissue/cells, and the correlation between these differentially expressed genes and well-known aging-related pathways. Next, we validated the expression of these molecules using qPCR, and explored the correlation between them and immune infiltrating cells. Finally, the enriched pathways of the genes significantly related to the four differential genes were identified using the single cell transcriptome.Results: we first combined proteomics and transcriptome to identified four SRMs. Data sets including GSE63577, GSE64553, GSE18876, GSE85358, and qPCR confirmed that ETF1, PLBD2, ASAH1, and MOXD1 were identified as SRMs. Then the correlation between SRMs and aging-related pathways was excavated and verified. Next, we verified the expression of SRMs at the tissue level and qPCR, and explored the correlation between them and immune infiltrating cells. Finally, at the single-cell transcriptome level, we verified their expression and explored the possible pathway by which they lead to aging. Briefly, ETF1 may affect the changes of inflammatory factors such as IL-17, IL-6, and NFKB1 by indirectly regulating the enrichment and differentiation of immune cells. MOXD1 may regulate senescence by affecting the WNT pathway and changing the cell cycle. ASAH1 may affect development and regulate the phenotype of aging by affecting cell cycle-related genes.Conclusion: In general, based on the analysis of proteomics and transcriptome, we identified four SRMs that may affect aging and speculated their possible mechanisms, which provides a new target for preventing aging, especially skin aging.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Sha Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yiya Zhang, ; Wei Shi,
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yiya Zhang, ; Wei Shi,
| |
Collapse
|
2
|
Song J, Liu Y, Liu F, Zhang L, Li G, Yuan C, Yu C, Lu X, Liu Q, Chen X, Liang H, Ding Z, Zhang B. The 14-3-3σ protein promotes HCC anoikis resistance by inhibiting EGFR degradation and thereby activating the EGFR-dependent ERK1/2 signaling pathway. Theranostics 2021; 11:996-1015. [PMID: 33391517 PMCID: PMC7738881 DOI: 10.7150/thno.51646] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Resistance to anoikis, cell death due to matrix detachment, is acquired during tumor progression. The 14-3-3σ protein is implicated in the development of chemo- and radiation resistance, indicating a poor prognosis in multiple human cancers. However, its function in anoikis resistance and metastasis in hepatocellular carcinoma (HCC) is currently unknown. Methods: Protein expression levels of 14-3-3σ were measured in paired HCC and normal tissue samples using western blot and immunohistochemical (IHC) staining. Statistical analysis was performed to evaluate the clinical correlation between 14-3-3σ expression, clinicopathological features, and overall survival. Artificial modulation of 14-3-3σ (downregulation and overexpression) was performed to explore the role of 14-3-3σ in HCC anoikis resistance and tumor metastasis in vitro and in vivo. Association of 14-3-3σ with epidermal growth factor receptor (EGFR) was assayed by co-immunoprecipitation. Effects of ectopic 14-3-3σ expression or knockdown on EGFR signaling, ligand-induced EGFR degradation and ubiquitination were examined using immunoblotting and co-immunoprecipitation, immunofluorescence staining, and flow cytometry analysis. The levels of EGFR ubiquitination, the interaction between EGFR and 14-3-3σ, and the association of EGFR with c-Cbl after EGF stimulation, in 14-3-3σ overexpressing or knockdown cells were examined to elucidate the mechanism by which 14-3-3σ inhibits EGFR degradation. Using gain-of-function or loss-of-function strategies, we further investigated the role of the EGFR signaling pathway and its downstream target machinery in 14-3-3σ-mediated anoikis resistance of HCC cells. Results: We demonstrated that 14-3-3σ was upregulated in HCC tissues, whereby its overexpression was correlated with aggressive clinicopathological features and a poor prognosis. In vitro and in vivo experiments indicated that 14-3-3σ promoted anoikis resistance and metastasis of HCC cells. Mechanistically, we show that 14-3-3σ can interact with EGFR and significantly inhibit EGF-induced degradation of EGFR, stabilizing the activated receptor, and therefore prolong the activation of EGFR signaling. We demonstrated that 14-3-3σ downregulated ligand-induced EGFR degradation by inhibiting EGFR-c-Cbl association and subsequent c-Cbl-mediated EGFR ubiquitination. We further verified that activation of the ERK1/2 pathway was responsible for 14-3-3σ-mediated anoikis resistance of HCC cells. Moreover, EGFR inactivation could reverse the 14-3-3σ-mediated effects on ERK1/2 phosphorylation and anoikis resistance. Expression of 14-3-3σ and EGFR were found to be positively correlated in human HCC tissues. Conclusions: Our results indicate that 14-3-3σ plays a pivotal role in the anoikis resistance and metastasis of HCC cells, presumably by inhibiting EGFR degradation and regulating the activation of the EGFR-dependent ERK1/2 pathway. To our best knowledge, this is the first report of the role of 14-3-3σ in the anoikis resistance of HCC cells, offering new research directions for the treatment of metastatic cancer by targeting 14-3-3σ.
Collapse
|
3
|
CHIP-mediated CIB1 ubiquitination regulated epithelial-mesenchymal transition and tumor metastasis in lung adenocarcinoma. Cell Death Differ 2020; 28:1026-1040. [PMID: 33082516 PMCID: PMC7937682 DOI: 10.1038/s41418-020-00635-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
CIB1 is a homolog of calmodulin that regulates cell adhesion, migration, and differentiation. It has been considered as an oncogene in many tumor cells; however, its role in lung adenocarcinoma (LAC) has not been studied. In this study, the expression levels of CIB1 in LAC tissues and adjacent normal tissues were examined by immunohistochemistry, and the relationship between CIB1 expression and patient clinicopathological characteristics was analyzed. The effects of CIB1 on epithelial–mesenchymal transition (EMT), migration, and metastasis of LAC cells were determined in vitro and vivo. Proteins interacting with CIB1 were identified using electrospray mass spectrometry (LS-MS), and CHIP was selected in the following assays. Carboxyl-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin E3 ligase. We show that CHIP can degrade CIB1 via promoting polyubiquitination of CIB1 and its subsequent proteasomal degradation. Besides, lysine residue 10 and 65 of CIB1 is the ubiquitinated site of CIB1. Furthermore, CHIP-mediated CIB1 downregulation is critical for the suppression of metastasis and migration of LAC. These results indicated that CHIP-mediated CIB1 ubiquitination could regulate epithelial–mesenchymal and tumor metastasis in LAC.
Collapse
|
4
|
Feng J, Lu SS, Xiao T, Huang W, Yi H, Zhu W, Fan S, Feng XP, Li JY, Yu ZZ, Gao S, Nie GH, Tang YY, Xiao ZQ. ANXA1 Binds and Stabilizes EphA2 to Promote Nasopharyngeal Carcinoma Growth and Metastasis. Cancer Res 2020; 80:4386-4398. [PMID: 32737118 DOI: 10.1158/0008-5472.can-20-0560] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Overexpression of ANXA1 and EphA2 has been linked to various cancers and both proteins have attracted considerable attention for the development of new anticancer drugs. Here we report that ANXA1 competes with Cbl for binding EphA2 and increases its stability by inhibiting Cbl-mediated EphA2 ubiquitination and degradation in nasopharyngeal carcinoma (NPC). Binding of ANXA1 to EphA2 promoted NPC cell growth and metastasis in vitro and in vivo by elevating EphA2 levels and increasing activity of EphA2 oncogenic signaling (pS897-EphA2). Expression of ANXA1 and EphA2 was positively correlated and both were significantly higher in NPC tissues than in the normal nasopharyngeal epithelial tissues. Patients with high expression of both proteins presented poorer disease-free survival and overall survival relative to patients with high expression of one protein alone. Furthermore, amino acid residues 20-30aa and 28-30aa of the ANXA1 N-terminus bound EphA2. An 11 amino acid-long ANXA1-derived peptide (EYVQTVKSSKG) was developed on the basis of this N-terminal region, which disrupted the connection of ANXA1 with EphA2, successfully downregulating EphA2 expression and dramatically suppressing NPC cell oncogenicity in vitro and in mice. These findings suggest that ANXA1 promotes NPC growth and metastasis via binding and stabilization of EphA2 and present a strategy for targeting EphA2 degradation and treating NPC with a peptide. This therapeutic strategy may also be extended to other cancers with high expression of both proteins. SIGNIFICANCE: These findings show that EphA2 is a potential target for NPC therapeutics and an ANXA1-derived peptide suppresses NPC growth and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4386/F1.large.jpg.
Collapse
Affiliation(s)
- Juan Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Hui Nie
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China. .,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Zhang T, Lei F, Jiang T, Xie L, Huang P, Li P, Huang Y, Tang X, Gong J, Lin Y, Cheng A, Huang W. H19/miR-675-5p Targeting SFN Enhances the Invasion and Metastasis of Nasalpharyngeal Cancer Cells. Curr Mol Pharmacol 2020; 12:324-333. [PMID: 31677258 DOI: 10.2174/1874467212666190719120446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/27/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022]
Abstract
AIMS The aim is to study the role of miR-675-5p coded by long non-coding RNA H19 in the development of Nasopharyngeal Cancer (NPC) and whether miR-675-5p regulates the invasion and metastasis of NPC through targeting SFN (14-3-3σ). The study further validated the relationship between H19, miR-675-5p and SFN in NPC and their relationship with the invasion and metastasis of NPC. METHODS Western blot was used to detect the expression of 14-3-3σ protein in immortalized normal nasopharyngeal epithelial cells NP69 and different metastatic potential NPC cells, 6-10B and 5-8F. At the same time, to find out the relationship between 14-3-3σ protein and the expression of H19 and miR-675-5p, the expression of H19 and miR-675-5p in normal nasopharynx epithelial cells NP69 and varied nasopharyngeal carcinoma cells 6-10B and 5-8F were quantified by real-time PCR. MiR-675-5p mimic and inhibitor were transfected into NPC 6-10B to over-express and down-express miR-675-5p; miR-675-5p mimic negative control and inhibitor negative control were transfected into NPC 6-10B as control groups. The effect of over-expression and down-expression by miR-675-5p on the expression of 14-3-3σ protein was detected by Western blotting. The 3'-UTR segments of SFN, containing miR-675-5p binding sites were amplified by PCR and the luciferase activity in the transfected cells was assayed to detect whether SFN is the direct target of miR-675-5p. Transwell and scratch assays were used to verify the changes in NPC invasion and metastasis ability of mimics and inhibitors transfected with miR-675-5p. RESULTS The expression of 14-3-3σ protein in normal nasopharynx epithelial cells NP69 is significantly higher than in varied nasopharyngeal carcinoma cells, 6-10B and 5-8F (P<0.05), and the 14-3-3σ protein levels in low-metastatic nasopharyngeal carcinoma cell 6-10B is higher than in high-metastatic nasopharyngeal carcinoma cell 5-8F. The expression of H19 and miR-675-5p are significantly higher in NPC cells than in NP69 cell (P<0.05). The expression of H19 and miR-675-5p in high-Metastatic nasopharyngeal carcinoma cell 5-8F was higher than in low-Metastatic nasopharyngeal carcinoma cell 6-10B. The expression of 14-3-3σ protein in miR-675-5p mimic cells was significantly lower than in mimic NC (negative control) group and blank control group. However, compared with the blank control group, mimic NC showed no significant difference in 14-3-3σ protein between the two groups. The miR-675-5p inhibitor group was significantly higher than the inhibitor NC group and the blank control group (p<0.05), but there was no significant difference in the expression of 14-3-3σ protein in the inhibitor NC group and the blank control group (p>0.05). Dual-luciferase reporter assay system shows the 3'-UTR segments of SFN containing miR-675-5p binding sites. SFN was the target gene of miR-675-5p. CONCLUSION 14-3-3σ is downregulated in NPC and is involved in the development of NPC. H19 and miR- 675-5p are upregulated in NPC, which is related to the development of NPC. The over-expression of miR- 675-5p inhibits the expression of 14-3-3σ protein. SFN is the target gene of miR-675-5p. MiR-675-5p targets SFN, downregulates its protein expression and promotes the invasion and metastasis of NPC.
Collapse
Affiliation(s)
- Ting Zhang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Fanghong Lei
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Tao Jiang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Lisha Xie
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Pin Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Pei Li
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Xia Tang
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Jie Gong
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Yunpeng Lin
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| |
Collapse
|
6
|
Guo Y, Redmond CJ, Leacock KA, Brovkina MV, Ji S, Jaskula-Ranga V, Coulombe PA. Keratin 14-dependent disulfides regulate epidermal homeostasis and barrier function via 14-3-3σ and YAP1. eLife 2020; 9:53165. [PMID: 32369015 PMCID: PMC7250575 DOI: 10.7554/elife.53165] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
The intermediate filament protein keratin 14 (K14) provides vital structural support in basal keratinocytes of epidermis. Recent studies evidenced a role for K14-dependent disulfide bonding in the organization and dynamics of keratin IFs in skin keratinocytes. Here we report that knock-in mice harboring a cysteine-to-alanine substitution at Krt14's codon 373 (C373A) exhibit alterations in disulfide-bonded K14 species and a barrier defect secondary to enhanced proliferation, faster transit time and altered differentiation in epidermis. A proteomics screen identified 14-3-3 as K14 interacting proteins. Follow-up studies showed that YAP1, a transcriptional effector of Hippo signaling regulated by 14-3-3sigma in skin keratinocytes, shows aberrant subcellular partitioning and function in differentiating Krt14 C373A keratinocytes. Residue C373 in K14, which is conserved in a subset of keratins, is revealed as a novel regulator of keratin organization and YAP function in early differentiating keratinocytes, with an impact on cell mechanics, homeostasis and barrier function in epidermis.
Collapse
Affiliation(s)
- Yajuan Guo
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Catherine J Redmond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Krystynne A Leacock
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Margarita V Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Suyun Ji
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Vinod Jaskula-Ranga
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, United States
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, United States.,Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
7
|
Xie L, Jiang T, Cheng A, Zhang T, Huang P, Li P, Wen G, Lei F, Huang Y, Tang X, Gong J, Lin Y, Kuai J, Huang W. MiR-597 Targeting 14-3-3σ Enhances Cellular Invasion and EMT in Nasopharyngeal Carcinoma Cells. Curr Mol Pharmacol 2019; 12:105-114. [PMID: 30569880 DOI: 10.2174/1874467212666181218113930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. METHODS Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. RESULTS miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. CONCLUSION Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.
Collapse
Affiliation(s)
- Lisha Xie
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Department of Yiyang Central Hospital, Yiyang, 413000, Hunan Province, China
| | - Tao Jiang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Ailan Cheng
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Ting Zhang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Pin Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Pei Li
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Gebo Wen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| | - Fanghong Lei
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Xia Tang
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Jie Gong
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Yunpeng Lin
- Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China
| | - Jianke Kuai
- Department of Anesthesiology of Third Hospital of Xi'an, Xi'an 710018, Shanxi province, China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, China.,Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Hengyang 421001, Hunan Province, China
| |
Collapse
|
8
|
Li Y, Fu Y, Hu X, Sun L, Tang D, Li N, Peng F, Fan XG. The HBx-CTTN interaction promotes cell proliferation and migration of hepatocellular carcinoma via CREB1. Cell Death Dis 2019; 10:405. [PMID: 31138777 PMCID: PMC6538608 DOI: 10.1038/s41419-019-1650-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus-encoded X protein (HBx) acts as a tumor promoter during hepatocellular carcinoma (HCC) development, probably by regulating the expression of host proteins through protein–protein interaction. A proteomics approach was used to identify HBx-interacting proteins involved in HBx-induced hepatocarcinogenesis. We validated the proteomics findings by co-immunoprecipitation and confocal microscopy. We performed cell proliferation, migration assays and cell cycle analyses in HCC cells. Finally, we confirmed the clinical significance of our findings in samples from patients. We found that cortactin (CTTN) is a novel HBx-interacting protein, and HBx regulates the expression of CTTN in the HCC cell lines MHCC-LM3 and HepG2. Mechanistically, by upregulating the expression of cAMP response element-binding protein (CREB1) and its downstream targets, such as cyclin D1 and MMP-9, the effects of the HBx-CTTN interaction on the enhancement of cellular proliferation and migration were maintained by inhibiting cell cycle arrest. In addition, we demonstrated that the levels of CTTN and CREB1 were closely correlated in clinical samples from HBV-infected patients with HCC. Overall, our data suggests that HBx contributes to cell migration and proliferation of HCC cells by interacting with CTTN and regulating the expression of CTTN and CREB1. Therefore, the HBx/CTTN/CREB1 axis is a potential novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Yajun Li
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Yongming Fu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Xingwang Hu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Peng
- NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China.
| | - Xue-Gong Fan
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a distinct head and neck squamous cell carcinoma in its etiological association of Epstein-Barr virus (EBV) infection, hidden anatomical location, remarkable racial and geographical distribution, and high incidence of locoregional recurrence or metastasis. Thanks to the advancements in proteomics in recent decades, more understanding of the disease etiology, carcinogenesis, and progression has been gained, potentially deciphering the molecular characteristics of the malignancy. Areas covered: In this review, we provide an overview of the proteomic aberrations that are likely involved or drive NPC development and progression, focusing on the contributions of major EBV-encoded factors, intercommunication with environment, protein features of high metastasis and therapy resistance, and protein-protein interactions that allow NPC cells to evade immune recognition and elimination. Finally, multistep carcinogenesis and subtypes of NPC from a proteomic perspective are inquired. Expert commentary: Proteomic studies have covered various aspects involved in NPC pathogenesis, yet much remains to be uncovered. Coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation are critical in ensuring the emergence of good science out of NPC proteomics. NPC proteogenomics and proteoform analysis are two promising fields to promote the application of the proteomic findings from bench to bedside.
Collapse
Affiliation(s)
- Zhefeng Xiao
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| | - Zhuchu Chen
- a NHC Key Laboratory of Cancer Proteomics , Xiangya Hospital, Central South University , Changsha , P. R. China
| |
Collapse
|
10
|
Stratifin regulates stabilization of receptor tyrosine kinases via interaction with ubiquitin-specific protease 8 in lung adenocarcinoma. Oncogene 2018; 37:5387-5402. [PMID: 29880877 DOI: 10.1038/s41388-018-0342-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Previously we have reported that stratifin (SFN, 14-3-3 sigma) acts as a novel oncogene, accelerating the tumor initiation and progression of lung adenocarcinoma. Here, pull-down assay and LC-MS/MS analysis revealed that ubiquitin-specific protease 8 (USP8) specifically bound to SFN in lung adenocarcinoma cells. Both USP8 and SFN showed higher expression in human lung adenocarcinoma than in normal lung tissue, and USP8 expression was significantly correlated with SFN expression. Expression of SFN, but not of USP8, was associated with histological subtype, pathological stage, and poor prognosis. USP8 stabilizes receptor tyrosine kinases (RTKs) such as EGFR and MET by deubiquitination, contributing to the proliferative activity of many human cancers including non-small cell lung cancer. In vitro, USP8 binds to SFN and they co-localize at the early endosomes in lung adenocarcinoma cells. Moreover, USP8 or SFN knockdown leads to downregulation of tumor cellular proliferation and upregulation of apoptosis, p-EGFR or p-MET, which are related to the degradation pathway, and accumulation of ubiquitinated RTKs, leading to lysosomal degradation. Additionally, mutant USP8, which is unable to bind to SFN, reduces the expression of RTKs and p-STAT3. We also found that interaction with SFN is critical for USP8 to exert its autodeubiquitination function and avoid dephosphorylation by PP1. Our findings demonstrate that SFN enhances RTK stabilization through abnormal USP8 regulation in lung adenocarcinoma, suggesting that SFN could be a more suitable therapeutic target for lung adenocarcinoma than USP8.
Collapse
|
11
|
Xiao Y, Ouyang C, Huang W, Tang Y, Fu W, Cheng A. Annexin A1 can inhibit the in vitro invasive ability of nasopharyngeal carcinoma cells possibly through Annexin A1/S100A9/Vimentin interaction. PLoS One 2017; 12:e0174383. [PMID: 28355254 PMCID: PMC5371313 DOI: 10.1371/journal.pone.0174383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 12/05/2022] Open
Abstract
Annexin A1 is a member of a large superfamily of glucocorticoid-regulated, calcium- and phospholipid-binding proteins. Our previous studies have shown that the abnormal expression of Annexin A1 is related to the occurrence and development of nasopharyngeal carcinoma (NPC). To understand the roles of Annexin A1 in the tumorigenesis of NPC, targeted proteomic analysis was performed on Annexin A1-associated proteins from NPC cells. We identified 436 proteins associated with Annexin A1, as well as two Annexin A1-interacted key proteins, S100A9 and Vimentin, which were confirmed by co-immunoprecipitation. Gene function classification revealed that the Annexin A1-associated proteins can be grouped into 21 clusters based on their molecular functions. Protein–protein interaction analysis indicated that Annexin A1 /S100A9/Vimentin interactions may be involved in the invasion and metastasis of NPC because they can form complexes in NPC cells. The down-regulation of Annexin A1 in NPC may lead to the overexpression of S100A9/Vimentin, which may increase the possibility of the invasion ability of NPC cells by adjusting the function of cytoskeleton proteins. Results suggested that the biological functions of Annexin A1 in NPC were diverse, and that Annexin A1 can inhibit the in vitro invasive ability of NPC cells through Annexin A1 /S100A9/Vimentin interaction.
Collapse
Affiliation(s)
- Ying Xiao
- Cancer Research Institute, University of South China, Hengyang, China
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Hengyang, China
| | - Chenjie Ouyang
- Department of Pathology, Maternal and Children’s Hospital of Foshan, Foshan, Guangdong, China
| | - Weiguo Huang
- Cancer Research Institute, University of South China, Hengyang, China
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Yunlian Tang
- Cancer Research Institute, University of South China, Hengyang, China
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Weiting Fu
- Cancer Research Institute, University of South China, Hengyang, China
| | - Ailan Cheng
- Cancer Research Institute, University of South China, Hengyang, China
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China), College of Hunan Province, Hengyang, China
- * E-mail:
| |
Collapse
|
12
|
Li S, Li J, Hu T, Zhang C, Lv X, He S, Yan H, Tan Y, Wen M, Lei M, Zuo J. Bcl-2 overexpression contributes to laryngeal carcinoma cell survival by forming a complex with Hsp90β. Oncol Rep 2016; 37:849-856. [PMID: 27959448 DOI: 10.3892/or.2016.5295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 11/06/2022] Open
Abstract
Laryngeal carcinoma (LC) is one of the most common malignant tumors of all head and neck squamous cell carcinomas (HNSCCs). However, the molecular mechanism and genetic basis of the development of LC have not been fully elucidated. To explore the possible mechanism, targeted proteomic analysis was performed on Bcl-2-associated proteins from LC cells. According to our results, 35 proteins associated with Bcl-2 were identified and Hsp90β was confirmed by co-immunoprecipitation and western blot analysis. Protein‑protein interaction (PPI) analysis indicated that Bcl-2‑Hsp90β interactions may be involved in the anti-apoptotic progression of LC. Further results revealed that disruption of the Bcl-2-Hsp90β interaction inhibited the anti-apoptotic ability of Bcl-2 and decreased the caspase activation in LC, which has broad implications for the better understanding of tumor formation, tumor cell survival and development of metastasis due to Bcl-2. Collectively, we report the mechanism by which Bcl-2 functions in LC as an anti-apoptotic factor in relation to its association with proteins and potentially identify a Bcl-2/Hsp90β axis as a novel target for LC therapy.
Collapse
Affiliation(s)
- Sai Li
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jincheng Li
- Medical School, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Tian Hu
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chuhong Zhang
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiu Lv
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Sha He
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hanxing Yan
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yixi Tan
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meiling Wen
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingsheng Lei
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Zhangjiajie City, Zhangjiajie, Hunan 427000, P.R. China
| | - Jianhong Zuo
- Oncology Department, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
13
|
Zhou Y, Liao Q, Li X, Wang H, Wei F, Chen J, Yang J, Zeng Z, Guo X, Chen P, Zhang W, Tang K, Li X, Xiong W, Li G. HYOU1, Regulated by LPLUNC1, Is Up-Regulated in Nasopharyngeal Carcinoma and Associated with Poor Prognosis. J Cancer 2016; 7:367-76. [PMID: 26918051 PMCID: PMC4749358 DOI: 10.7150/jca.13695] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/03/2015] [Indexed: 12/29/2022] Open
Abstract
Objective: This study aims to investigate the roles and mechanisms of long palate, lung and nasal epithelium clone 1 (LPLUNC1) in nasopharyngeal carcinoma (NPC). Methods: The two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-TOF-MS/MS) was applied to identify differentially expressed proteins after over-expressing LPLUNC1 in NPC cells. The qRT-PCR and Western Blot were used to further validate differentially expression of Hypoxia up-regulated 1 (HYOU1). We also applied immunohistochemistry (IHC) to validate the expression of HYOU1 protein in NPC tissues. Results: Totally 44 differentially expressed proteins were identified, among which 19 proteins were up-regulated and 25 proteins were down-regulated. Function annotation indicated that these proteins were involved in molecular chaperone, cytoskeleton, metabolism and signal transduction. It was shown that the expression of HYOU1 both at mRNA level and protein level was up-regulated significantly in NPC tissues, and HYOU1 protein expression was positively correlated with clinical staging and metastasis of NPC. Kaplan-Meier survival curves showed that high expression of HYOU1 protein in NPC patients had shorter progression-free survival (PFS) and overall survival (OS). COX multivariate regression analysis further indicated that over-expressed HYOU1 was one of the predictors for poor prognosis in NPC patients. Conclusion: Through regulating proteins in different pathways, LPLUNC1 may inhibit the growth of NPC through participating in cell metabolism, proliferation, transcription and signaling transduction. HYOU1 can be regarded as potential molecular biomarker for progression and prognosis of NPC.
Collapse
Affiliation(s)
- Yujuan Zhou
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China;; 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Xiayu Li
- 3. Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Fang Wei
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China;; 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Jie Chen
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jing Yang
- 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Zhaoyang Zeng
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China;; 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Xiaofang Guo
- 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Pan Chen
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China;; 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Wenling Zhang
- 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Ke Tang
- 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Xiaoling Li
- 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Wei Xiong
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China;; 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| | - Guiyuan Li
- 1. Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China;; 2. The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha 410078, Hunan, China
| |
Collapse
|
14
|
XIE YUXIN, XIE KEQI, GOU QIHENG, CHEN NIANYONG. IκB kinase α functions as a tumor suppressor in epithelial-derived tumors through an NF-κB-independent pathway (Review). Oncol Rep 2015; 34:2225-32. [DOI: 10.3892/or.2015.4229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 11/06/2022] Open
|
15
|
A Review: Proteomics in Nasopharyngeal Carcinoma. Int J Mol Sci 2015; 16:15497-530. [PMID: 26184160 PMCID: PMC4519910 DOI: 10.3390/ijms160715497] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/08/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
Although radiotherapy is generally effective in the treatment of major nasopharyngeal carcinoma (NPC), this treatment still makes approximately 20% of patients radioresistant. Therefore, the identification of blood or biopsy biomarkers that can predict the treatment response to radioresistance and that can diagnosis early stages of NPC would be highly useful to improve this situation. Proteomics is widely used in NPC for searching biomarkers and comparing differentially expressed proteins. In this review, an overview of proteomics with different samples related to NPC and common proteomics methods was made. In conclusion, identical proteins are sorted as follows: Keratin is ranked the highest followed by such proteins as annexin, heat shock protein, 14-3-3σ, nm-23 protein, cathepsin, heterogeneous nuclear ribonucleoproteins, enolase, triosephosphate isomerase, stathmin, prohibitin, and vimentin. This ranking indicates that these proteins may be NPC-related proteins and have potential value for further studies.
Collapse
|
16
|
Yan M, Zhang Y, He B, Xiang J, Wang ZF, Zheng FM, Xu J, Chen MY, Zhu YL, Wen HJ, Wan XB, Yue CF, Yang N, Zhang W, Zhang JL, Wang J, Wang Y, Li LH, Zeng YX, Lam EWF, Hung MC, Liu Q. IKKα restoration via EZH2 suppression induces nasopharyngeal carcinoma differentiation. Nat Commun 2014; 5:3661. [DOI: 10.1038/ncomms4661] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/14/2014] [Indexed: 02/07/2023] Open
|
17
|
Xiao L, Xiao T, Wang ZM, Cho WCS, Xiao ZQ. Biomarker discovery of nasopharyngeal carcinoma by proteomics. Expert Rev Proteomics 2014; 11:215-25. [PMID: 24611579 DOI: 10.1586/14789450.2014.897613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in southern China and southern Asia, and poses one of the most serious public health problems in these areas. Early diagnosis, predicting metastasis, recurrence, prognosis and therapeutic response of NPC remain a challenge. Discovery of diagnostic and predictive biomarkers is an ideal way to achieve these objectives. Proteomics has great potential in identifying cancer biomarkers. Comparative proteomics has identified a large number of potential biomarkers associated with NPC, although the clinical performance of such biomarkers needs to be further validated. In this article, we review the latest discovery and progress of biomarkers for early diagnosis, predicting metastasis, recurrence, prognosis and therapeutic response of NPC, inform the readers of the current status of proteomics-based NPC biomarker findings and suggest avenues for future work.
Collapse
Affiliation(s)
- Liang Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | | | |
Collapse
|
18
|
Expression of 14-3-3 sigma, cyclin-dependent kinases 2 and 4, p16, and Epstein–Barr nuclear antigen 1 in nasopharyngeal carcinoma. The Journal of Laryngology & Otology 2014; 128:134-41. [PMID: 24460960 DOI: 10.1017/s0022215113003447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractObjective:The protein 14-3-3 sigma plays a role in cell cycle arrest by sequestering cyclin-dependent kinase 1 cyclin B1 complexes, as well as cyclin-dependent kinases 2 and 4, hence its definition as a cyclin-dependent kinase inhibitor. However, the nature of the interaction between these biological markers in nasopharyngeal carcinoma is unknown. This study aimed to investigate whether altered expression of these markers contributes to nasopharyngeal carcinogenesis.Methods:The study population consisted of 30 nasopharyngeal carcinoma patients and 10 patients without nasopharyngeal carcinoma. The nasopharyngeal carcinoma cell lines TW02, TW04 and Hone-1 were also assessed. We analysed levels of messenger RNA and protein for the p16 gene and the 14-3-3 sigma, Epstein–Barr nuclear antigen 1, and cyclin-dependent kinase 2 and 4 proteins, in nasopharyngeal carcinoma tissue specimens and cell lines and in normal nasopharyngeal tissue.Results:Protein and messenger RNA levels for cyclin-dependent kinase 2 and Epstein–Barr nuclear antigen 1 were significantly higher in nasopharyngeal carcinoma compared with normal tissue, while levels of cyclin-dependent kinase 4 generally were not; results for 14-3-3 sigma varied. Nasopharyngeal carcinoma patients had diminished p16 gene expression, compared with normal tissue.Conclusion:Levels of cyclin-dependent kinase 2 and Epstein–Barr nuclear antigen 1 were significantly higher in nasopharyngeal carcinoma than in normal tissue, while p16 gene expression was diminished. These three proteins may contribute to nasopharyngeal carcinogenesis.
Collapse
|
19
|
Maryáš J, Faktor J, Dvořáková M, Struhárová I, Grell P, Bouchal P. Proteomics in investigation of cancer metastasis: Functional and clinical consequences and methodological challenges. Proteomics 2014; 14:426-40. [DOI: 10.1002/pmic.201300264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Josef Maryáš
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Jakub Faktor
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Monika Dvořáková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Iva Struhárová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| |
Collapse
|
20
|
Deng J, Gao G, Wang L, Wang T, Yu J, Zhao Z. Stratifin expression is a novel prognostic factor in human gliomas. Pathol Res Pract 2011; 207:674-9. [PMID: 21940111 DOI: 10.1016/j.prp.2011.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/31/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022]
Abstract
Stratifin (14-3-3σ or SFN) is a member of the 14-3-3 family of proteins which play critical roles in different cellular signaling processes. Stratifin as a potential tumor suppressor gene plays an important role in carcinogenesis and metastasis. The aim of this study was to investigate the expression of Stratifin in human gliomas and to analyze its expression profile with respect to tumor development. The expression pattern of Stratifin was analyzed by immunohistochemistry and/or Western blotting in tumor samples from 186 patients with different grades of gliomas. Prognostic significance was assessed using Kaplan-Meier survival estimates and Cox regression analyses. The expression pattern of Stratifin was correlated with the pathological and clinical characteristics of the patients with gliomas. Western blot analysis indicated that the average optical densitometry (OD) ratio of Stratifin in high-grade gliomas (World Health Organization [WHO] grade III/IV) was lower than in low-grade tumors (WHO grade I/II, p=0.026). In addition, statistical analysis showed that patients expressing a high level of Stratifin have favorable overall survival rates relative to those expressing a low level of this protein. Cox multi-factor analysis showed that Stratifin (p=0.02) was an independent prognosis factor for human gliomas. Our results provide convincing evidence that the expression of Stratifin is down-regulated in human gliomas. Its expression level is correlated with the clinicopathological parameters and prognosis in patients with gliomas. Pending validation targeting, Stratifin might also be a novel opportunity to improve the therapy of this tumor.
Collapse
Affiliation(s)
- Jianping Deng
- Department of Neurosurgery, Institute for Functional Neurosurgery P.L.A, TangDu Hospital, Fourth Military Medical University, #1, Xinsi Road, Baqiao District, Xi'an 710038, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Hu H, Deng C, Yang T, Dong Q, Chen Y, Nice EC, Huang C, Wei Y. Proteomics revisits the cancer metabolome. Expert Rev Proteomics 2011; 8:505-533. [DOI: 10.1586/epr.11.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
22
|
Johnson C, Tinti M, Wood NT, Campbell DG, Toth R, Dubois F, Geraghty KM, Wong BHC, Brown LJ, Tyler J, Gernez A, Chen S, Synowsky S, MacKintosh C. Visualization and biochemical analyses of the emerging mammalian 14-3-3-phosphoproteome. Mol Cell Proteomics 2011; 10:M110.005751. [PMID: 21725060 PMCID: PMC3205853 DOI: 10.1074/mcp.m110.005751] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease.
Collapse
Affiliation(s)
- Catherine Johnson
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alam H, Kundu ST, Dalal SN, Vaidya MM. Loss of keratins 8 and 18 leads to alterations in α6β4-integrin-mediated signalling and decreased neoplastic progression in an oral-tumour-derived cell line. J Cell Sci 2011; 124:2096-106. [PMID: 21610092 DOI: 10.1242/jcs.073585] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Keratins 8 and 18 (K8 and K18) are predominantly expressed in simple epithelial tissues and perform both mechanical and regulatory functions. Aberrant expression of K8 and K18 is associated with neoplastic progression and invasion in squamous cell carcinomas (SCCs). To understand the molecular basis by which K8 promotes neoplastic progression in oral SCC (OSCC), K8 expression was inhibited in AW13516 cells. The K8-knockdown clones showed a significant reduction in tumorigenic potential, which was accompanied by a reduction in cell motility, cell invasion, decreased fascin levels, alterations in the organization of the actin cytoskeleton and changes in cell shape. Furthermore, K8 knockdown led to a decrease in α6β4 integrin levels and α6β4-integrin-dependent signalling events, which have been reported to play an important role in neoplastic progression in epithelial tissues. Therefore, modulation of α6β4 integrin signalling might be one of the mechanisms by which K8 and K18 promote malignant transformation and/or progression in OSCCs.
Collapse
Affiliation(s)
- Hunain Alam
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | | | | |
Collapse
|