1
|
Zu G, Sun Z, Chen Y, Geng J, Lv J, You Z, Jiang C, Sheng Q, Nie Z. The acetyltransferase BmCBP changes the acetylation modification of BmSP3 and affects its protein expression in silkworm, Bombyx mori. Mol Biol Rep 2023; 50:8509-8521. [PMID: 37642757 DOI: 10.1007/s11033-023-08699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Protein acetylation is an important post-translational modification (PTM) that widely exists in organisms. As a reversible PTM, acetylation modification can regulate the function of proteins with high efficiency. In the previous study, the acetylation sites of silkworm proteins were identified on a large scale by nano-HPLC/MS/MS (nanoscale high performance liquid chromatography-tandem secondary mass spectrometry), and a total of 11 acetylation sites were discovered on Bombyx mori nutrient-storage protein SP3 (BmSP3). The purpose of this study was to investigate the effect of acetylation level on BmSP3. METHODS AND RESULTS In this study, the acetylation of BmSP3 was further verified by immunoprecipitation (IP) and Western blotting. Then, it was confirmed that acetylation could up-regulate the expression of BmSP3 by improving its protein stability in BmN cells. Co-IP and RNAi experiments showed acetyltransferase BmCBP could bind to BmSP3 and catalyze its acetylation modification, then regulate the expression of BmSP3. Furthermore, the knock-down of BmCBP could improve the ubiquitination level of BmSP3. Both acetylation and ubiquitination occur on the side chain of lysine residues, therefore, we speculated that the acetylation of BmSP3 catalyzed by BmCBP could competitively inhibit its ubiquitination modification and improve its protein stability by inhibiting ubiquitin-mediated proteasome degradation pathway, and thereby increase the expression and intracellular accumulation. CONCLUSIONS BmCBP catalyzes the acetylation of BmSP3 and may improve the stability of BmSP3 by competitive ubiquitination. This conclusion provides a new functional basis for the extensive involvement of acetylation in the regulation of nutrient storage and utilization in silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Guowei Zu
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yanmei Chen
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiasheng Geng
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
2
|
Bai YJ, Li YM, Hu SM, Zou YG, An YF, Wang LL, Shi YY. Vitamin D supplementation reduced blood inflammatory cytokines expression and improved graft function in kidney transplant recipients. Front Immunol 2023; 14:1152295. [PMID: 37483634 PMCID: PMC10358325 DOI: 10.3389/fimmu.2023.1152295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Chronic allograft dysfunction(CAD) is the leading cause of graft loss in kidney transplant recipients (KTRs). Inflammatory process is believed to be one of the major contributors to CAD. The aim of this study is to explore the anti-inflammatory effect of vitamin D (VD) supplementation in KTRs and its role in the graft function improvement(protection). Methods A retrospective cohort of 39 KTRs with chronic antibody mediated rejection(CAMR)or stable renal function and a prospective cohort of 42 KTRs treated or untreated with VD were enrolled. Serum levels of vitamin D metabolism and serum inflammatory cytokines, renal graft function, and routine blood biomarkers were tested and dynamically tracked within 12 months post-transplant. Results Compared with the stable group, the CAMR group exhibited significantly elevated serum levels of inflammatory cytokines IL-1β, IFN-γ, IL-2, IL-10, IP-10, and HMGB1 (P <0.05). The supplementation of vitamin D effectively increased the serum concentration of vitamin D in kidney transplant recipients (KTRs) in the treated group. During the course of treatment, the treated group exhibited a gradual increase in eGFR levels, which were significantly higher than those observed in the untreated group at 12 months post-transplant (p<0.05). Notably, as eGFR improved, there was a significant decrease in levels of IL-1β, IFN-γ, IL-2, IL-10, IP-10 and HMGB1 in the treated group compared to the untreated group (P<0.05). Conclusion This study confirmed that immune-inflammation is a crucial factor in the development of CAD in KTRs.VD deficiency impairs its anti-inflammatory activity. By assisting in the regulation of excessive immune inflammation and restoration of immune homeostasis, effective VD supplementation contributes to protection and maintenance of graft function in KTRs.
Collapse
Affiliation(s)
- Yang-Juan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Mei Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shu-Meng Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Gao Zou
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei An
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan-Lan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Ying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Huang D, Guo Y, Li X, Pan M, Liu J, Zhang W, Mai K. Vitamin D 3/VDR inhibits inflammation through NF-κB pathway accompanied by resisting apoptosis and inducing autophagy in abalone Haliotis discus hannai. Cell Biol Toxicol 2023; 39:885-906. [PMID: 34637036 DOI: 10.1007/s10565-021-09647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
Vitamin D3 is believed to be a contributing factor to innate immunity. Vitamin D receptor (VDR) has a positive effect on inhibiting nuclear factor κB (NF-κB)-mediated inflammation. The underlying molecular mechanisms remain unclear, particularly in mollusks. Consequently, this study will investigate the process of vitamin D3/VDR regulating NF-κB pathway and further explore their functions on inflammation, autophagy, and apoptosis in abalone Haliotis discus hannai. Results showed that knockdown of VDR by using siRNA and dsRNA of VDR in vitro and in vivo led to more intense response of NF-κB signaling to lipopolysaccharide and higher level of apoptosis and autophagy. In addition, 1,25(OH)2D3 stimulation after VDR silencing could partially alleviate apoptosis and induce autophagy. Overexpression of VDR restricted the K48-polyubiquitin chain-dependent inhibitor of κB (IκB) ubiquitination and apoptosis-associated speck-like protein containing CARD (ASC) oligomerization. Besides, VDR silencing resulted in increase of ASC speck formation. In further mechanistic studies, we showed that VDR can directly bind to IκB and IKK1 in vitro and in vivo. In the feeding trial, H&E staining, TUNEL, and electron microscope results showed that vitamin D3 deficiency (0 IU/kg) could recruit more basophilic cells and increase more TUNEL-positive apoptotic cells and lipid droplets (LDs) than vitamin D3 supplement (1000 IU/kg and 5000 IU/kg). In summary, abalone VDR plays a negative regulator role in NF-κB-mediated inflammation via interacting with IκB and inhibiting ubiquitin-dependent degradation of IκB. Vitamin D3 in combination with VDR is essential to establish a delicate balance between autophagy and apoptosis in response to inflammation.
Collapse
Affiliation(s)
- Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yanlin Guo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
4
|
Sharma A, Yu Y, Lu J, Lu L, Zhang YG, Xia Y, Sun J, Claud EC. The Impact of Maternal Probiotics on Intestinal Vitamin D Receptor Expression in Early Life. Biomolecules 2023; 13:847. [PMID: 37238716 PMCID: PMC10216467 DOI: 10.3390/biom13050847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D signaling via the Vitamin D Receptor (VDR) has been shown to protect against intestinal inflammation. Previous studies have also reported the mutual interactions of intestinal VDR and the microbiome, indicating a potential role of probiotics in modulating VDR expression. In preterm infants, although probiotics have been shown to reduce the incidence of necrotizing enterocolitis (NEC), they are not currently recommended by the FDA due to potential risks in this population. No previous studies have delved into the effect of maternally administered probiotics on intestinal VDR expression in early life. Using an infancy mouse model, we found that young mice exposed to maternally administered probiotics (SPF/LB) maintained higher colonic VDR expression than our unexposed mice (SPF) in the face of a systemic inflammatory stimulus. These findings indicate a potential role for microbiome-modulating therapies in preventing diseases such as NEC through the enhancement of VDR signaling.
Collapse
Affiliation(s)
- Anita Sharma
- Division of Pediatric Gastroenterology, C.S. Mott Children’s Hospital, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yueyue Yu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jing Lu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Lei Lu
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Erika C. Claud
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Cheng M, Song Z, Guo Y, Luo X, Li X, Wu X, Gong Y. 1α,25-Dihydroxyvitamin D 3 Improves Follicular Development and Steroid Hormone Biosynthesis by Regulating Vitamin D Receptor in the Layers Model. Curr Issues Mol Biol 2023; 45:4017-4034. [PMID: 37232725 DOI: 10.3390/cimb45050256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
1α,25-Dihydroxyvitamin D3 (VitD3) is the active form of vitamin D, and it regulates gene expression and protein synthesis in mammalian follicle development. However, the function of VitD3 in the follicular development of layers remains unclear. This study investigated, through in vivo and in vitro experiments, the effects of VitD3 on follicle development and steroid hormone biosynthesis in young layers. In vivo, ninety 18-week-old Hy-Line Brown laying hens were randomly divided into three groups for different treatments of VitD3 (0, 10, and 100 μg/kg). VitD3 supplementation promoted follicle development, increasing the number of small yellow follicles (SYFs) and large yellow follicles (LYFs) and the thickness of the granulosa layer (GL) of SYFs. Transcriptome analysis revealed that VitD3 supplementation altered gene expression in the ovarian steroidogenesis, cholesterol metabolism, and glycerolipid metabolism signaling pathways. Steroid hormone-targeted metabolomics profiling identified 20 steroid hormones altered by VitD3 treatment, with 5 being significantly different among the groups. In vitro, it was found that VitD3 increased cell proliferation, promoted cell-cycle progression, regulated the expression of cell-cycle-related genes, and inhibited the apoptosis of granulosa cells from pre-hierarchical follicles (phGCs) and theca cells from prehierarchical follicles (phTCs). In addition, the steroid hormone biosynthesis-related genes, estradiol (E2) and progesterone (P4) concentrations, and vitamin D receptor (VDR) expression level was significantly altered by VitD3. Our findings identified that VitD3 altered the gene expression related to steroid metabolism and the production of testosterone, estradiol, and progesterone in the pre-hierarchical follicles (PHFs), resulting in positive effects on poultry follicular development.
Collapse
Affiliation(s)
- Manman Cheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenquan Song
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuliang Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Hamza FN, Daher S, Fakhoury HMA, Grant WB, Kvietys PR, Al-Kattan K. Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients 2023; 15:nu15071696. [PMID: 37049536 PMCID: PMC10097244 DOI: 10.3390/nu15071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Vitamin D plays a crucial role in modulating the innate immune response by interacting with its intracellular receptor, VDR. In this review, we address vitamin D/VDR signaling and how it contributes to the regulation of intestinal and respiratory microbiota. We additionally review some components of the innate immune system, such as the barrier function of the pulmonary and intestinal epithelial membranes and secretion of mucus, with their respective modulation by vitamin D. We also explore the mechanisms by which this vitamin D/VDR signaling mounts an antimicrobial response through the transduction of microbial signals and the production of antimicrobial peptides that constitute one of the body’s first lines of defense against pathogens. Additionally, we highlight the role of vitamin D in clinical diseases, namely inflammatory bowel disease and acute respiratory distress syndrome, where excessive inflammatory responses and dysbiosis are hallmarks. Increasing evidence suggests that vitamin D supplementation may have potentially beneficial effects on those diseases.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Sarah Daher
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Hana M. A. Fakhoury
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Correspondence:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Peter R. Kvietys
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
7
|
Zheng L, Yang Q, Li F, Zhu M, Yang H, Tan T, Wu B, Liu M, Xu C, Yin J, Cao C. The Glycosylation of Immune Checkpoints and Their Applications in Oncology. Pharmaceuticals (Basel) 2022; 15:ph15121451. [PMID: 36558902 PMCID: PMC9783268 DOI: 10.3390/ph15121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor therapies have entered the immunotherapy era. Immune checkpoint inhibitors have achieved tremendous success, with some patients achieving long-term tumor control. Tumors, on the other hand, can still accomplish immune evasion, which is aided by immune checkpoints. The majority of immune checkpoints are membrane glycoproteins, and abnormal tumor glycosylation may alter how the immune system perceives tumors, affecting the body's anti-tumor immunity. Furthermore, RNA can also be glycosylated, and GlycoRNA is important to the immune system. Glycosylation has emerged as a new hallmark of tumors, with glycosylation being considered a potential therapeutic approach. The glycosylation modification of immune checkpoints and the most recent advances in glycosylation-targeted immunotherapy are discussed in this review.
Collapse
Affiliation(s)
- Linlin Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qi Yang
- Biotherapy Center, Third Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Feifei Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Min Zhu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haochi Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian Tan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Binghuo Wu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Mingxin Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jun Yin
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Correspondence: (J.Y.); (C.C.)
| | - Chenhui Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Correspondence: (J.Y.); (C.C.)
| |
Collapse
|
8
|
Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B, Astier A, Thouvenot E. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun 2022; 4:fcac171. [PMID: 35813882 PMCID: PMC9260308 DOI: 10.1093/braincomms/fcac171] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood–brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood–brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D.
Collapse
Affiliation(s)
- Manon Galoppin
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
| | - Saniya Kari
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Arindam Pal
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Manon Rival
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| | | | - Anne Astier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Eric Thouvenot
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| |
Collapse
|
9
|
Zhang Y, Garrett S, Carroll RE, Xia Y, Sun J. Vitamin D receptor upregulates tight junction protein claudin-5 against colitis-associated tumorigenesis. Mucosal Immunol 2022; 15:683-697. [PMID: 35338345 PMCID: PMC9262815 DOI: 10.1038/s41385-022-00502-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
Tight junctions are essential for barrier integrity, inflammation, and cancer. Vitamin D and the vitamin D receptor (VDR) play important roles in colorectal cancer (CRC). Using the human CRC database, we found colonic VDR expression was low and significantly correlated with a reduction of Claudin-5 mRNA and protein. In the colon of VDRΔIEC mice, deletion of intestinal VDR led to lower protein and mRNA levels of Claudin-5. Intestinal permeability was increased in the VDR-/- colon cancer model. Lacking VDR and a reduction of Claudin-5 are associated with an increased number of tumors in the VDR-/- and VDRΔIEC mice. Furthermore, gain and loss functional studies have identified CLDN-5 as a downstream target of VDR. We identified the Vitamin D response element (VDRE) binding sites in a reporter system showed that VDRE in the Claudin-5 promoter is required for vitamin D3-induced Claudin-5 expression. Conditional epithelial VDR overexpression protected against the loss of Claudin-5 in response to inflammation and tumorigenesis in vivo. We also reported fecal VDR reduction in a colon cancer model. This study advances the understanding of how VDR regulates intestinal barrier functions in tumorigenesis and the possibility for identifying new biomarker and therapeutic targets to restore VDR-dependent functions in CRC.
Collapse
Affiliation(s)
- Yongguo Zhang
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shari Garrett
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology/Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert E. Carroll
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology/Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Jesse Brown VA Medical Center Chicago, IL (537), USA
| |
Collapse
|
10
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
11
|
Rinninella E, Mele MC, Raoul P, Cintoni M, Gasbarrini A. Vitamin D and colorectal cancer: Chemopreventive perspectives through the gut microbiota and the immune system. Biofactors 2022; 48:285-293. [PMID: 34559412 PMCID: PMC9293134 DOI: 10.1002/biof.1786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Vitamin D and its receptor are involved in health and diseases through multiple mechanisms including the immune system and gut microbiota modulations. Gut microbiota variations have huge implications in intestinal and extra-intestinal disorders such as colorectal cancer (CRC). This review highlights the preventive role of vitamin D in colorectal tumorigenesis through the effects on the immune system and gut microbiota modulation. The different associations between vitamin D, gut microbial homeostasis, immune system, and CRC, are dissected. Vitamin D is supposed to exert several chemopreventive effects on CRC including direct antineoplastic mechanisms, the effects on the immune system, and gut microbiota modulation. Large clinical studies with a randomized design, are required to confirm the role of vitamin D in CRC, confirming its key role in the complex interplay between the gut immune system and microbiota.
Collapse
Affiliation(s)
- Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e ChirurgicheFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Maria Cristina Mele
- Dipartimento di Medicina e Chirurgia TraslazionaleUniversità Cattolica Del Sacro CuoreRomeItaly
- UOSD di Nutrizione Avanzata in Oncologia, Dipartimento di Scienze Mediche e ChirurgicheFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Pauline Raoul
- Dipartimento di Medicina e Chirurgia TraslazionaleUniversità Cattolica Del Sacro CuoreRomeItaly
- UOSD di Nutrizione Avanzata in Oncologia, Dipartimento di Scienze Mediche e ChirurgicheFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Marco Cintoni
- Scuola di Specializzazione in Scienza dell'AlimentazioneUniversità di Roma Tor VergataRomeItaly
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia TraslazionaleUniversità Cattolica Del Sacro CuoreRomeItaly
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e ChirurgicheFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| |
Collapse
|
12
|
Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3447. [PMID: 33760363 DOI: 10.1002/dmrr.3447] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis. Vitamin D, traditionally known as an essential nutrient crucial in bone metabolism, has also been proven to be a very effective antioxidant. It has been demonstrated that it modulates the production of advanced glycosylated end products, as well as several pathways including protein kinase C, the polyol pathway leading to the reduction of free radical formation. It prevents the translocation of nuclear factor kappa B, preventing the inflammatory response, acting as an immunomodulator, and modulates autophagy and apoptosis. In this review, we explore the molecular mechanisms by which vitamin D protects the eye from oxidative stress, in order to evaluate whether vitamin D supplementation may be useful to mitigate the deleterious effects of free radicals in DR.
Collapse
Affiliation(s)
- Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Endoplasmic reticulum stress in intestinal inflammation: implications of bile acids. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Jiang S, Zhang H, Li X, Yi B, Huang L, Hu Z, Li A, Du J, Li Y, Zhang W. Vitamin D/VDR attenuate cisplatin-induced AKI by down-regulating NLRP3/Caspase-1/GSDMD pyroptosis pathway. J Steroid Biochem Mol Biol 2021; 206:105789. [PMID: 33259938 DOI: 10.1016/j.jsbmb.2020.105789] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Vitamin D/Vitamin D receptor (VDR) has been shown to inhibit the NF-κB-mediated inflammatory effects. Up-regulation of the NLRP3(Recombinant NLR Family, Pyrin Domain Containing Protein 3)/Caspase-1/GSDMD (Gasdermin D) pathway through NF-κb is one of the key mechanisms leading to pyroptosis. This study aims to explore the effects of vitamin D/VDR on the pyroptosis pathway in cisplatin induced acute kidney injury (AKI) models. Our results showed that in wide type mice, renal function loss, tissue injury and cell death induced by cisplatin were alleviated by pretreatment of high-dose paricalcitol(a VDR agonist) accompanied with up-regulated VDR and decreased expression of NLRP3, GSDMD-N, Cleaved-Caspase-1 and mature Interleukin- 1β (features of pyroptosis). While, in VDR knock out mice, cisplatin induced more severer renal injury and further increased pyroptosis related protein than the wild type mice and the effect of paricalcitol were also eliminated. In tubular cell specific VDR-over expressing mice, those renal injury index as well as pyroptosis phenotype were significantly reduced by low-dose paricalcitol pretreatment with upregulated VDR expression compared with WT mice. In vitro data using gain and lose function experiments in Human tubular epithelial cell (HK-2) were consistent with the observation as in vivo work. Our further experiments in both animal and cell culture work has found that the level of IκBα(Inhibitor of NF-κB) were decreased and the nuclear level of NF-κB p65 of renal tubular cells were increased after cisplatin injury while VDR activation by paricalcitol could reverse up-regulation of nuclear NF-κB p65 with reduced cell pyroptosis. These data suggested that vitamin D/VDR could alleviate cisplatin-induced acute renal injury partly by inhibiting NF-κB-mediated NLRP3/Caspase-1/GSDMD pyroptosis.
Collapse
Affiliation(s)
- Siqing Jiang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Hao Zhang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Xin Li
- Department of Pain, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bin Yi
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Lihua Huang
- Center for Medical Experiments, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhaoxin Hu
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Aimei Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jie Du
- Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Yanchun Li
- Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Wei Zhang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
15
|
Zhang YG, Lu R, Wu S, Chatterjee I, Zhou D, Xia Y, Sun J. Vitamin D Receptor Protects Against Dysbiosis and Tumorigenesis via the JAK/STAT Pathway in Intestine. Cell Mol Gastroenterol Hepatol 2020; 10:729-746. [PMID: 32497792 PMCID: PMC7498955 DOI: 10.1016/j.jcmgh.2020.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Vitamin D exerts regulatory roles via vitamin D receptor (VDR) in mucosal immunity, host defense, and inflammation involving host factors and microbiome. Human Vdr gene variation shapes the microbiome and VDR deletion leads to dysbiosis. Low VDR expression and diminished vitamin D/VDR signaling are observed in colon cancer. Nevertheless, how intestinal epithelial VDR is involved in tumorigenesis through gut microbiota remains unknown. We hypothesized that intestinal VDR protects mice against dysbiosis via modulating the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in tumorigenesis. METHODS To test our hypothesis, we used an azoxymethane/dextran sulfate sodium-induced cancer model in intestinal VDR conditional knockout (VDRΔIEC) mice, cell cultures, stem cell-derived colonoids, and human colon cancer samples. RESULTS VDRΔIEC mice have higher numbers of tumors, with the location shifted from the distal to proximal colon. Fecal microbiota analysis showed that VDR deletion leads to a bacterial profile shift from normal to susceptible carcinogenesis. We found enhanced bacterial staining in mouse and human tumors. Microbial metabolites from VDRΔIEC mice showed increased secondary bile acids, consistent with observations in human CRC. We further identified that VDR protein bound to the Jak2 promoter, suggesting that VDR transcriptionally regulated Jak2. The JAK/STAT pathway is critical in intestinal and microbial homeostasis. Fecal samples from VDRΔIEC mice activate the STAT3 signaling in human and mouse organoids. Lack of VDR led to hyperfunction of Jak2 in response to intestinal dysbiosis. A JAK/STAT inhibitor abolished the microbiome-induced activation of STAT3. CONCLUSIONS We provide insights into the mechanism of VDR dysfunction leading to dysbiosis and tumorigenesis. It indicates a new target: microbiome and VDR for the prevention of cancer.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shaoping Wu
- Department of Biochemistry, Rush University, Chicago, Illinois
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - David Zhou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois,University of Illinois at Chicago Cancer Center, University of Illinois at Chicago, Chicago, Illinois,Correspondence Address correspondence to: Jun Sun, PhD, AGAF, FAPS, Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, MC716 Chicago, Illinois 60612. fax: (312) 996-6010.
| |
Collapse
|
16
|
Zhang Y, Cai JZ, Xiao L, Chung HK, Ma XX, Chen LL, Rao JN, Wang JY. RNA-binding protein HuR regulates translation of vitamin D receptor modulating rapid epithelial restitution after wounding. Am J Physiol Cell Physiol 2020; 319:C208-C217. [PMID: 32432928 DOI: 10.1152/ajpcell.00009.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Homeostasis of the intestinal epithelium is tightly regulated by numerous extracellular and intracellular factors including vitamin D and the vitamin D receptor (VDR). VDR is highly expressed in the intestinal epithelium and is implicated in many aspects of gut mucosal pathophysiology, but the exact mechanism that controls VDR expression remains largely unknown. The RNA-binding protein human antigen R (HuR) regulates the stability and translation of target mRNAs and thus modulates various cellular processes and functions. Here we report a novel role of HuR in the posttranscriptional control of VDR expression in the intestinal epithelium. The levels of VDR in the intestinal mucosa decreased significantly in mice with ablated HuR, compared with control mice. HuR silencing in cultured intestinal epithelial cells (IECs) also reduced VDR levels, whereas HuR overexpression increased VDR abundance; neither intervention changed cellular Vdr mRNA content. Mechanistically, HuR bound to Vdr mRNA via its 3'-untranslated region (UTR) and enhanced VDR translation in IECs. Moreover, VDR silencing not only inhibited IEC migration over the wounded area in control cells but also prevented the increased migration in cells overexpressing HuR, although it did not alter IEC proliferation in vitro and growth of intestinal organoids ex vivo. The human intestinal mucosa from patients with inflammatory bowel diseases exhibited decreased levels of both HuR and VDR. These results indicate that HuR enhances VDR translation by directly interacting with its mRNA via 3'-UTR and that induced VDR by HuR is crucial for rapid intestinal epithelial restitution after wounding.
Collapse
Affiliation(s)
- Yunzhan Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jia-Zhong Cai
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hee K Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Xiang-Xue Ma
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lin-Lin Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Baltimore Veterans Affairs Medical Center, Baltimore, Maryland.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Hu X, Liu W, Yan Y, Liu H, Huang Q, Xiao Y, Gong Z, Du J. Vitamin D protects against diabetic nephropathy: Evidence-based effectiveness and mechanism. Eur J Pharmacol 2018; 845:91-98. [PMID: 30287151 DOI: 10.1016/j.ejphar.2018.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/06/2018] [Accepted: 09/27/2018] [Indexed: 02/08/2023]
Abstract
Vitamin D has been suggested to harbor multiple biological activities, among them the potential of vitamin D in the protection of diabetic nephropathy (DN) has attracted special attention. Both animal studies and clinical trials have documented an inverse correlation between low vitamin D levels and DN risk, and supplementation with vitamin D or its active derivatives has been demonstrated to improve endothelial cell injury, reduce proteinuria, attenuate renal fibrosis, and resultantly retard DN progression. Vitamin D exerts its pharmacological effects primarily via vitamin D receptor, whose activation inhibits the renin-angiotensin system, a key culprit for DN under hyperglycemia. The anti-DN benefit of vitamin D can be enhanced when administrated in combination with angiotensin converting enzyme inhibitors or angiotensin II receptor blockers. Mechanistic studies reveal that pathways relevant to inflammation participate in the pathogenesis of DN, however, consumption of vitamin D-related products negatively regulates inflammatory response at multiple levels, indicated by inhibiting macrophage infiltration, nuclear factor-kappa B (NF-κB) activation, and production of such inflammatory mediators as transforming growth factor-β(TGF-β), monocyte chemoattractant protein 1(MCP-1), and regulated upon activation normal T cell expressed and secreted protein(RANTES). The robust anti-inflammatory property of vitamin D-related products allows them with a promising renoprotective therapeutic option for DN. This review summarizes new advances in our understanding of vitamin D-related products in the DN management.
Collapse
Affiliation(s)
- Xiaofang Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wanli Liu
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 410013, Henan, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yi Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
18
|
Bakke D, Chatterjee I, Agrawal A, Dai Y, Sun J. Regulation of Microbiota by Vitamin D Receptor: A Nuclear Weapon in Metabolic Diseases. NUCLEAR RECEPTOR RESEARCH 2018; 5:101377. [PMID: 30828578 PMCID: PMC6392192 DOI: 10.11131/2018/101377] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a multi-faceted disease. The microbiota, as a newly discovered organ, contributes to the pathogenesis and progression of metabolic syndrome. Recent studies have demonstrated that nuclear receptors play critical roles in metabolic diseases. In the current review, we discuss the general role of the microbiome in health and metabolic syndrome. We summarize the functions of the nuclear receptor vitamin D receptor (VDR) in metabolism. The focus of this review is the novel roles of vitamin D/VDR signaling in regulating inflammation and the microbiome, especially in obesity. Furthermore, we extend our discussion of potential gut-liver axis mediated by VDR signaling and microbiota in obesity. Finally, we discuss the potential clinical application of probiotics and fecal microbiota transplantation in prevention and treatment of metabolic syndrome. Insights into nuclear receptors in metabolism and metabolic diseases will allow us to develop new strategies for fighting metabolic diseases.
Collapse
Affiliation(s)
- Danika Bakke
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| | - Annika Agrawal
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering/College of Medicine, University of Illinois at Chicago, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Medicine, University of Illinois at Chicago, USA
| |
Collapse
|
19
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
20
|
Gisbert-Ferrándiz L, Salvador P, Ortiz-Masiá D, Macías-Ceja DC, Orden S, Esplugues JV, Calatayud S, Hinojosa J, Barrachina MD, Hernández C. A Single Nucleotide Polymorphism in the Vitamin D Receptor Gene Is Associated With Decreased Levels of the Protein and a Penetrating Pattern in Crohn's Disease. Inflamm Bowel Dis 2018; 24:1462-1470. [PMID: 29788141 DOI: 10.1093/ibd/izy094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Vitamin D signaling modulates inflammation through the vitamin D receptor (VDR). The synonymous single nucleotide polymorphism (SNP) rs731236, located in the VDR gene, has been associated with a higher risk of Crohn's disease (CD). We analyzed differences in VDR expression levels among CD patients who were homozygous for allelic variants in this SNP and their relevance for disease course. METHODS DNA was extracted from blood samples of CD patients, and SNP genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism. Fresh blood from patients was used to isolate peripheral blood mononuclear cells (PBMCs) or to determine the expression of adhesion molecules by flow cytometry. We analyzed the gene expression of VDR and several cytokines in PBMCs using real-time polymerase chain reaction and the protein levels of VDR, NFκB, and IκBα by immunoblot. In addition, we collected complete clinical data for a group of 103 patients, including age at diagnosis, disease location, and disease behavior to compare patient characteristics with respect to genotype. RESULTS We found that CD patients who were homozygous for the risk allele presented lower levels of VDR protein in PBMCs, and that this was associated with an upregulation of IL1β mRNA and activation of lymphocytic adhesion molecules. These patients had a higher risk of developing a B3-penetrating phenotype and of needing to undergo surgery. CONCLUSION Our data highlight the relevance of vitamin D/VDR signaling in modulating the subjacent inflammation that leads to CD-related complications.
Collapse
Affiliation(s)
| | - Pedro Salvador
- Departamento de Farmacología and CIBERehd, Valencia, Spain
| | - Dolores Ortiz-Masiá
- Departamento de Medicina and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - Juan Vicente Esplugues
- Departamento de Farmacología and CIBERehd, Valencia, Spain.,FISABIO, Hospital Dr. Peset, Valencia, Spain
| | - Sara Calatayud
- Departamento de Farmacología and CIBERehd, Valencia, Spain
| | - Joaquín Hinojosa
- Servicio de Gastroenterología, Hospital de Manises, Valencia, Spain
| | | | - Carlos Hernández
- Departamento de Farmacología and CIBERehd, Valencia, Spain.,FISABIO, Hospital Dr. Peset, Valencia, Spain
| |
Collapse
|
21
|
Wang SL, Shao BZ, Zhao SB, Fang J, Gu L, Miao CY, Li ZS, Bai Y. Impact of Paneth Cell Autophagy on Inflammatory Bowel Disease. Front Immunol 2018; 9:693. [PMID: 29675025 PMCID: PMC5895641 DOI: 10.3389/fimmu.2018.00693] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Intestinal mucosal barrier, mainly consisting of the mucus layer and epithelium, functions in absorbing nutrition as well as prevention of the invasion of pathogenic microorganisms. Paneth cell, an important component of mucosal barrier, plays a vital role in maintaining the intestinal homeostasis by producing antimicrobial materials and controlling the host-commensal balance. Current evidence shows that the dysfunction of intestinal mucosal barrier, especially Paneth cell, participates in the onset and progression of inflammatory bowel disease (IBD). Autophagy, a cellular stress response, involves various physiological processes, such as secretion of proteins, production of antimicrobial peptides, and degradation of aberrant organelles or proteins. In the recent years, the roles of autophagy in the pathogenesis of IBD have been increasingly studied. Here in this review, we mainly focus on describing the roles of Paneth cell autophagy in IBD as well as several popular autophagy-related genetic variants in Penath cell and the related therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Bo-Zong Shao
- Department of Pharmocology, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lun Gu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmocology, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University and Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Pretorius E, Bester J, Kell DB. A Bacterial Component to Alzheimer's-Type Dementia Seen via a Systems Biology Approach that Links Iron Dysregulation and Inflammagen Shedding to Disease. J Alzheimers Dis 2018; 53:1237-56. [PMID: 27340854 PMCID: PMC5325058 DOI: 10.3233/jad-160318] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The progression of Alzheimer's disease (AD) is accompanied by a great many observable changes, both molecular and physiological. These include oxidative stress, neuroinflammation, and (more proximal to cognitive decline) the death of neuronal and other cells. A systems biology approach seeks to organize these observed variables into pathways that discriminate those that are highly involved (i.e., causative) from those that are more usefully recognized as bystander effects. We review the evidence that iron dysregulation is one of the central causative pathway elements here, as this can cause each of the above effects. In addition, we review the evidence that dormant, non-growing bacteria are a crucial feature of AD, that their growth in vivo is normally limited by a lack of free iron, and that it is this iron dysregulation that is an important factor in their resuscitation. Indeed, bacterial cells can be observed by ultrastructural microscopy in the blood of AD patients. A consequence of this is that the growing cells can shed highly inflammatory components such as lipopolysaccharides (LPS). These too are known to be able to induce (apoptotic and pyroptotic) neuronal cell death. There is also evidence that these systems interact with elements of vitamin D metabolism. This integrative systems approach has strong predictive power, indicating (as has indeed been shown) that both natural and pharmaceutical iron chelators might have useful protective roles in arresting cognitive decline, and that a further assessment of the role of microbes in AD development is more than highly warranted.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, Lancs, UK.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancs, UK.,Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, Lancs, UK
| |
Collapse
|
23
|
High phosphate induces a pro-inflammatory response by vascular smooth muscle cells and modulation by vitamin D derivatives. Clin Sci (Lond) 2017; 131:1449-1463. [DOI: 10.1042/cs20160807] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
Abstract
In chronic kidney disease patients, high phosphate (HP) levels are associated with cardiovascular disease, the major cause of morbidity and mortality. Since serum phosphate has been independently correlated with inflammation, the present study aimed to investigate an independent direct effect of HP as a pro-inflammatory factor in VSMCs. A possible modulatory effect of vitamin D (VitD) was also investigated. The study was performed in an in vitro model of human aortic smooth muscle cells (HASMCs). Incubation of cells in an HP (3.3 mM) medium caused an increased expression of the pro-inflammatory mediators intercellular adhesion molecule 1 (ICAM-1), interleukins (ILs) IL-1β, IL-6, IL-8 and tumour necrosis factor α (TNF-α) (not corroborated at the protein levels for ICAM-1), as well as an increase in reactive oxygen/nitrogen species (ROS/RNS) production. This was accompanied by the activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signalling as demonstrated by the increase in the nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κΒ) assessed by Western blotting and confocal microscopy. Since all these events were attenuated by an antioxidant pre-incubation with the radical scavenger Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), it is suggested that the inflammatory response is upstream mediated by the ROS/RNS-induced activation of NF-κΒ. Addition of paricalcitol (PC) 3·10−8 M to cells in HP prevented the phosphate induced ROS/RNS increase, the activation of NF-κΒ and the cytokine up-regulation. A bimodal effect was observed, however, for different calcitriol (CTR) concentrations, 10−10 and 10−12 M attenuated but 10−8 M stimulated this phosphate induced pro-oxidative and pro-inflammatory response. Therefore, these findings provide novel mechanisms whereby HP may directly favour vascular dysfunctions and new insights into the protective effects exerted by VitD derivatives.
Collapse
|
24
|
Newmark H, Dantoft W, Ghazal P. Evolutionary Origin of the Interferon-Immune Metabolic Axis: The Sterol-Vitamin D Link. Front Immunol 2017; 8:62. [PMID: 28232830 PMCID: PMC5298971 DOI: 10.3389/fimmu.2017.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/16/2017] [Indexed: 12/24/2022] Open
Abstract
In vertebrate animals, the sterol metabolic network is emerging as a central player in immunity and inflammation. Upon infection, flux in the network is acutely moderated by the interferon (IFN) response through direct molecular and bi-directional communications. How sterol metabolism became linked to IFN control and for what purpose is not obvious. Here, we deliberate on the origins of these connections based on a systematic review of the literature. A narrative synthesis of publications that met eligibility criteria allowed us to trace an evolutionary path and functional connections between cholesterol metabolism and immunity. The synthesis supports an ancestral link between toxic levels of cholesterol-like products and the vitamin D receptor (VDR). VDR is an ancient nuclear hormone receptor that was originally involved in the recognition and detoxification of xenobiotic marine biotoxins exhibiting planar sterol ring scaffolds present in aquatic environments. Coadaptation of this receptor with the acquisition of sterol biosynthesis and IFNs in vertebrate animals set a stage for repurposing and linking a preexisting host-protection mechanism of harmful xenobiotics to become an important regulator in three key interlinked biological processes: bone development, immunity, and calcium homeostasis. We put forward the hypothesis that sterol metabolites, especially oxysterols, have acted as evolutionary drivers in immunity and may represent the first example of small-molecule metabolites linked to the adaptive coevolution and diversification of host metabolic and immune regulatory pathways.
Collapse
Affiliation(s)
- Harry Newmark
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh , Edinburgh , UK
| | - Widad Dantoft
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh , Edinburgh , UK
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
25
|
Jin D, Zhang YG, Wu S, Lu R, Lin Z, Zheng Y, Chen H, Cs-Szabo G, Sun J. Vitamin D receptor is a novel transcriptional regulator for Axin1. J Steroid Biochem Mol Biol 2017; 165:430-437. [PMID: 27601169 PMCID: PMC5180453 DOI: 10.1016/j.jsbmb.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Axin1 is a scaffold protein in the β-catenin destruction complex, which, if disrupted, contributes to pathogenesis of various human diseases, including colorectal carcinogenesis and inflammatory bowel diseases (IBD). We have previously demonstrated that Salmonella infection promotes the degradation and plasma sequestration of Axin1, leading to bacterial invasiveness and inflammatory responses. Vitamin D and the vitamin D receptor (VDR) appear to be important regulators of IBD and colon cancer. Although VDR and Axin1 are all involved in intestinal inflammation, it remains unclear whether these processes are related or function independently. In the current study, we hypothesize that VDR is an important regulator for the maintenance of physiological level of Axin1. METHODS Using the intestinal epithelial conditional VDR knockout mouse model (VDRΔIEC) and cultured cell lines, influences of VDR status on the expression of Axin1 was evaluated by Western blots and real-time PCR. Loss- and gain-of-function assays were used to investigate the regulation of VDR on Axin1 at the transcriptional and translational levels. Cells were treated with cycloheximide or actinomycin for molecular mechanistic studies. Candidate genomic VDR binding sites for Axin1 were tested by chromatin immunoprecipitation (ChIP) assay. Physical interactions among VDR, Axin1, and β-catenin were tested by immunoprecipitation. Cellular localization of Axin1 with different VDR status was determined by fractionation and immunohistochemistry. RESULTS We found that VDR deletion led to lower protein and mRNA levels of Axin1, whereas knockdown of Axin1 did not change the expression level of VDR protein. Immunoprecipitation data did not support physical interaction between VDR and Axin1. The VDR regulation of Axin1 was through a VDR genomic binding site for Axin1 gene on the regulatory region. Fractionation data showed that cytosolic Axin1 was significantly reduced due to VDR deletion, leaving the nuclear fraction unchanged. In ileum, Axin1 was distributed in the cytosol of apical epithelium and crypts. CONCLUSION VDR is important for the maintenance of physiological level of Axin1. The discovery of Axin1 as a VDR target gene provides novel and fundamental insights into the interactions between the VDR and β-catenin signaling pathways.
Collapse
Affiliation(s)
- Dapeng Jin
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | - Yong-Guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shaoping Wu
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhijie Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yuanyuan Zheng
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | - Honglei Chen
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA
| | | | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL, 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
26
|
Patterns of Transcriptional Response to 1,25-Dihydroxyvitamin D3 and Bacterial Lipopolysaccharide in Primary Human Monocytes. G3-GENES GENOMES GENETICS 2016; 6:1345-55. [PMID: 26976439 PMCID: PMC4856085 DOI: 10.1534/g3.116.028712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), plays an important immunomodulatory role, regulating transcription of genes in the innate and adaptive immune system. The present study examines patterns of transcriptome-wide response to 1,25D, and the bacterial lipopolysaccharide (LPS) in primary human monocytes, to elucidate pathways underlying the effects of 1,25D on the immune system. Monocytes obtained from healthy individuals of African-American and European-American ancestry were treated with 1,25D, LPS, or both, simultaneously. The addition of 1,25D during stimulation with LPS induced significant upregulation of genes in the antimicrobial and autophagy pathways, and downregulation of proinflammatory response genes compared to LPS treatment alone. A joint Bayesian analysis enabled clustering of genes into patterns of shared transcriptional response across treatments. The biological pathways enriched within these expression patterns highlighted several mechanisms through which 1,25D could exert its immunomodulatory role. Pathways such as mTOR signaling, EIF2 signaling, IL-8 signaling, and Tec Kinase signaling were enriched among genes with opposite transcriptional responses to 1,25D and LPS, respectively, highlighting the important roles of these pathways in mediating the immunomodulatory activity of 1,25D. Furthermore, a subset of genes with evidence of interethnic differences in transcriptional response was also identified, suggesting that in addition to the well-established interethnic variation in circulating levels of vitamin D, the intensity of transcriptional response to 1,25D and LPS also varies between ethnic groups. We propose that dysregulation of the pathways identified in this study could contribute to immune-mediated disease risk.
Collapse
|
27
|
Ryz NR, Lochner A, Bhullar K, Ma C, Huang T, Bhinder G, Bosman E, Wu X, Innis SM, Jacobson K, Vallance BA. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G730-42. [PMID: 26336925 PMCID: PMC4628967 DOI: 10.1152/ajpgi.00006.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/27/2015] [Indexed: 01/31/2023]
Abstract
Vitamin D deficiency affects more that 1 billion people worldwide. Although thought to increase risk of bacterial infections, the importance of vitamin D on host defense against intestinal bacterial pathogens is currently unclear since injection of the active form of vitamin D, 1,25(OH)2D3, increased susceptibility to the enteric bacterial pathogen Citrobacter rodentium by suppressing key immune/inflammatory factors. To further characterize the role of vitamin D during bacteria-induced colitis, we fed weanling mice either vitamin D3-deficient or vitamin D3-sufficient diets for 5 wk and then challenged them with C. rodentium. Vitamin D3-deficient mice lost significantly more body weight, carried higher C. rodentium burdens, and developed worsened histological damage. Vitamin D3-deficient mice also suffered greater bacterial translocation to extra-intestinal tissues, including mesenteric lymph nodes, spleen, and liver. Intestinal tissues of infected vitamin D3-deficient mice displayed increased inflammatory cell infiltrates as well as significantly higher gene transcript levels of inflammatory mediators TNF-α, IL-1β, IL-6, TGF-β, IL-17A, and IL-17F as well as the antimicrobial peptide REG3γ. Notably, these exaggerated inflammatory responses accelerated the loss of commensal microbes and were associated with an impaired ability to detoxify bacterial lipopolysaccharide. Overall, these studies show that dietary-induced vitamin D deficiency exacerbates intestinal inflammatory responses to infection, also impairing host defense.
Collapse
Affiliation(s)
- Natasha R. Ryz
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Arion Lochner
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Kirandeep Bhullar
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Caixia Ma
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Tina Huang
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Ganive Bhinder
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Else Bosman
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Xiujuan Wu
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Sheila M. Innis
- 2Division of Neonatology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Bruce A. Vallance
- 1Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| |
Collapse
|
28
|
Wu S, Yoon S, Zhang YG, Lu R, Xia Y, Wan J, Petrof EO, Claud EC, Chen D, Sun J. Vitamin D receptor pathway is required for probiotic protection in colitis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G341-9. [PMID: 26159695 PMCID: PMC4556945 DOI: 10.1152/ajpgi.00105.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/26/2015] [Indexed: 02/08/2023]
Abstract
Low expression of vitamin D receptor (VDR) and dysfunction of vitamin D/VDR signaling are reported in patients with inflammatory bowel disease (IBD); therefore, restoration of VDR function to control inflammation in IBD is desirable. Probiotics have been used in the treatment of IBD. However, the role of probiotics in the modulation of VDR signaling to effectively reduce inflammation is unknown. We identified a novel role of probiotics in activating VDR activity, thus inhibiting inflammation, using cell models and VDR knockout mice. We found that the probiotics Lactobacillus rhamnosus strain GG (LGG) and Lactobacillus plantarum (LP) increased VDR protein expression in both mouse and human intestinal epithelial cells. Using the VDR luciferase reporter vector, we detected increased transcriptional activity of VDR after probiotic treatment. Probiotics increased the expression of the VDR target genes, such as antimicrobial peptide cathelicidin, at the transcriptional level. Furthermore, the role of probiotics in regulating VDR signaling was tested in vivo using a Salmonella-colitis model in VDR knockout mice. Probiotic treatment conferred physiological and histologic protection from Salmonella-induced colitis in VDR(+/+) mice, whereas probiotics had no effects in the VDR(-/-) mice. Probiotic treatment also enhanced numbers of Paneth cells, which secrete AMPs for host defense. These data indicate that the VDR pathway is required for probiotic protection in colitis. Understanding how probiotics enhance VDR signaling and inhibit inflammation will allow probiotics to be used effectively, resulting in innovative approaches to the prevention and treatment of chronic inflammation.
Collapse
Affiliation(s)
- Shaoping Wu
- 1Department of Biochemistry, Rush University, Chicago, Illinois;
| | - Sonia Yoon
- 2Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York;
| | - Yong-Guo Zhang
- 1Department of Biochemistry, Rush University, Chicago, Illinois;
| | - Rong Lu
- 1Department of Biochemistry, Rush University, Chicago, Illinois;
| | - Yinglin Xia
- 3Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York;
| | - Jiandi Wan
- 4Microsystems Engineering, Rochester Institute of Technology, Rochester, New York;
| | - Elaine O. Petrof
- 5Department of Medicine, Gastrointestinal Diseases Research Unit and Division of Infectious Diseases, Queen's University, Kingston, Ontario, Canada; and
| | - Erika C. Claud
- 6Departments of Pediatrics and Medicine, The University of Chicago Medical Center, Chicago, Illinois
| | - Di Chen
- 1Department of Biochemistry, Rush University, Chicago, Illinois;
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, Illinois;
| |
Collapse
|
29
|
Zhang YG, Wu S, Lu R, Zhou D, Zhou J, Carmeliet G, Petrof E, Claud EC, Sun J. Tight junction CLDN2 gene is a direct target of the vitamin D receptor. Sci Rep 2015. [PMID: 26212084 PMCID: PMC4650691 DOI: 10.1038/srep10642] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The breakdown of the intestinal barrier is a common manifestation of many diseases. Recent evidence suggests that vitamin D and its receptor VDR may regulate intestinal barrier function. Claudin-2 is a tight junction protein that mediates paracellular water transport in intestinal epithelia, rendering them “leaky”. Using whole body VDR-/- mice, intestinal epithelial VDR conditional knockout (VDRΔIEC) mice, and cultured human intestinal epithelial cells, we demonstrate here that the CLDN2 gene is a direct target of the transcription factor VDR. The Caudal-Related Homeobox (Cdx) protein family is a group of the transcription factor proteins which bind to DNA to regulate the expression of genes. Our data showed that VDR-enhances Claudin-2 promoter activity in a Cdx1 binding site-dependent manner. We further identify a functional vitamin D response element (VDRE) 5΄-AGATAACAAAGGTCA-3΄ in the Cdx1 site of the Claudin-2 promoter. It is a VDRE required for the regulation of Claudin-2 by vitamin D. Absence of VDR decreased Claudin-2 expression by abolishing VDR/promoter binding. In vivo, VDR deletion in intestinal epithelial cells led to significant decreased Claudin-2 in VDR-/- and VDRΔIEC mice. The current study reveals an important and novel mechanism for VDR by regulation of epithelial barriers.
Collapse
Affiliation(s)
- Yong-guo Zhang
- Department of Biochemistry, Rush University, Chicago, Illinois, USA
| | - Shaoping Wu
- Department of Biochemistry, Rush University, Chicago, Illinois, USA
| | - Rong Lu
- Department of Biochemistry, Rush University, Chicago, Illinois, USA
| | - David Zhou
- Department of Pathology, University of Rochester, Rochester, New York, USA
| | - Jingsong Zhou
- Department of Physiology, Kansas City University of Medicine and Bioscience, Kansas City, Missouri, USA
| | - Geert Carmeliet
- Lab of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elaine Petrof
- Department of Medicine, GI Diseases Research Unit and Division of Infectious Diseases, Queen's University, Ontario, Canada
| | - Erika C Claud
- Departments of Pediatrics and Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jun Sun
- 1] Department of Biochemistry, Rush University, Chicago, Illinois, USA [2] Department of Pathology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
30
|
Wu S, Zhang YG, Lu R, Xia Y, Zhou D, Petrof E, Claud EC, Chen D, Chang EB, Carmeliet G, Sun J. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 2015; 64:1082-94. [PMID: 25080448 PMCID: PMC4312277 DOI: 10.1136/gutjnl-2014-307436] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Vitamin D and the vitamin D receptor (VDR) appear to be important immunological regulators of inflammatory bowel diseases (IBD). Defective autophagy has also been implicated in IBD, where interestingly, polymorphisms of genes such as ATG16L1 have been associated with increased risk. Although vitamin D, the microbiome and autophagy are all involved in pathogenesis of IBD, it remains unclear whether these processes are related or function independently. DESIGN We investigated the effects and mechanisms of intestinal epithelial VDR in healthy and inflamed states using cell culture models, a conditional VDR knockout mouse model (VDR(ΔIEC)), colitis models and human samples. RESULTS Absence of intestinal epithelial VDR affects microbial assemblage and increases susceptibility to dextran sulfate sodium-induced colitis. Intestinal epithelial VDR downregulates expressions of ATG16L1 and lysozyme, and impairs antimicrobial function of Paneth cells. Gain and loss-of-function assays showed that VDR levels regulate ATG16L1 and lysozyme at the transcriptional and translational levels. Moreover, low levels of intestinal epithelial VDR correlated with reduced ATG16L1 and representation by intestinal Bacteroides in patients with IBD. Administration of the butyrate (a fermentation product of gut microbes) increases intestinal VDR expression and suppresses inflammation in a colitis model. CONCLUSIONS Our study demonstrates fundamental relationship between VDR, autophagy and gut microbial assemblage that is essential for maintaining intestinal homeostasis, but also in contributing to the pathophysiology of IBD. These insights can be leveraged to define therapeutic targets for restoring VDR expression and function.
Collapse
Affiliation(s)
- Shaoping Wu
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | - Yong-guo Zhang
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | - Rong Lu
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | - Yinglin Xia
- Department of Biostatistics and Computational Biology, University of Rochester, 601 Elmwood Ave. Rochester, NY 14642, USA
| | - David Zhou
- Department of Pathology, University of Rochester, 601 Elmwood Ave. Rochester, NY 14642, USA
| | - Elaine Petrof
- Department of Medicine, GI Diseases Research Unit and Division of Infectious Diseases, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada
| | - Erika C Claud
- Departments of Pediatrics, The University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, Illinois 60637, U.S.A., Departments of Medicine, The University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, Illinois 60637, U.S.A
| | - Di Chen
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| | - Eugene B Chang
- Departments of Medicine, The University of Chicago Medical Center, 5841 S. Maryland Ave, Chicago, Illinois 60637, U.S.A
| | - Geert Carmeliet
- Laboratory of Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, B-3000 Belgium
| | - Jun Sun
- Department of Biochemistry, Rush University, 1735 W. Harrison St., Chicago, IL 60612, USA
| |
Collapse
|
31
|
Fischer KD, Agrawal DK. Vitamin D regulating TGF-β induced epithelial-mesenchymal transition. Respir Res 2014; 15:146. [PMID: 25413472 PMCID: PMC4245846 DOI: 10.1186/s12931-014-0146-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023] Open
Abstract
Background Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. A critical regulator of fibrosis, transforming growth factor β (TGF-β), can induce airway remodeling in epithelial cells through induction of epithelial-mesenchymal transition (EMT). Vitamin D has immunomodulatory functions, however, its effect on controlling subepithelial fibrosis is not known. Methods Human bronchial epithelial cells (BEAS-2B) were exposed to calcitriol followed by stimulation with TGF-β1 or TGF-β2. The protein expression and mRNA transcripts for E-cadherin, Snail, vimentin, and N-cadherin were analyzed by Western blot and qPCR. An invasion assay and scratch wound assay were performed to identify the migratory properties of the cells following treatments. Results TGF-β1 decreased E-cadherin expression and increased protein expression and mRNA transcripts of Snail, vimentin, and N-cadherin together with increased cell invasion and migration. TGF-β2 elicited migratory response similar to TGF-β1 but induced the expression of EMT markers differently from that by TGF-β1. Calcitriol attenuated TGF-β1- and TGF-β2-induced cell motility. Also, calcitriol inhibited the expression of EMT markers in TGF-β1-treated epithelial cells with less effect on TGF-β2. Conclusions These data suggest that calcitriol inhibits both migration and invasion induced by TGF-β1 and TGF-β2 in human airway epithelial cells. However, the regulatory effect of vitamin D in epithelial-mesenchymal transition was more effective to TGF-β1-induced changes. Thus, calcitriol could be a potential therapeutic agent in the prevention and management of subepithelial fibrosis and airway remodeling.
Collapse
Affiliation(s)
- Kimberly D Fischer
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA.
| | - Devendra K Agrawal
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA. .,Center for Clinical and Translational Science Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
32
|
Goeman F, De Nicola F, D'Onorio De Meo P, Pallocca M, Elmi B, Castrignanò T, Pesole G, Strano S, Blandino G, Fanciulli M, Muti P. VDR primary targets by genome-wide transcriptional profiling. J Steroid Biochem Mol Biol 2014; 143:348-56. [PMID: 24726990 DOI: 10.1016/j.jsbmb.2014.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 12/14/2022]
Abstract
There is growing evidence that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) plays a role in breast cancer prevention and survival. It elicits a variety of antitumor activities like controlling cellular differentiation, proliferation and angiogenesis. Most of its biological effects are exerted via its nuclear receptor which acts as a transcriptional regulator. Here, we carried out a genome-wide investigation of the primary transcriptional targets of 1α,25(OH)2D3 in breast epithelial cancer cells using RNA-Seq technology. We identified early transcriptional targets of 1α,25(OH)2D3 involved in adhesion, growth regulation, angiogenesis, actin cytoskeleton regulation, hexose transport, inflammation and immunomodulation, apoptosis, endocytosis and signaling. Furthermore, we found several transcription factors to be regulated by 1α,25(OH)2D3 that subsequently amplify and diversify the transcriptional output driven by 1α,25(OH)2D3 leading finally to a growth arrest of the cells. Moreover, we could show that 1α,25(OH)2D3 elevates the trimethylation of histone H3 lysine 4 at several target gene promoters. Our present transcriptomic analysis of differential expression after 1α,25(OH)2D3 treatment provides a resource of primary 1α,25(OH)2D3 targets that might drive the antiproliferative action in breast cancer epithelial cells.
Collapse
Affiliation(s)
- Frauke Goeman
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Francesca De Nicola
- Laboratory of Epigenetic, Molecular Medicine Area, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | | | - Matteo Pallocca
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Berardino Elmi
- Laboratory of Epigenetic, Molecular Medicine Area, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | | | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics of the National Research Council and Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Maurizio Fanciulli
- Laboratory of Epigenetic, Molecular Medicine Area, Italian National Cancer Institute "Regina Elena", 00144 Rome, Italy.
| | - Paola Muti
- Department of Oncology, McMaster University, Main Street West Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
33
|
Feltes BC, de Faria Poloni J, Nunes IJG, Bonatto D. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:344-63. [PMID: 24816220 DOI: 10.1089/omi.2013.0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.
Collapse
Affiliation(s)
- Bruno César Feltes
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul , Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
34
|
Ananthakrishnan AN, Cagan A, Gainer VS, Cai T, Cheng SC, Savova G, Chen P, Szolovits P, Xia Z, De Jager PL, Shaw SY, Churchill S, Karlson EW, Kohane I, Plenge RM, Murphy SN, Liao KP. Normalization of plasma 25-hydroxy vitamin D is associated with reduced risk of surgery in Crohn's disease. Inflamm Bowel Dis 2013; 19:1921-7. [PMID: 23751398 PMCID: PMC3720838 DOI: 10.1097/mib.0b013e3182902ad9] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vitamin D may have an immunologic role in Crohn's disease (CD) and ulcerative colitis (UC). Retrospective studies suggested a weak association between vitamin D status and disease activity but have significant limitations. METHODS Using a multi-institution inflammatory bowel disease cohort, we identified all patients with CD and UC who had at least one measured plasma 25-hydroxy vitamin D (25(OH)D). Plasma 25(OH)D was considered sufficient at levels ≥30 ng/mL. Logistic regression models adjusting for potential confounders were used to identify impact of measured plasma 25(OH)D on subsequent risk of inflammatory bowel disease-related surgery or hospitalization. In a subset of patients where multiple measures of 25(OH)D were available, we examined impact of normalization of vitamin D status on study outcomes. RESULTS Our study included 3217 patients (55% CD; mean age, 49 yr). The median lowest plasma 25(OH)D was 26 ng/mL (interquartile range, 17-35 ng/mL). In CD, on multivariable analysis, plasma 25(OH)D <20 ng/mL was associated with an increased risk of surgery (odds ratio, 1.76; 95% confidence interval, 1.24-2.51) and inflammatory bowel disease-related hospitalization (odds ratio, 2.07; 95% confidence interval, 1.59-2.68) compared with those with 25(OH)D ≥30 ng/mL. Similar estimates were also seen for UC. Furthermore, patients with CD who had initial levels <30 ng/mL but subsequently normalized their 25(OH)D had a reduced likelihood of surgery (odds ratio, 0.56; 95% confidence interval, 0.32-0.98) compared with those who remained deficient. CONCLUSION Low plasma 25(OH)D is associated with increased risk of surgery and hospitalizations in both CD and UC, and normalization of 25(OH)D status is associated with a reduction in the risk of CD-related surgery.
Collapse
Affiliation(s)
- Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | - Andrew Cagan
- Research Computing, Partners HealthCare, Charlestown, MA
| | | | - Tianxi Cai
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - Su-Chun Cheng
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | | | - Pei Chen
- Children’s Hospital Boston, Boston, MA
| | | | - Zongqi Xia
- Harvard Medical School, Boston, MA,Department of Neurology, Brigham and Women’s Hospital, Boston, MA
| | - Philip L De Jager
- Harvard Medical School, Boston, MA,Department of Neurology, Brigham and Women’s Hospital, Boston, MA
| | - Stanley Y. Shaw
- Harvard Medical School, Boston, MA,Center for Systems Biology, Massachusetts General Hospital, Boston, MA
| | - Susanne Churchill
- i2b2 National Center for Biomedical Computing, Brigham and Women’s Hospital, Boston, MA
| | - Elizabeth W. Karlson
- Harvard Medical School, Boston, MA,Division of Rheumatology, Brigham and Women’s Hospital, Boston, MA
| | - Isaac Kohane
- Harvard Medical School, Boston, MA,Children’s Hospital Boston, Boston, MA,i2b2 National Center for Biomedical Computing, Brigham and Women’s Hospital, Boston, MA
| | - Robert M. Plenge
- Harvard Medical School, Boston, MA,Division of Rheumatology, Brigham and Women’s Hospital, Boston, MA
| | - Shawn N. Murphy
- Harvard Medical School, Boston, MA,Research Computing, Partners HealthCare, Charlestown, MA,Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Katherine P. Liao
- Harvard Medical School, Boston, MA,Division of Rheumatology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
35
|
Song Y, Hong J, Liu D, Lin Q, Lai G. 1,25-dihydroxyvitamin D3 inhibits nuclear factor kappa B activation by stabilizing inhibitor IκBα via mRNA stability and reduced phosphorylation in passively sensitized human airway smooth muscle cells. Scand J Immunol 2013; 77:109-16. [PMID: 23126502 DOI: 10.1111/sji.12006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Excessive activation of nuclear transcription factor-κB (NF-κB) is involved in human airway smooth muscle cells (HASMCs) activities in asthma. We investigated the effects of 1,25 - dihydroxyvitamin D3 [1,25 - (OH) 2D3] on the NF- κB signaling pathway in passively sensitized HASMCs and the molecular mechanisms involved. HASMCs were treated with either healthy controls' serum, asthma patients' serum or pretreated with 1,25 - (OH) 2D3 prior to treatment with asthmatics' serum. At 1 h after serum treatment: electrophoretic mobility shift assay (EMSA) was used to detect NF-κB DNA binding activity; immunocytochemical staining was used to observe the nuclear translocation of NF-κB p65; Western blots were used for NF-κB p65, IκBα, and phospho-IκBα protein levels and the nuclear translocation of NF-κB p65; real-time quantitative PCR was used for NF-κB p65 and IκBα mRNA expressions; and actinomycin D treatment was used to determine IκBα mRNA stability. Our major findings were: (1) 1,25 - (OH) 2D3 significantly reduced asthma serum passively sensitized HASMCs NF-κB DNA binding activity and inhibited the nuclear translocation of NF-κB p65; (2) 1,25 - (OH) 2D3 increased the stability of IκBα mRNA with reduced IκBα phosphorylation in asthma serum passively sensitized HASMCs and significantly increased IκBα expression in these HASMCs. Inhibiting NF-κB signalling with 1,25 - dihydroxyvitamin D3 may be a therapeutic approach for controlling HASMC-related remodelling in asthma.
Collapse
Affiliation(s)
- Y Song
- Department of Pulmonary and Critical Care Medicine, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, China
| | | | | | | | | |
Collapse
|
36
|
Ishizawa M, Ogura M, Kato S, Makishima M. Impairment of bilirubin clearance and intestinal interleukin-6 expression in bile duct-ligated vitamin D receptor null mice. PLoS One 2012; 7:e51664. [PMID: 23240054 PMCID: PMC3519857 DOI: 10.1371/journal.pone.0051664] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/06/2012] [Indexed: 01/06/2023] Open
Abstract
The vitamin D receptor (VDR) mediates the physiological and pharmacological actions of 1α,25-dihydroxyvitamin D3 in bone and calcium metabolism, cellular growth and differentiation, and immunity. VDR also responds to secondary bile acids and belongs to the NR1I subfamily of the nuclear receptor superfamily, which regulates expression of xenobiotic metabolism genes. When compared to knockout mouse investigations of the other NR1I nuclear receptors, pregnane X receptor and constitutive androstane receptor, an understanding of the role of VDR in xenobiotic metabolism remains limited. We examined the effect of VDR deletion in a mouse model of cholestasis. We performed bile duct ligation (BDL) on VDR-null mice and compared blood biochemistry, mRNA expression of genes involved in bile acid and bilirubin metabolism, cytokine production, and expression of inflammatory regulators with those of wild-type mice. VDR-null mice had elevated plasma conjugated bilirubin levels three days after BDL compared with wild-type mice. Urine bilirubin levels and renal mRNA and/or protein expression of multidrug resistance-associated proteins 2 and 4 were decreased in VDR-null mice, suggesting impaired excretion of conjugated bilirubin into urine. While VDR-null kidney showed mRNA expression of interleukin-6 (IL-6) after BDL and VDR-null macrophages had higher IL-6 protein levels after lipopolysaccharide stimulation, the induction of intestinal Il6 mRNA expression and plasma IL-6 protein levels after BDL was impaired in VDR-null mice. Immunoblotting analysis showed that expression of an immune regulator, IκBα, was elevated in the jejunum of VDR-null mice, a possible mechanism for the attenuated induction of Il6 expression in the intestine after BDL. Increased expression of IκBα may be a consequence of compensatory mechanisms for VDR deletion. These results reveal a role of VDR in bilirubin clearance during cholestasis. VDR is also suggested to contribute to tissue-selective immune regulation.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Michitaka Ogura
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
37
|
Lai G, Wu C, Hong J, Song Y. 1,25-Dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) attenuates airway remodeling in a murine model of chronic asthma. J Asthma 2012; 50:133-40. [PMID: 23157452 DOI: 10.3109/02770903.2012.738269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES 1,25-Dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) has immune- and inflammation-modulating properties in asthma, but its possible effects on asthmatic airway remodeling remain uncertain. In this study, we investigated the effects of 1,25-(OH)(2)D(3) on airway remodeling in a murine model of chronic asthma and investigated its role in regulating nuclear factor-κB (NF-κB) activation. METHODS BALB/c mice were sensitized to ovalbumin (OVA) and subsequently exposed to intranasal OVA challenges for 9 weeks. Some mice also received an intraperitoneal injection of 1,25-(OH)(2)D(3) at the time of challenge. At the end of the challenge period, mice were evaluated for chronic airway inflammation and airway remodeling. Nuclear translocation of NF-κB p65 in lung tissue was examined by Western blot. Inhibitor of NF-κB alpha (IκBα) expression was determined by real-time quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Western blot. Phosphorylated IκBα protein expression was also determined by Western blot. RESULTS 1,25-(OH)(2)D(3) treatment reduced OVA-induced chronic inflammation in lung tissue and attenuated established structural changes of the airways, including subepithelial collagen deposition, goblet cell hyperplasia, and increased airway smooth muscle mass. 1,25-(OH)(2)D(3) also inhibited the nuclear translocation of NF-κB p65 in lung tissue. Concurrently, 1,25-(OH)(2)D(3) induced increased IκBα protein levels via inducing increased IκBα mRNA levels and decreased IκBα phosphorylation. CONCLUSION 1,25-(OH)(2)D(3) could attenuate asthmatic airway remodeling and its inhibition of NF-κB activation may underlie this protective effect.
Collapse
Affiliation(s)
- Guoxiang Lai
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | | | | | | |
Collapse
|
38
|
Marcotorchino J, Gouranton E, Romier B, Tourniaire F, Astier J, Malezet C, Amiot MJ, Landrier JF. Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Mol Nutr Food Res 2012; 56:1771-82. [PMID: 23065818 DOI: 10.1002/mnfr.201200383] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022]
Abstract
SCOPE Obesity is strongly associated with low-grade inflammation, notably due to an overproduction of proinflammatory markers by adipose tissue and adipocytes as well as a vitamin D deficiency. Whether these problems are interrelated has not been clearly established. METHODS AND RESULTS In the present report, decreases in the levels of inflammatory markers such as IL-6, MCP-1, and IL-1β (mRNA and protein level) in human adipocytes and in 3T3-L1 adipocytes were observed after 1,25-dihydroxyvitamin D3 (1,25-(OH)(2) D(3) ) treatment. Such treatment also decreased the expression of the TNF-α-mediated proinflammatory marker in 3T3-L1 and human adipocytes. A similar effect was observed in adipocyte-macrophage co-culture systems in which 1,25-(OH)(2) D(3) decreased proinflammatory marker expression under basal and TNF-α-stimulated conditions. The involvement of VDR and NF-κB was confirmed in these regulations. Incubation with 1,25-(OH)(2) D(3) also resulted in the dephosphorylation of p38, which is linked to the transcriptional induction of several Dusp family members. Functional consequences of the 1,25-(OH)(2) D(3) treatment on glucose uptake and AKT phosphorylation were observed. CONCLUSION The improvement of both proinflammatory status and glucose uptake in adipocytes under 1,25-(OH)(2) D(3) effect suggests that low-grade inflammation could be linked to vitamin D deficiency. This observation offers new perspectives in the context of obesity and associated physiopathological disorders.
Collapse
|
39
|
Walton SF, Weir C. The interplay between diet and emerging allergy: what can we learn from Indigenous Australians? Int Rev Immunol 2012; 31:184-201. [PMID: 22587020 DOI: 10.3109/08830185.2012.667180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathophysiology of atopic diseases, including asthma and allergy, is the result of complex gene-environment interactions. Since European colonization the Indigenous population of Australia has undergone significant changes with respect to their lifestyle as hunter-gatherers. These changes have had a detrimental effect on Aboriginal health, in part due to immunological modification. This review provides a comparative look at both the traditional Aboriginal/Indigenous diet and modern Western diets, examines some common allergies increasingly reported in contemporary Indigenous populations, and reviews concepts such the effect of vitamin deficiencies and changes in gut microbiota on immune function.
Collapse
Affiliation(s)
- Shelley F Walton
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | | |
Collapse
|
40
|
Mutt SJ, Karhu T, Lehtonen S, Lehenkari P, Carlberg C, Saarnio J, Sebert S, Hyppönen E, Järvelin MR, Herzig KH. Inhibition of cytokine secretion from adipocytes by 1,25-dihydroxyvitamin D₃ via the NF-κB pathway. FASEB J 2012; 26:4400-7. [PMID: 22798425 DOI: 10.1096/fj.12-210880] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipose tissue inflammation is an important pathological process in obese people, associated with diabetes and cardiovascular disease. We hypothesized that 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] inhibits cytokine secretion from adipocytes via direct inhibition of transcription factor nuclear factor-κB (NF-κB). We utilized two different human models. Bone marrow-derived human mesenchymal stromal cells (hMSCs) differentiated into adipocytes, and adipocytes isolated from biopsies stimulated with lipopolysaccharide (LPS) were treated with or without 1,25(OH)(2)D(3). Expression and secretion of interleukin-6 (IL-6) were measured by quantitative RT-PCR analysis and ELISA. Assessment of NF-κB nuclear translocation, DNA binding activity was performed by immunofluorescence (IF) and electrophoretic mobility assay (EMSA). Inhibitor κB (IκB) and its phosphorylation were detected by Western blot (WB) analysis. Simultaneous 1,25(OH)(2)D(3) cotreatment significantly reduced LPS-stimulated (10 ng/ml) IL-6 secretion dose dependently by 15% at 10(-10) M and 26% at 10(-7) M (P<0.05) in hMSCs, while preincubation with 1,25(OH)(2)D(3) (10(-7) M) for 24 h reduced IL-6 secretion by 24 and 35% (P<0.001) and mRNA levels by 34 and 30% (P<0.05) in hMSCs and isolated adipocytes, respectively. 1,25(OH)(2)D(3) suppressed LPS-stimulated IκB phosphorylation-mediated NF-κB translocation into the nucleus were evident from WB, IF, and EMSA. 1,25(OH)(2)D(3) inhibits LPS-stimulated IL-6 secretion in two human adipocyte models via interference with NF-κB signaling.
Collapse
Affiliation(s)
- Shivaprakash J Mutt
- Institute of Biomedicine, Department of Physiology, Oulu University Hospital, Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Narula N, Marshall JK. Management of inflammatory bowel disease with vitamin D: beyond bone health. J Crohns Colitis 2012; 6:397-404. [PMID: 22398052 DOI: 10.1016/j.crohns.2011.10.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/04/2011] [Accepted: 10/30/2011] [Indexed: 02/08/2023]
Abstract
A relationship between vitamin D and several disorders, including Crohn's disease (CD), has recently been proposed. Vitamin D appears to have several important actions beyond the maintenance of bone health, including various effects on the immune system. Vitamin D deficiency has been implicated in the development of CD, and its analogues may have a role in the treatment of CD. Current research also suggests a role for vitamin D in counteracting some IBD-specific complications, including osteopenia, colorectal neoplasia, and depression. There remains a need for prospective studies to further delineate these relationships. Given current evidence and the apparent safety of vitamin D supplementation, it appears reasonable to screen for and treat vitamin D deficiency in patients with IBD.
Collapse
Affiliation(s)
- Neeraj Narula
- Department of Medicine (Division of Gastroenterology) and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
42
|
Sundar IK, Rahman I. Vitamin d and susceptibility of chronic lung diseases: role of epigenetics. Front Pharmacol 2011; 2:50. [PMID: 21941510 PMCID: PMC3171063 DOI: 10.3389/fphar.2011.00050] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/10/2011] [Indexed: 02/06/2023] Open
Abstract
Vitamin D deficiency is linked to accelerated decline in lung function, increased inflammation, and reduced immunity in chronic lung diseases. Epidemiological studies have suggested that vitamin D insufficiency is associated with low lung function in susceptible subjects who are exposed to higher levels of environmental agents (airborne particulates). Recent studies have highlighted the role of vitamin D and vitamin D receptor (VDR) in regulation of several genes that are involved in inflammation, immunity, cellular proliferation, differentiation, and apoptosis. Vitamin D has also been implicated in reversal of steroid resistance and airway remodeling, which are the hallmarks of chronic obstructive pulmonary disease (COPD) and severe asthma. VDR protein level is decreased in lungs of patients with COPD. VDR deficient mice develop an abnormal lung phenotype with characteristics of COPD, such as airspace enlargement and decline in lung function associated with increased lung inflammatory cellular influx, and immune-lymphoid aggregates formation. Dietary vitamin D may regulate epigenetic events, in particular on genes which are responsible for COPD susceptibility. Active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 plays an essential role in cellular metabolism and differentiation via its nuclear receptor (VDR) that cooperates with several other chromatin modification enzymes (histone acetyltransferases and histone deacetylases), thereby mediating complex epigenetic events in vitamin D signaling and metabolism. This review provides an update on the current knowledge and understanding on vitamin D, and susceptibility of chronic lung diseases in relation to the possible role of epigenetics in its molecular action. Understanding the molecular epigenetic mechanism of vitamin D/VDR would provide rationale for dietary vitamin D-mediated intervention in prevention and management of chronic lung diseases linked with vitamin D deficiency.
Collapse
Affiliation(s)
- Isaac K Sundar
- Lung Biology and Disease Program, Department of Environmental Medicine, University of Rochester Medical Center Rochester, NY, USA
| | | |
Collapse
|
43
|
Wu S, Sun J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. DISCOVERY MEDICINE 2011; 11:325-335. [PMID: 21524386 PMCID: PMC3285235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Vitamin D is involved in mineral and bone homeostasis, immune responses, anti-inflammation, anti-infection, and cancer prevention. Vitamin D receptor (VDR) is a nuclear receptor that mediates most biological functions of 1,25(OH)(2)D(3) or vitamin D(3), the active form of vitamin D. Recently, vitamin D(3)-induced autophagy has been reported. Autophagy is a lysosome-mediated catabolic pathway classified into three different types: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy contributes to anti-aging, antimicrobial defense, and tumor suppression. The functions of autophagy overlap remarkably with those of vitamin D/VDR signaling. This review focuses on vitamin D(3), VDR, and macroautophagy in inflammation and infection. We place emphasis on the regulatory roles of vitamin D(3) on autophagy at different steps, including induction, nucleation, elongation to maturation, and degradation. We summarize the known molecular mechanisms of vitamin D/VDR signaling on autophagy homeostasis. The potential application of the insights gleaned from these research findings to anti-inflammation and anti-infection is also discussed.
Collapse
Affiliation(s)
- Shaoping Wu
- Department of Medicine, University of Rochester, New York 14642, USA
| | | |
Collapse
|
44
|
Sundar IK, Hwang JW, Wu S, Sun J, Rahman I. Deletion of vitamin D receptor leads to premature emphysema/COPD by increased matrix metalloproteinases and lymphoid aggregates formation. Biochem Biophys Res Commun 2011; 406:127-33. [PMID: 21300024 DOI: 10.1016/j.bbrc.2011.02.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/02/2011] [Indexed: 11/26/2022]
Abstract
Deficiency of vitamin D is associated with accelerated decline in lung function. Vitamin D is a ligand for nuclear hormone vitamin D receptor (VDR), and upon binding it modulates various cellular functions. The level of VDR is reduced in lungs of patients with chronic obstructive pulmonary disease (COPD) which led us to hypothesize that deficiency of VDR leads to significant alterations in lung phenotype that are characteristics of COPD/emphysema associated with increased inflammatory response. We found that VDR knock-out (VDR(-/-)) mice had increased influx of inflammatory cells, phospho-acetylation of nuclear factor-kappaB (NF-κB) associated with increased proinflammatory mediators, and up-regulation of matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MMP-12 in the lung. This was associated with emphysema and decline in lung function associated with lymphoid aggregates formation compared to WT mice. These findings suggest that deficiency of VDR in mouse lung can lead to an early onset of emphysema/COPD because of chronic inflammation, immune dysregulation, and lung destruction.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Significant advances have been made in the characterization of Vitamin D and the Vitamin D receptor (VDR) in immune function. The studies of signaling pathways involved in the response to infection and inflammation have led to a more detailed understanding of the cellular response to Vitamin D through VDR. This review summarizes recent progress in understanding how Vitamin D contributes to mucosal immune function, particularly in relation to the molecular mechanisms by which Vitamin D and VDR influence mucosal immunity, bacterial infection, and inflammation. RECENT FINDINGS Recently, it was shown that Vitamin D modulates the T cell antigen receptor, further demonstrating that Vitamin D has a nonclassical role in immunoregulation. The anti-inflammation and anti-infection functions for Vitamin D are newly identified and highly significant activities. Vitamin D/VDR have multiple critical functions in regulating the response to intestinal homeostasis, tight junctions, pathogen invasion, commensal bacterial colonization, antimicrobe peptide secretion, and mucosal defense. Interestingly, microorganisms modulate the VDR signaling pathway. SUMMARY Vitamin D is known as a key player in calcium homeostasis and electrolyte and blood pressure regulation. Recently, important progress has been made in understanding how the noncanonical activities of Vitamin D influence the pathogenesis and prevention of human disease. Vitamin D and VDR are directly involved in T cell antigen receptor signaling. The involvement of Vitamin D/VDR in anti-inflammation and anti-infection represents a newly identified and highly significant activity for VDR. Studies have indicated that the dysregulation of VDR may lead to exaggerated inflammatory responses, raising the possibility that defects in Vitamin D and VDR signaling transduction may be linked to bacterial infection and chronic inflammation. Further characterization of Vitamin D/VDR will help elucidate the pathogenesis of various human diseases and in the design of new approaches for prevention and treatment.
Collapse
|
46
|
Wu S, Liao AP, Xia Y, Li YC, Li JD, Sartor RB, Sun J. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:686-97. [PMID: 20566739 DOI: 10.2353/ajpath.2010.090998] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vitamin D receptor (VDR) plays an essential role in gastrointestinal inflammation. Most investigations have focused on the immune response; however, how bacteria regulate VDR and how VDR modulates the nuclear factor (NF)-kappaB pathway in intestinal epithelial cells remain unexplored. This study investigated the effects of VDR ablation on NF-kappaB activation in intestinal epithelia and the role of enteric bacteria on VDR expression. We found that VDR(-/-) mice exhibited a pro-inflammatory bias. After Salmonella infection, VDR(-/-) mice had increased bacterial burden and mortality. Serum interleukin-6 in noninfected VDR(+/+) mice was undetectable, but was easily detectable in VDR(-/-) mice. NF-kappaB p65 formed a complex with VDR in noninfected wild-type mouse intestine. In contrast, deletion of VDR abolished VDR/P65 binding. P65 nuclear translocation occurred in colonic epithelial cells of untreated VDR(-/-) mice. VDR deletion also elevated NF-kappaB activity in intestinal epithelia. VDR was localized to the surface epithelia of germ-free mice, but to crypt epithelial cells in conventionalized mice. VDR expression, distribution, transcriptional activity, and target genes were regulated by Salmonella stimulation, independent of 1,25-dihydroxyvitamin D3. Our study demonstrates that commensal and pathogenic bacteria directly regulate colonic epithelial VDR expression and location in vivo. VDR negatively regulates bacterial-induced intestinal NF-kappaB activation and attenuates response to infection. Therefore, VDR is an important contributor to intestinal homeostasis and host protection from bacterial invasion and infection.
Collapse
Affiliation(s)
- Shaoping Wu
- Gastroenterology & Hepatology Division, Department of Medicine, University of Rochester, Rochester, New York, USA
| | | | | | | | | | | | | |
Collapse
|