1
|
Zerella JR, Homan CC, Arts P, Lin X, Spinelli SJ, Venugopal P, Babic M, Brautigan PJ, Truong L, Arriola-Martinez L, Moore S, Hollins R, Parker WT, Nguyen H, Kassahn KS, Branford S, Feurstein S, Larcher L, Sicre de Fontbrune F, Demirdas S, de Munnik S, Antoine-Poirel H, Brichard B, Mansour S, Gordon K, Wlodarski MW, Koppayi A, Dobbins S, Mutsaers PGNJ, Nichols KE, Oak N, DeMille D, Mao R, Crawford A, McCarrier J, Basel D, Flores-Daboub J, Drazer MW, Phillips K, Poplawski NK, Birdsey GM, Pirri D, Ostergaard P, Simons A, Godley LA, Ross DM, Hiwase DK, Soulier J, Brown AL, Carmichael CL, Scott HS, Hahn CN. Germ line ERG haploinsufficiency defines a new syndrome with cytopenia and hematological malignancy predisposition. Blood 2024; 144:1765-1780. [PMID: 38991192 PMCID: PMC11530364 DOI: 10.1182/blood.2024024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT The genomics era has facilitated the discovery of new genes that predispose individuals to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ETS-related gene (ERG), a novel, autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor that is critical for definitive hematopoiesis, stem cell function, and platelet maintenance. ERG colocalizes with other transcription factors, including RUNX family transcription factor 1 (RUNX1) and GATA binding protein 2 (GATA2), on promoters or enhancers of genes that orchestrate hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 individuals with thrombocytopenia from 1 family and 14 additional ERG variants in unrelated individuals with BMF/HM, including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germ line ERG variants included cytopenias (thrombocytopenia, neutropenia, and pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, and acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense and 1 truncating), including 3 missense population variants, were functionally characterized. Thirteen potentially pathogenic erythroblast transformation specific (ETS) domain missense variants displayed loss-of-function (LOF) characteristics, thereby disrupting transcriptional transactivation, DNA binding, and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture and to promote acute erythroleukemia when transplanted into mice, concordant with these being LOF variants. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germ line ERG variants has clinical implications for patient and family diagnoses, counseling, surveillance, and treatment strategies, including selection of bone marrow donors and cell or gene therapy.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sam J. Spinelli
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Parvathy Venugopal
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Milena Babic
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peter J. Brautigan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Luis Arriola-Martinez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Sarah Moore
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Rachel Hollins
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Wendy T. Parker
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hung Nguyen
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Karin S. Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Susan Branford
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lise Larcher
- Université Paris Cité, INSERM and Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
| | | | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Benedicte Brichard
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sahar Mansour
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
- South West Thames Regional Centre for Genomics, St. George's Universities National Health Service Foundation Trust, London, United Kingdom
| | - Kristiana Gordon
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities National Health Service Foundation Trust, London, United Kingdom
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ashwin Koppayi
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Sara Dobbins
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
| | - Pim G. N. J. Mutsaers
- Department of Hematology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Desiree DeMille
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Associated Regional and University Pathologists Laboratories, Salt Lake City, UT
| | - Rong Mao
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Associated Regional and University Pathologists Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City, UT
| | | | - Julie McCarrier
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Donald Basel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | | | - Michael W. Drazer
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Graeme M. Birdsey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniela Pirri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pia Ostergaard
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lucy A. Godley
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - David M. Ross
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Devendra K. Hiwase
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jean Soulier
- Université Paris Cité, INSERM and Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Anna L. Brown
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
2
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
3
|
Vargas AC, Turner J, Burchett I, Ho LL, Zumbo R, Gill AJ, Maclean FM. Myeloid sarcoma and extramedullary hematopoiesis expand the spectrum of ERG-positive proliferations; an ancillary tool in the diagnosis. Hum Pathol 2022; 124:1-13. [DOI: 10.1016/j.humpath.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
4
|
Lee WY, Gutierrez-Lanz EA, Xiao H, McClintock D, Chan MP, Bixby DL, Shao L. ERG amplification is a secondary recurrent driver event in myeloid malignancy with complex karyotype and TP53 mutations. Genes Chromosomes Cancer 2022; 61:399-411. [PMID: 35083818 DOI: 10.1002/gcc.23027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/09/2022] Open
Abstract
ERG is a transcription factor encoded on chromosome 21q22.2 with important roles in hematopoiesis and oncogenesis of prostate cancer. ERG amplification has been identified as one of the most common recurrent events in acute myeloid leukemia with complex karyotype (AML-CK). In this study, we uncover 3 different modes of ERG amplification in AML-CK. Importantly, we present evidence to show that ERG amplification is distinct from intrachromosomal amplification of chromosome 21 (iAMP21), a hallmark segmental amplification frequently encompassing RUNX1 and ERG in a subset of high-risk B-lymphoblastic leukemia. We also characterize the association with TP53 aberrations and other chromosomal aberrations, including chromothripsis. Lastly, we show that ERG amplification can initially emerge as subclonal events in low grade myeloid neoplasms. These findings demonstrate that ERG amplification is a recurrent secondary driver event in AML and raise the tantalizing possibility of ERG as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Winston Y Lee
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Efrain A Gutierrez-Lanz
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hong Xiao
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David McClintock
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - May P Chan
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dale L Bixby
- Division of Hematology and Medical Oncology, Department of Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lina Shao
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
He Y, Tao W, Shang C, Qi C, Ji D, Lu W, Chen G. Xeroderma Pigmentosum group D suppresses proliferation and promotes apoptosis of HepG2 cells by downregulating ERG expression via the PPARγ pathway. Int J Exp Pathol 2021; 102:157-162. [PMID: 33993564 DOI: 10.1111/iep.12396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/11/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Xeroderma Pigmentosum group D (XPD) gene has been shown to suppress hepatocellular carcinoma (HCC) progression, but its mechanism remains not fully understood. ETS-related gene (ERG) is generally known as an oncogenic gene. This study aimed to explore whether XPD regulated HCC cell proliferation, apoptosis and cell cycle by inhibiting ERG expression via the PPARγ pathway. The human hepatoma cells (HepG2) were transfected with the XPD overexpression vector (pEGFP-N2/XPD) or empty vector (pEGFP-N2). The PPARγ inhibitor GW9662 was used to determine whether XPD effects were mediated by activation of PPARγ pathway. Cell cycle and apoptosis were ascertained by flow cytometry, and cell viability was measured by MTT assay. Reverse transcription-polymerase chain reaction and Western blot were performed to determine the mRNA and protein levels. Overexpression of XPD significantly enhanced the expression of PPARγ and p-PPARγ, whereas it downregulated that of ERG and cdk7. Furthermore, XPD overexpression notably inhibited proliferation, promoted apoptosis and decreased the percentage of cells in the S + G2 phase of HepG2 cells. However, these effects of XPD overexpression were abrogated by GW9662. Collectively, XPD suppresses proliferation and promotes apoptosis of HepG2 cells by downregulating ERG expression via activation of the PPARγ pathway.
Collapse
Affiliation(s)
- Yue He
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenqiang Tao
- Department of ICU, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Shang
- Administration Center, Jiangxi Electric Power Research Institute, Nanchang, China
| | - Chan Qi
- Department of emergency, The First hospital of Nanchang city, Nanchang, China
| | - Dexiang Ji
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Lu
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guoan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Abstract
Malignancies of the erythroid lineage are rare but aggressive diseases. Notably, the first insights into their biology emerged over half a century ago from avian and murine tumor viruses-induced erythroleukemia models providing the rationale for several transgenic mouse models that unraveled the transforming potential of signaling effectors and transcription factors in the erythroid lineage. More recently, genetic roadmaps have fueled efforts to establish models that are based on the epigenomic lesions observed in patients with erythroid malignancies. These models, together with often unexpected erythroid phenotypes in genetically modified mice, provided further insights into the molecular mechanisms of disease initiation and maintenance. Here, we review how the increasing knowledge of human erythroleukemia genetics combined with those from various mouse models indicate that the pathogenesis of the disease is based on the interplay between signaling mutations, impaired TP53 function, and altered chromatin organization. These alterations lead to aberrant activity of erythroid transcriptional master regulators like GATA1, indicating that erythroleukemia will most likely require combinatorial targeting for efficient therapeutic interventions.
Collapse
|
7
|
Chen X, Qin Y, Zhang Z, Xing Z, Wang Q, Lu W, Yuan H, Du C, Yang X, Shen Y, Zhao B, Shao H, Wang X, Wu H, Qi Y. Hyper-SUMOylation of ERG Is Essential for the Progression of Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:652284. [PMID: 33842551 PMCID: PMC8032903 DOI: 10.3389/fmolb.2021.652284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Leukemia is a malignant disease of hematopoietic tissue characterized by the differentiation arrest and malignant proliferation of immature hematopoietic precursor cells in bone marrow. ERG (ETS-related gene) is an important member of the E26 transformation-specific (ETS) transcription factor family that plays a crucial role in physiological and pathological processes. However, the role of ERG and its modification in leukemia remains underexplored. In the present study, we stably knocked down or overexpressed ERG in leukemia cells and observed that ERG significantly promotes the proliferation and inhibits the differentiation of AML (acute myeloid leukemia) cells. Further experiments showed that ERG was primarily modified by SUMO2, which was deconjugated by SENP2. PML promotes the SUMOylation of ERG, enhancing its stability. Arsenic trioxide decreased the expression level of ERG, further promoting cell differentiation. Furthermore, the mutation of SUMO sites in ERG inhibited its ability to promote the proliferation and inhibit the differentiation of leukemia cells. Our results demonstrated the crucial role of ERG SUMOylation in the development of AML, providing powerful targeted therapeutic strategies for the clinical treatment of AML.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huanjie Shao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
8
|
Guo C, Ran Q, Sun C, Zhou T, Yang X, Zhang J, Pang S, Xiao Y. Loss of FGFR3 Delays Acute Myeloid Leukemogenesis by Programming Weakly Pathogenic CD117-Positive Leukemia Stem-Like Cells. Front Pharmacol 2021; 11:632809. [PMID: 33584313 PMCID: PMC7879375 DOI: 10.3389/fphar.2020.632809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Chemotherapeutic patients with leukemia often relapse and produce drug resistance due to the existence of leukemia stem cells (LSCs). Fibroblast growth factor receptor 3 (FGFR3) signaling mediates the drug resistance of LSCs in chronic myeloid leukemia (CML). However, the function of FGFR3 in acute myeloid leukemia (AML) is less understood. Here, we identified that the loss of FGFR3 reprograms MLL-AF9 (MA)-driven murine AML cells into weakly pathogenic CD117-positive leukemia stem-like cells by activating the FGFR1-ERG signaling pathway. FGFR3 deletion significantly inhibits AML cells engraftment in vivo and extends the survival time of leukemic mice. FGFR3 deletion sharply decreased the expression of chemokines and the prolonged survival time in mice receiving FGFR3-deficient MA cells could be neutralized by overexpression of CCL3. Here we firstly found that FGFR3 had a novel regulatory mechanism for the stemness of LSCs in AML, and provided a promising anti-leukemia approach by interrupting FGFR3.
Collapse
Affiliation(s)
- Chen Guo
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qiuju Ran
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Chun Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Tingting Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xi Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jizhou Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Shifeng Pang
- Department of Biotechnology, Guangdong Medical University, Dongguan, China
| | - Yechen Xiao
- Department of Biotechnology, Guangdong Medical University, Dongguan, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Søndergaard E, Rauch A, Michaut M, Rapin N, Rehn M, Wilhelmson AS, Camponeschi A, Hasemann MS, Bagger FO, Jendholm J, Knudsen KJ, Mandrup S, Mårtensson IL, Porse BT. ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination. Cell Rep 2020; 29:2756-2769.e6. [PMID: 31775043 DOI: 10.1016/j.celrep.2019.10.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022] Open
Abstract
B cell development depends on the coordinated expression and cooperation of several transcription factors. Here we show that the transcription factor ETS-related gene (ERG) is crucial for normal B cell development and that its deletion results in a substantial loss of bone marrow B cell progenitors and peripheral B cells, as well as a skewing of splenic B cell populations. We find that ERG-deficient B lineage cells exhibit an early developmental block at the pre-B cell stage and proliferate less. The cells fail to express the immunoglobulin heavy chain due to inefficient V-to-DJ recombination, and cells that undergo recombination display a strong bias against incorporation of distal V gene segments. Furthermore, antisense transcription at PAX5-activated intergenic repeat (PAIR) elements, located in the distal region of the Igh locus, depends on ERG. These findings show that ERG serves as a critical regulator of B cell development by ensuring efficient and balanced V-to-DJ recombination.
Collapse
Affiliation(s)
- Elisabeth Søndergaard
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Magali Michaut
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Matilda Rehn
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anna S Wilhelmson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Marie S Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Frederik O Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kasper J Knudsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen N, Denmark; Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
10
|
Wang S, Yang L, Liu Y, Xu Y, Zhang D, Jiang Z, Wang C, Liu Y. A Novel Immune-Related Competing Endogenous RNA Network Predicts Prognosis of Acute Myeloid Leukemia. Front Oncol 2020; 10:1579. [PMID: 32850463 PMCID: PMC7432272 DOI: 10.3389/fonc.2020.01579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a genetically, biologically and clinically heterogeneous hematopoietic malignancy that is highly dependent on the bone marrow (BM) microenvironment. Infiltrated immune cells and stromal cells are an important part of the BM microenvironment and significantly affect the progression of AML. Recently, the competing endogenous RNA hypothesis has gained great interests in the study of molecular and biological mechanisms of tumor occurrence and progression. However, research on how competing endogenous RNA relates to leukemia tumor microenvironment remains uninvestigated. Methods In this study, mRNA, miRNA and lncRNA data and clinical information of the AML cohort were obtained from The Cancer Genome Atlas (TCGA) database, and the immune and stromal scores were calculated using the ESTIMATE algorithm. Results We found that immune scores were significantly correlated with cytogenetic risk and overall survival, and also identified microenvironment-related mRNAs, miRNAs, and lncRNAs based on the immune and stromal scores. Differentially expressed mRNAs and lncRNAs were applied to weighted correlation network analysis (WGCNA) to identify the modules most relevant to the immune microenvironment of AML. Using miRNA database to predict miRNA-targeted genes, we established the immune-related competing endogenous RNA network consisting of 33 lncRNAs, 21 miRNAs and 135 mRNAs. Prognostic analysis was performed on the genes in the immune-related competing endogenous RNA network to screen out 15 lncRNAs, 2 miRNAs and 31 mRNAs with prognostic values. Conclusion In summary, we identified a novel immune-related mRNA-miRNA-lncRNA competing endogenous RNA network associated with the prognosis of AML, which may contribute to better understanding of the development and progression of AML and to serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Yang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Liu
- Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Yan Xu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Chen L, Wang L, Zhang X, Yao M, Fu P. Ipsilateral breast metastasis after axillary dissection caused by epithelioid sarcoma: a case report and pathological investigation. Diagn Pathol 2019; 14:111. [PMID: 31615564 PMCID: PMC6792219 DOI: 10.1186/s13000-019-0888-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
Background Epithelioid sarcoma (ES) is a rare malignant soft tissue tumor, commonly occurring in distal extremities, such as fingers, hands and wrists. For oncologists and surgeons, a female patient with enlarged axillary lymph node on one side only is easily diagnosed with an occult breast carcinoma rather than ES. Besides, whole breast metastasis of ES has not been reported yet. Case presentation A 47-year-old Chinese woman came to the outpatient clinic of First Affiliated Hospital of Zhejiang University (FAHZU) with a complaint of an asymptomatic right axillary mass for 3 months. Then she received surgical resection of the right axillary lymph nodes and right supraclavicular lymph nodes. According to the clinical tumor site and routine immunohistochemistry (IHC), suspicion of metastatic epithelial sarcoma and metastatic breast cancer could not be ruled out. Subsequently, with more detailed medical history review and physical examination, a mass on the right forearm was found, which was considered as the primary lesion. Further IHC and Molecular Genetics revealed that all the neoplastic cells exhibited loss of INI1 protein and were negative for ERG gene rearrangement yet positive for epithelial membrane antigen (EMA), cytokeratin (CK) 8, CK19, Vimentin, CD34. The final diagnosis was ES. She received postoperative chemotherapy, without radiotherapy. Unexpectedly, an ipsilateral breast metastasis was developed at ten months after surgery. Regrettably, there was no positive result of the metastatic breast sample, based on a genome sequencing by a 381-cancer-gene panel in a lab. Therefore, she went through another round of chemotherapy and took Apatinib for maintenance treatment. During the last follow-up (26 months after diagnosis), the disease was under control. Conclusion This rare but interesting case enables breast surgeons and pathologists to accumulate more experience of differential diagnosis of axillary mass for personalized treatment in clinical practice. Meanwhile, ipsilateral breast metastasis of ES we reported in the case urges that clinicians attach greater importance to the tumor metastasis mechanism.
Collapse
Affiliation(s)
- Luyan Chen
- Department of Breast Center, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, China
| | - Li Wang
- Department of Pathology, Shaoxing People's Hospital, School of Medicine, Zhejiang University, Shaoxing, 312000, China
| | - Xiaochen Zhang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Minya Yao
- Department of Breast Center, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, China
| | - Peifen Fu
- Department of Breast Center, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Insertional mutagenesis using the Sleeping Beauty transposon system identifies drivers of erythroleukemia in mice. Sci Rep 2019; 9:5488. [PMID: 30940846 PMCID: PMC6445099 DOI: 10.1038/s41598-019-41805-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Insertional mutagenesis is a powerful means of identifying cancer drivers in animal models. We used the Sleeping Beauty (SB) transposon/transposase system to identify activated oncogenes in hematologic cancers in wild-type mice and mice that express a stabilized cyclin E protein (termed cyclin ET74AT393A). Cyclin E governs cell division and is misregulated in human cancers. Cyclin ET74AT393A mice develop ineffective erythropoiesis that resembles early-stage human myelodysplastic syndrome, and we sought to identify oncogenes that might cooperate with cyclin E hyperactivity in leukemogenesis. SB activation in hematopoietic precursors caused T-cell leukemia/lymphomas (T-ALL) and pure red blood cell erythroleukemias (EL). Analysis of >12,000 SB integration sites revealed markedly different oncogene activations in EL and T-ALL: Notch1 and Ikaros were most common in T-ALL, whereas ETS transcription factors (Erg and Ets1) were targeted in most ELs. Cyclin E status did not impact leukemogenesis or oncogene activations. Whereas most SB insertions were lost during culture of EL cell lines, Erg insertions were retained, indicating Erg's key role in these neoplasms. Surprisingly, cyclin ET74AT393A conferred growth factor independence and altered Erg-dependent differentiation in EL cell lines. These studies provide new molecular insights into erythroid leukemia and suggest potential therapeutic targets for human leukemia.
Collapse
|
13
|
Hsing M, Wang Y, Rennie PS, Cox ME, Cherkasov A. ETS transcription factors as emerging drug targets in cancer. Med Res Rev 2019; 40:413-430. [PMID: 30927317 DOI: 10.1002/med.21575] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which have been implicated in development and progression of a variety of cancers. While one family member, ERG, has been rigorously studied in the context of prostate cancer where it plays a critical role, other ETS factors keep emerging as potential hallmark oncodrivers. In recent years, numerous studies have reported initial discoveries of small molecule inhibitors of ETS proteins and opened novel avenues for ETS-directed cancer therapies. This review summarizes the state of the art data on therapeutic targeting of ETS family members and highlights the corresponding drug discovery strategies.
Collapse
Affiliation(s)
- Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Recent studies have established that haematopoietic stem cells (HSCs) remain quiescent in homeostatic conditions, and minimally contribute to haematopoietic homeostasis. However, they undergo extensive cell cycle and expansion upon bone marrow transplantation or haematopoietic injury to reestablish the haematopoietic system. Molecular basis for the HSC activation and expansion is not completely understood. Here, we review the recent study elucidating the role of the developmentally critical Ets transcription factor Etv2 in reestablishing haematopoietic system upon injury through promoting HSC regeneration. RECENT FINDINGS We recently demonstrated that the ETS transcription factor Etv2, a critical factor for haematopoietic and vascular development, is also required for haematopoietic regeneration. Etv2, which is silent in homeostatic HSCs, was transiently activated in regenerating HSPCs and was required for the HSC expansion and regeneration following bone marrow transplantation or haematopoietic injury. As such, while Etv2 is dispensable for maintaining HSCs in steady states, it is required for emergency haematopoiesis. SUMMARY Etv2 has been identified as a novel regulator of haematopoietic regeneration. Comprehensive understanding of the upstream regulators and downstream effectors of Etv2 in haematopoietic regeneration would be critical for fundamental understanding of haematopoietic stem cell biology, and the findings will be broadly applicable to clinical practice involving haematopoietic regenerative medicine; bone marrow transplantation, gene therapy and in-vitro HSC expansion.
Collapse
|
15
|
Zhang J, Liu W, Du J, Jin Y, Zhao M, Li L, Wang Y. Prognostic impact of miR-196a/b expression in adult acute myeloid leukaemia: a single-centre, retrospective cohort study. J Int Med Res 2018; 46:3675-3683. [PMID: 29865918 PMCID: PMC6136035 DOI: 10.1177/0300060518777399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective The prognostic effect of miR-196a/b expression in adult patients with
leukaemia remains unclear. This study aimed to determine whether miR-196a/b
expression can serve as a prognostic factor for patients with acute myeloid
leukaemia. Methods We enrolled 124 patients with acute myeloid leukaemia. We measured miR-196a/b
expression by real-time reverse transcription-polymerase chain reaction. We
classified patients into high and low expression groups based on the median
expression value. Cox regression analyses were carried out to assess the
prognostic significance of miR-196a/b expression in the context of
well-established predictors. Results Patients with high miR-196a/b expression were older in age, and had higher
white blood cell and platelet counts than did patients with low miR-196a/b
expression. Patients with high miR-196a/b expression were associated with
the French–American–British classification M5 subtype and with the presence
of nucleophosmin and FLT3 internal tandem duplication mutations, but were
not associated with the favourable karyotype risk subgroup. Moreover,
patients with high miR-196a/b expression had a shorter event-free survival
rate compared with those with low miR-196a/b expression in univariate and
multivariate analyses. Conclusion High miR-196a/b expression is associated with poor event-free survival.
Collapse
Affiliation(s)
- JunYu Zhang
- 1 Department of Haematology, The Fifth Affiliated Hospital of Wenzhou Medical University, China
| | - WeiE Liu
- 1 Department of Haematology, The Fifth Affiliated Hospital of Wenzhou Medical University, China
| | - Jing Du
- 2 Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - YangJin Jin
- 1 Department of Haematology, The Fifth Affiliated Hospital of Wenzhou Medical University, China
| | - MinLei Zhao
- 1 Department of Haematology, The Fifth Affiliated Hospital of Wenzhou Medical University, China
| | - LinJie Li
- 1 Department of Haematology, The Fifth Affiliated Hospital of Wenzhou Medical University, China
| | - Ying Wang
- 3 Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| |
Collapse
|
16
|
Shin KM, Hong MJ, Lee SY, Jin CC, Baek SA, Lee JH, Choi JE, Kang HG, Lee WK, Seok Y, Lee EB, Jeong JY, Yoo SS, Lee J, Cha SI, Kim CH, Kim YC, Oh IJ, Na KJ, Cho S, Jheon S, Park JY. Regulatory variants in cancer-related pathway genes predict survival of patients with surgically resected non-small cell lung cancer. Gene 2017; 646:56-63. [PMID: 29289609 DOI: 10.1016/j.gene.2017.12.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND We conducted this study to identify genetic variants in cancer-related pathway genes which can predict prognosis of NSCLC patients after surgery, using a comprehensive list of regulatory single nucleotide polymorphisms (SNPs) prioritized by RegulomeDB. METHOD A total of 509 potentially functional SNPs in cancer-related pathway genes selected from RegulomeDB were evaluated. These SNPs were analyzed in a discovery set (n=354), and a replication study was performed in an independent set (n=772). The association of the SNPs with overall survival (OS) and disease-free survival (DFS) were analyzed. RESULTS In the discovery set, 76 SNPs were significantly associated with OS or DFS. Among the 76 SNPs, the association was consistently observed for 5 SNPs (ERCC1 rs2298881C>A, BRCA2 rs3092989G>A, NELFE rs440454C>T, PPP2R4 rs2541164G>A, and LTBP4 rs3786527G>A) in the validation set. In combined analysis, ERCC1 rs2298881C>A, BRCA2 rs3092989, NELFE rs440454C>T, and PPP2R4 rs2541164G>A were significantly associated with OS and DFS (adjusted HR ·aHR· for OS=1.46, 0.62, 078, and 0.76, respectively; P=0.003, 0.002, 0.007, and 0.003 respectively; and aHR for DFS=1.27, 0.69, 0.86, and 0.82, respectively; P=0.02, 0.002, 0.03, and 0.008, respectively). The LTBP4 rs3786527G>A was significantly associated with better OS (aHR=0.75; P=0.003). CONCLUSION Our results suggest that five SNPs in the cancer-related pathway genes may be useful for the prediction of the prognosis in patients with surgically resected NSCLC.
Collapse
Affiliation(s)
- Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Cheng Cheng Jin
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ah Baek
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Kee Lee
- Biostatistics, Medical Research Collaboration Center in Kyungpook National University Hospital and Kyungpook National University School of Medicine, Daegu, Korea
| | - Yangki Seok
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea; Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eung Bae Lee
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea; Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Chul Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - In Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Kook Joo Na
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
17
|
Thirant C, Lopez C, Malinge S, Mercher T. Molecular pathways driven by ETO2-GLIS2 in aggressive pediatric leukemia. Mol Cell Oncol 2017; 4:e1345351. [PMID: 29209645 DOI: 10.1080/23723556.2017.1345351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 10/18/2022]
Abstract
The ETO2-GLIS2 fusion oncoprotein is associated with poor prognosis pediatric acute megakaryoblastic leukemia. Recently, we observed that ETO2-GLIS2 controls enhancers activity at genes regulating haematopoietic progenitor self-renewal and differentiation toward the megakaryocytic lineage. We also showed that targeting ETO2-GLIS2 complex stability inhibits these properties and may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Cécile Thirant
- INSERM U1170, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Cécile Lopez
- INSERM U1170, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Sud, Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris Diderot, Paris, France
| | - Thomas Mercher
- INSERM U1170, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université Paris-Sud, Orsay, France.,Université Paris Diderot, Paris, France.,Equipe Labellisée Ligue Contre le Cancer
| |
Collapse
|
18
|
Gonzales F, Cheok M. [Copy-number analysis identifies new prognostic marker in acute myeloid leukemia]. Med Sci (Paris) 2017; 33:929-932. [PMID: 29200386 DOI: 10.1051/medsci/20173311005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fanny Gonzales
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Meyling Cheok
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| |
Collapse
|
19
|
Xie Y, Koch ML, Zhang X, Hamblen MJ, Godinho FJ, Fujiwara Y, Xie H, Klusmann JH, Orkin SH, Li Z. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells. Stem Cells 2017; 35:1773-1785. [PMID: 28436588 DOI: 10.1002/stem.2627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 11/10/2022]
Abstract
ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Ergkd ) in which Erg expression can be conditionally restored by Cre recombinase. Ergkd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Ergkd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin- Sca-1+ c-Kit+ (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Ergkd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785.
Collapse
Affiliation(s)
- Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Boston, Massachusetts, USA
| | - Mia Lee Koch
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Xin Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Melanie J Hamblen
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Frank J Godinho
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Yuko Fujiwara
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Huafeng Xie
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Stuart H Orkin
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Rastogi A, Ali A, Tan SH, Banerjee S, Chen Y, Cullen J, Xavier CP, Mohamed AA, Ravindranath L, Srivastav J, Young D, Sesterhenn IA, Kagan J, Srivastava S, McLeod DG, Rosner IL, Petrovics G, Dobi A, Srivastava S, Srinivasan A. Autoantibodies against oncogenic ERG protein in prostate cancer: potential use in diagnosis and prognosis in a panel with C-MYC, AMACR and HERV-K Gag. Genes Cancer 2017; 7:394-413. [PMID: 28191285 PMCID: PMC5302040 DOI: 10.18632/genesandcancer.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overdiagnosis and overtreatment of prostate cancer (CaP) is attributable to widespread reliance on PSA screening in the US. This has prompted us and others to search for improved biomarkers for CaP, to facilitate early detection and disease stratification. In this regard, autoantibodies (AAbs) against tumor antigens could serve as potential candidates for diagnosis and prognosis of CaP. Towards this, our goals were: i) To investigate whether AAbs against ERG oncoprotein (overexpressed in 25-50% of Caucasian American and African American CaP) are present in the sera of CaP patients; ii) To evaluate an AAb panel to enhance CaP detection. The results using an enzyme-linked immunosorbent assay (ELISA) showed that anti-ERG AAbs are present in a significantly higher proportion in the sera of CaP patients compared to healthy controls (p = 0.0001). Furthermore, a panel of AAbs against ERG, AMACR and human endogenous retrovirus-K Gag successfully differentiated CaP patient sera from healthy controls (AUC = 0.791). These results demonstrate for the first time that anti-ERG AAbs are present in the sera of CaP patients. In addition, the data also suggest that AAbs against ERG together with AMACR and HERV-K Gag may be a useful panel of biomarkers for diagnosis and prognosis of CaP.
Collapse
Affiliation(s)
- Anshu Rastogi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amina Ali
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sreedatta Banerjee
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Charles P Xavier
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ahmed A Mohamed
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jigisha Srivastav
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Denise Young
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Jacob Kagan
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - David G McLeod
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inger L Rosner
- Urology Service, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alagarsamy Srinivasan
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
21
|
Nishibaba R, Higashi Y, Goto Y, Hisaoka M, Kanekura T. Epithelioid sarcoma with multiple lesions on the left arm: a case report. J Med Case Rep 2016; 10:295. [PMID: 27776545 PMCID: PMC5078886 DOI: 10.1186/s13256-016-1088-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 10/04/2016] [Indexed: 11/24/2022] Open
Abstract
Background Epithelioid sarcoma is a rare, high-grade malignant tumor of the soft tissue. The incidence of local recurrence, regional lymph node involvement, and distant metastases is high. Epithelioid sarcoma is most often seen in adolescents and young adults. In the early stage before the development of full clinical features, epithelioid sarcoma is often misdiagnosed as a benign disease such as granuloma. Case presentation We report a case of a 74-year-old Japanese woman whose epithelioid sarcoma was initially misdiagnosed as fungal infection. Rebiopsy revealed the proliferation of atypical polygonal or oval epithelioid cells in the dermis and lymphocyte infiltration through the dermis. Immunohistochemically, the tumor cells were positive for vimentin, cell adhesion molecule 5.2, epithelial membrane antigen, and E26-related gene. The nuclear expression of integrase interactor 1 was lost in the tumor cells. Conclusions We encountered a rare case of epithelioid sarcoma and had difficulty in making the correct diagnosis. We suggest that in patients whose lesions are resistant to conventional treatments, repeat biopsy and immunohistochemical studies should be considered to rule out rare epithelioid sarcoma.
Collapse
Affiliation(s)
- Rie Nishibaba
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| | - Yuko Higashi
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yuko Goto
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanori Hisaoka
- Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, Kitakyusyu, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| |
Collapse
|
22
|
The transcription factor Ets21C drives tumor growth by cooperating with AP-1. Sci Rep 2016; 6:34725. [PMID: 27713480 PMCID: PMC5054425 DOI: 10.1038/srep34725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 01/25/2023] Open
Abstract
Tumorigenesis is driven by genetic alterations that perturb the signaling networks regulating proliferation or cell death. In order to block tumor growth, one has to precisely know how these signaling pathways function and interplay. Here, we identified the transcription factor Ets21C as a pivotal regulator of tumor growth and propose a new model of how Ets21C could affect this process. We demonstrate that a depletion of Ets21C strongly suppressed tumor growth while ectopic expression of Ets21C further increased tumor size. We confirm that Ets21C expression is regulated by the JNK pathway and show that Ets21C acts via a positive feed-forward mechanism to induce a specific set of target genes that is critical for tumor growth. These genes are known downstream targets of the JNK pathway and we demonstrate that their expression not only depends on the transcription factor AP-1, but also on Ets21C suggesting a cooperative transcriptional activation mechanism. Taken together we show that Ets21C is a crucial player in regulating the transcriptional program of the JNK pathway and enhances our understanding of the mechanisms that govern neoplastic growth.
Collapse
|
23
|
Nibourel O, Guihard S, Roumier C, Pottier N, Terre C, Paquet A, Peyrouze P, Geffroy S, Quentin S, Alberdi A, Abdelali RB, Renneville A, Demay C, Celli-Lebras K, Barbry P, Quesnel B, Castaigne S, Dombret H, Soulier J, Preudhomme C, Cheok MH. Copy-number analysis identified new prognostic marker in acute myeloid leukemia. Leukemia 2016; 31:555-564. [PMID: 27686867 DOI: 10.1038/leu.2016.265] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/08/2023]
Abstract
Recent advances in genomic technologies have revolutionized acute myeloid leukemia (AML) understanding by identifying potential novel actionable genomic alterations. Consequently, current risk stratification at diagnosis not only relies on cytogenetics, but also on the inclusion of several of these abnormalities. Despite this progress, AML remains a heterogeneous and complex malignancy with variable response to current therapy. Although copy-number alterations (CNAs) are accepted prognostic markers in cancers, large-scale genomic studies aiming at identifying specific prognostic CNA-based markers in AML are still lacking. Using 367 AML, we identified four recurrent CNA on chromosomes 11 and 21 that predicted outcome even after adjusting for standard prognostic risk factors and potentially delineated two new subclasses of AML with poor prognosis. ERG amplification, the most frequent CNA, was related to cytarabine resistance, a cornerstone drug of AML therapy. These findings were further validated in The Cancer Genome Atlas data. Our results demonstrate that specific CNA are of independent prognostic relevance, and provide new molecular information into the genomic basis of AML and cytarabine response. Finally, these CNA identified two potential novel risk groups of AML, which when confirmed prospectively, may improve the clinical risk stratification and potentially the AML outcome.
Collapse
Affiliation(s)
- O Nibourel
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - S Guihard
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - C Roumier
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - N Pottier
- CHU Lille University Hospital, Department of Biochemistry and Molecular Biology, Lille, France
| | - C Terre
- Hospital of Versailles, Department of Hematology, Chesnay, France
| | - A Paquet
- University Côte d'Azur, CNRS Institute of Molecular and Cellular Pharmacology, Sophia-Antipolis, Nice, France
| | - P Peyrouze
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - S Geffroy
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - S Quentin
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - A Alberdi
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - R B Abdelali
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - A Renneville
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - C Demay
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - K Celli-Lebras
- University Paris 7, Department of Hematology, Paris, France
| | - P Barbry
- University Côte d'Azur, CNRS Institute of Molecular and Cellular Pharmacology, Sophia-Antipolis, Nice, France
| | - B Quesnel
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - S Castaigne
- Hospital of Versailles, Department of Hematology, Chesnay, France
| | - H Dombret
- University Paris 7, Department of Hematology, Paris, France
| | - J Soulier
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - C Preudhomme
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - M H Cheok
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| |
Collapse
|
24
|
Xu B, Naughton D, Busam K, Pulitzer M. ERG Is a Useful Immunohistochemical Marker to Distinguish Leukemia Cutis From Nonneoplastic Leukocytic Infiltrates in the Skin. Am J Dermatopathol 2016; 38:672-7. [PMID: 26909589 PMCID: PMC5026187 DOI: 10.1097/dad.0000000000000491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Leukemia cutis (LC) and reactive myeloid infiltrates in the skin may be difficult to distinguish pathologically, sometimes even after an extensive immunohistochemical work-up. This poses a serious clinical dilemma, as the prognosis and treatment of either condition are markedly different. Although most reactive myeloid infiltrates require a simple course of corticosteroids before the symptoms regress, the development of LC may require chemotherapeutic or transplant-variant interventions. Erythroblast transformation specific regulated gene-1 (ERG) is a member of the erythroblast transformation specific family of transcription factors, which are downstream effectors of mitogenic signaling transduction pathways. ERG is a key regulator of cell proliferation, differentiation, angiogenesis, inflammation, and apoptosis and has recently been found to be overexpressed in acute myeloid and lymphoblastic leukemia. In this study, the authors aimed to explore the diagnostic utility of ERG immunohistochemistry in LC by comparing the frequency and expression level of ERG immunostain in 32 skin biopsies, 16 with LC and 16 with reactive leukocytic infiltrates. A significantly higher frequency of ERG positivity was detected in LC (13/16, 81.4%), compared with reactive conditions (0/16). In addition, the expression level of ERG in LC, calculated using H score (mean ± standard error of mean, 188 ± 24), was significantly higher than that in nonneoplastic leukocytic infiltrate (28 ± 8). Our results strongly suggest that ERG expression is potentially an extremely useful marker to distinguish between cases of LC from those of reactive myeloid infiltrates in the skin with a positive predictive value of 100% and negative predictive value of 84.2%.
Collapse
Affiliation(s)
- Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | |
Collapse
|
25
|
Craig MP, Sumanas S. ETS transcription factors in embryonic vascular development. Angiogenesis 2016; 19:275-85. [PMID: 27126901 DOI: 10.1007/s10456-016-9511-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.
Collapse
Affiliation(s)
- Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
26
|
Beuerle MG, Dufton NP, Randi AM, Gould IR. Molecular dynamics studies on the DNA-binding process of ERG. MOLECULAR BIOSYSTEMS 2016; 12:3600-3610. [DOI: 10.1039/c6mb00506c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular dynamics study elucidating the mechanistic background of the DNA-binding process and the sequence specificity of the transcription factor ERG. Along with the biological findings the capabilities of unbiased DNA-binding simulations in combination with various means of analysis in the field of protein DNA-interactions are shown.
Collapse
Affiliation(s)
- Matthias G. Beuerle
- Department of Chemistry and Institute of Chemical Biology
- Imperial College London
- South Kensington SW7 2AZ
- UK
| | - Neil P. Dufton
- National Heart and Lung Institute (NHLI) Vascular Sciences
- Hammersmith Hospital
- Imperial College London
- London W12 0NN
- UK
| | - Anna M. Randi
- National Heart and Lung Institute (NHLI) Vascular Sciences
- Hammersmith Hospital
- Imperial College London
- London W12 0NN
- UK
| | - Ian R. Gould
- Department of Chemistry and Institute of Chemical Biology
- Imperial College London
- South Kensington SW7 2AZ
- UK
| |
Collapse
|
27
|
Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer 2015; 6:84-105. [PMID: 26000093 PMCID: PMC4426947 DOI: 10.18632/genesandcancer.40] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/19/2014] [Indexed: 12/13/2022] Open
Abstract
Trop2 is a transmembrane glycoprotein encoded by the Tacstd2 gene. It is an intracellular calcium signal transducer that is differentially expressed in many cancers. It signals cells for self-renewal, proliferation, invasion, and survival. It has stem cell-like qualities. Trop2 is expressed in many normal tissues, though in contrast, it is overexpressed in many cancers and the overexpression of Trop2 is of prognostic significance. Several ligands have been proposed that interact with Trop2. Trop2 signals the cells via different pathways and it is transcriptionally regulated by a complex network of several transcription factors. Trop2 expression in cancer cells has been correlated with drug resistance. Several strategies target Trop2 on cancer cells that include antibodies, antibody fusion proteins, chemical inhibitors, nanoparticles, etc. The in vitro studies and pre-clinical studies, using these various therapeutic treatments, have resulted in significant inhibition of tumor cell growth both in vitro and in vivo in mice. A clinical study is underway using IMMU-132 (hrS7 linked to SN38) in patients with epithelial cancers. This review describes briefly the various characteristics of cancer cells overexpressing Trop2 and the potential application of Trop2 as both a prognostic biomarker and as a therapeutic target to reverse resistance.
Collapse
Affiliation(s)
- Anna Shvartsur
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center and David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
28
|
Lamhamedi-Cherradi SE, Menegaz BA, Ramamoorthy V, Aiyer RA, Maywald RL, Buford AS, Doolittle DK, Culotta KS, O'Dorisio JE, Ludwig JA. An Oral Formulation of YK-4-279: Preclinical Efficacy and Acquired Resistance Patterns in Ewing Sarcoma. Mol Cancer Ther 2015; 14:1591-604. [PMID: 25964201 DOI: 10.1158/1535-7163.mct-14-0334] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma is a transcription factor-mediated pediatric bone tumor caused by a chromosomal translocation of the EWSR1 gene and one of several genes in the ETS family of transcription factors, typically FLI1 or ERG. Full activity of the resulting oncogenic fusion protein occurs only after binding RNA helicase A (RHA), and novel biologically targeted small molecules designed to interfere with that interaction have shown early promise in the preclinical setting. Herein, we demonstrate marked preclinical antineoplastic activity of an orally bioavailable formulation of YK-4-279 and identify mechanisms of acquired chemotherapy resistance that may be exploited to induce collateral sensitivity. Daily enteral administration of YK-4-279 led to significant delay in Ewing sarcoma tumor growth within a murine model. In advance of anticipated early-phase human clinical trials, we investigated both de novo and acquired mechanism(s) by which Ewing sarcoma cells evade YK-4-279-mediated cell death. Drug-resistant clones, formed by chronic in vitro exposure to steadily increased levels of YK-4-279, overexpressed c-Kit, cyclin D1, pStat3(Y705), and PKC isoforms. Interestingly, cross-resistance to imatinib and enzastaurin (selective inhibitors of c-Kit and PKC-β, respectively), was observed and the use of YK-4-279 with enzastaurin in vitro led to marked drug synergy, suggesting a potential role for combination therapies in the future. By advancing an oral formulation of YK-4-279 and identifying prominent mechanisms of resistance, this preclinical research takes us one step closer to a shared goal of curing adolescents and young adults afflicted by Ewing sarcoma.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Area Under Curve
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
- Drug Resistance, Neoplasm
- Gene Expression Profiling/methods
- Humans
- Indoles/administration & dosage
- Indoles/pharmacokinetics
- Indoles/pharmacology
- Interleukin Receptor Common gamma Subunit/deficiency
- Interleukin Receptor Common gamma Subunit/genetics
- Male
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Proteomics/methods
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Ewing/drug therapy
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Survival Analysis
- Tissue Distribution
- Treatment Outcome
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | - Brian A Menegaz
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Vandhana Ramamoorthy
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | | | - Rebecca L Maywald
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Adrianna S Buford
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Dannette K Doolittle
- Laboratory of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas
| | - Kirk S Culotta
- Laboratory of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas
| | | | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
29
|
ERG and SALL4 expressions in SMARCB1/INI1-deficient tumors: a useful tool for distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol 2015; 46:225-30. [DOI: 10.1016/j.humpath.2014.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/18/2022]
|
30
|
Nannini M, Astolfi A, Urbini M, Indio V, Santini D, Heinrich MC, Corless CL, Ceccarelli C, Saponara M, Mandrioli A, Lolli C, Ercolani G, Brandi G, Biasco G, Pantaleo MA. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer 2014; 14:685. [PMID: 25239601 PMCID: PMC4181714 DOI: 10.1186/1471-2407-14-685] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022] Open
Abstract
Background About 10-15% of adult gastrointestinal stromal tumors (GIST) and the vast majority of pediatric GIST do not harbour KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations (J Clin Oncol 22:3813–3825, 2004; Hematol Oncol Clin North Am 23:15–34, 2009). The molecular biology of these GIST, originally defined as KIT/PDGFRA wild-type (WT), is complex due to the existence of different subgroups with distinct molecular hallmarks, including defects in the succinate dehydrogenase (SDH) complex and mutations of neurofibromatosis type 1 (NF1), BRAF, or KRAS genes (RAS-pathway or RAS-P). In this extremely heterogeneous landscape, the clinical profile and molecular abnormalities of the small subgroup of WT GIST suitably referred to as quadruple wild-type GIST (quadrupleWT or KITWT/PDGFRAWT/SDHWT/RAS-PWT) remains undefined. The aim of this study is to investigate the genomic profile of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, by using a massively parallel sequencing and microarray approach, and compare it with the genomic profile of other GIST subtypes. Methods We performed a whole genome analysis using a massively parallel sequencing approach on a total of 16 GIST cases (2 KITWT/PDGFRAWT/SDHWT and SDHBIHC+/SDHAIHC+, 2 KITWT/PDGFRAWT/SDHAmut and SDHBIHC-/SDHAIHC- and 12 cases of KITmut or PDGFRAmut GIST). To confirm and extend the results, whole-genome gene expression analysis by microarray was performed on 9 out 16 patients analyzed by RNAseq and an additional 20 GIST patients (1 KITWT/PDGFRAWTSDHAmut GIST and 19 KITmut or PDGFRAmut GIST). The most impressive data were validated by quantitave PCR and Western Blot analysis. Results We found that both cases of quadrupleWT GIST had a genomic profile profoundly different from both either KIT/PDGFRA mutated or SDHA-mutated GIST. In particular, the quadrupleWT GIST tumors are characterized by the overexpression of molecular markers (CALCRL and COL22A1) and of specific oncogenes including tyrosine and cyclin- dependent kinases (NTRK2 and CDK6) and one member of the ETS-transcription factor family (ERG). Conclusion We report for the first time an integrated genomic picture of KITWT/PDGFRAWT/SDHWT/RAS-PWT GIST, using massively parallel sequencing and gene expression analyses, and found that quadrupleWT GIST have an expression signature that is distinct from SDH-mutant GIST as well as GIST harbouring mutations in KIT or PDGFRA. Our findings suggest that quadrupleWT GIST represent another unique group within the family of gastrointestintal stromal tumors. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-685) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| |
Collapse
|
31
|
ERG and FLI1 protein expression in epithelioid sarcoma. Mod Pathol 2014; 27:496-501. [PMID: 24072183 DOI: 10.1038/modpathol.2013.161] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/08/2022]
Abstract
Epithelioid sarcoma is a rare, aggressive keratin-positive sarcoma that co-expresses CD34 in 50% of cases and may mimic an angiosarcoma. Recently, we have observed one case of epithelioid sarcoma that labeled for ERG, an ETS family regulatory transcription factor, which is considered to be a reliable marker for vascular differentiation. We investigated the prevalence of nuclear expression of ERG and FLI1, a homologous transcription factor, in these tumors. A formalin-fixed paraffin-embedded tissue microarray of 37 epithelioid sarcomas was examined. Immunohistochemistry was performed using anti-ERG monoclonal antibody to the N-terminus, anti-ERG monoclonal antibody to the C-terminus and anti-FLI1 monoclonal antibody. Comparison was made with CD34, CD31, and D2-40 labeling. The extent of immunoreactivity was graded according to the percentage of positive tumor cell nuclei (0: no staining; 1+: <5%; 2+: 5-25%; 3+: 26-50%; 4+: 51-75%; and 5+: 76-100%), and the intensity of staining was graded as weak, moderate, or strong. Nuclear staining for the N-terminus of ERG was seen in 19 out of 28 cases: 10 with diffuse(4 to 5+) strong/moderate labeling; 1 with 2+ moderate labeling and 8 with weak labeling (1 to 4+, 2 each). Focal staining for the C-terminus of ERG was seen in only 1 out of 29 cases (2+ moderate). FLI1 labeling was seen in nearly all (28 out of 30) cases: 16 with diffuse (5+) predominantly moderate labeling, and 8 cases with diffuse(5+) weak labeling. The remainder had variable moderate (1 to 3+) or weak (1 to 4+) FLI1 staining. CD34 was positive in 22 out of 30 cases and D2-40 was found to be positive in 22 out of 31 cases. All cases were negative for CD31 (0 out of 30). Epithelioid sarcoma can label with antibodies to the N-terminus of ERG, FLI1, and D2-40, which may cause diagnostic confusion for a vascular tumor. A panel of other antibodies including SMARCB1 and CD31 should be used in evaluating these tumors. ERG antibody selection is also critical, as those directed against the C-terminus are less likely to label epithelioid sarcoma.
Collapse
|
32
|
Zhang W, Zhao J, Lee JF, Gartung A, Jawadi H, Lambiv WL, Honn KV, Lee MJ. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis. J Biol Chem 2013; 288:32126-32137. [PMID: 24064218 PMCID: PMC3820853 DOI: 10.1074/jbc.m113.495218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/18/2013] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P)-regulated chemotaxis plays critical roles in various physiological and pathophysiological conditions. S1P-regulated chemotaxis is mediated by the S1P family of G-protein-coupled receptors. However, molecular details of the S1P-regulated chemotaxis are incompletely understood. Cultured human lung adenocarcinoma cell lines abundantly express S1P receptor subtype 3 (S1P3), thus providing a tractable in vitro system to characterize molecular mechanism(s) underlying the S1P3 receptor-regulated chemotactic response. S1P treatment enhances CD44 expression and induces membrane localization of CD44 polypeptides via the S1P3/Rho kinase (ROCK) signaling pathway. Knockdown of CD44 completely diminishes the S1P-stimulated chemotaxis. Promoter analysis suggests that the CD44 promoter contains binding sites of the ETS-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) transcriptional factor. ChIP assay confirms that S1P treatment stimulates the binding of ETS-1 to the CD44 promoter region. Moreover, S1P induces the expression and nuclear translocation of ETS-1. Knockdown of S1P3 or inhibition of ROCK abrogates the S1P-induced ETS-1 expression. Furthermore, knockdown of ETS-1 inhibits the S1P-induced CD44 expression and cell migration. In addition, we showed that S1P3/ROCK signaling up-regulates ETS-1 via the activity of JNK. Collectively, we characterized a novel signaling axis, i.e., ROCK-JNK-ETS-1-CD44 pathway, which plays an essential role in the S1P3-regulated chemotactic response.
Collapse
Affiliation(s)
- Wenliang Zhang
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Jiawei Zhao
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Jen-Fu Lee
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Allison Gartung
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | | | | | - Kenneth V Honn
- From the Department of Pathology,; the Bioactive Lipid Research Program,; the Karmanos Cancer Institute
| | - Menq-Jer Lee
- From the Department of Pathology,; the Bioactive Lipid Research Program,; the Karmanos Cancer Institute; the Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
33
|
Wu F, Ding S, Lu J. Truncated ERG proteins affect the aggressiveness of prostate cancer. Med Hypotheses 2013; 80:490-3. [DOI: 10.1016/j.mehy.2012.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/04/2012] [Accepted: 12/12/2012] [Indexed: 12/29/2022]
|
34
|
Transposon mutagenesis reveals cooperation of ETS family transcription factors with signaling pathways in erythro-megakaryocytic leukemia. Proc Natl Acad Sci U S A 2013; 110:6091-6. [PMID: 23533276 DOI: 10.1073/pnas.1304234110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To define genetic lesions driving leukemia, we targeted cre-dependent Sleeping Beauty (SB) transposon mutagenesis to the blood-forming system using a hematopoietic-selective vav 1 oncogene (vav1) promoter. Leukemias of diverse lineages ensued, most commonly lymphoid leukemia and erythroleukemia. The inclusion of a transgenic allele of Janus kinase 2 (JAK2)V617F resulted in acceleration of transposon-driven disease and strong selection for erythroleukemic pathology with transformation of bipotential erythro-megakaryocytic cells. The genes encoding the E-twenty-six (ETS) transcription factors Ets related gene (Erg) and Ets1 were the most common sites for transposon insertion in SB-induced JAK2V617F-positive erythroleukemias, present in 87.5% and 65%, respectively, of independent leukemias examined. The role of activated Erg was validated by reproducing erythroleukemic pathology in mice transplanted with fetal liver cells expressing translocated in liposarcoma (TLS)-ERG, an activated form of ERG found in human leukemia. Via application of SB mutagenesis to TLS-ERG-induced erythroid transformation, we identified multiple loci as likely collaborators with activation of Erg. Jak2 was identified as a common transposon insertion site in TLS-ERG-induced disease, strongly validating the cooperation between JAK2V617F and transposon insertion at the Erg locus in the JAK2V617F-positive leukemias. Moreover, loci expressing other regulators of signal transduction pathways were conspicuous among the common transposon insertion sites in TLS-ERG-driven leukemia, suggesting that a key mechanism in erythroleukemia may be the collaboration of lesions disturbing erythroid maturation, most notably in genes of the ETS family, with mutations that reduce dependence on exogenous signals.
Collapse
|
35
|
Ono M, Tanaka RJ, Kano M, Sugiman T. Visualising the cross-level relationships between pathological and physiological processes and gene expression: analyses of haematological diseases. PLoS One 2013; 8:e53544. [PMID: 23301083 PMCID: PMC3534650 DOI: 10.1371/journal.pone.0053544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
The understanding of pathological processes is based on the comparison between physiological and pathological conditions, and transcriptomic analysis has been extensively applied to various diseases for this purpose. However, the way in which the transcriptomic data of pathological cells relate to the transcriptomes of normal cellular counterparts has not been fully explored, and may provide new and unbiased insights into the mechanisms of these diseases. To achieve this, it is necessary to develop a method to simultaneously analyse components across different levels, namely genes, normal cells, and diseases. Here we propose a multidimensional method that visualises the cross-level relationships between these components at three different levels based on transcriptomic data of physiological and pathological processes, by adapting Canonical Correspondence Analysis, which was developed in ecology and sociology, to microarray data (CCA on Microarray data, CCAM). Using CCAM, we have analysed transcriptomes of haematological disorders and those of normal haematopoietic cell differentiation. First, by analysing leukaemia data, CCAM successfully visualised known relationships between leukaemia subtypes and cellular differentiation, and their characteristic genes, which confirmed the relevance of CCAM. Next, by analysing transcriptomes of myelodysplastic syndromes (MDS), we have shown that CCAM was effective in both generating and testing hypotheses. CCAM showed that among MDS patients, high-risk patients had transcriptomes that were more similar to those of both haematopoietic stem cells (HSC) and megakaryocyte-erythroid progenitors (MEP) than low-risk patients, and provided a prognostic model. Collectively, CCAM reveals hidden relationships between pathological and physiological processes and gene expression, providing meaningful clinical insights into haematological diseases, and these could not be revealed by other univariate and multivariate methods. Furthermore, CCAM was effective in identifying candidate genes that are correlated with cellular phenotypes of interest. We expect that CCAM will benefit a wide range of medical fields.
Collapse
Affiliation(s)
- Masahiro Ono
- Immunobiology Unit, Institute of Child Health, University College London, London, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Ginsberg M, James D, Ding BS, Nolan D, Geng F, Butler JM, Schachterle W, Pulijaal VR, Mathew S, Chasen ST, Xiang J, Rosenwaks Z, Shido K, Elemento O, Rabbany SY, Rafii S. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFβ suppression. Cell 2012; 151:559-75. [PMID: 23084400 PMCID: PMC3507451 DOI: 10.1016/j.cell.2012.09.032] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 03/26/2012] [Accepted: 09/09/2012] [Indexed: 12/25/2022]
Abstract
ETS transcription factors ETV2, FLI1, and ERG1 specify pluripotent stem cells into induced vascular endothelial cells (iVECs). However, iVECs are unstable and drift toward nonvascular cells. We show that human midgestation c-Kit(-) lineage-committed amniotic cells (ACs) can be reprogrammed into vascular endothelial cells (rAC-VECs) without transitioning through a pluripotent state. Transient ETV2 expression in ACs generates immature rAC-VECs, whereas coexpression with FLI1/ERG1 endows rAC-VECs with a vascular repertoire and morphology matching mature endothelial cells (ECs). Brief TGFβ-inhibition functionalizes VEGFR2 signaling, augmenting specification of ACs into rAC-VECs. Genome-wide transcriptional analyses showed that rAC-VECs are similar to adult ECs in which vascular-specific genes are expressed and nonvascular genes are silenced. Functionally, rAC-VECs form stable vasculature in Matrigel plugs and regenerating livers. Therefore, short-term ETV2 expression and TGFβ inhibition with constitutive ERG1/FLI1 coexpression reprogram mature ACs into durable rAC-VECs with clinical-scale expansion potential. Banking of HLA-typed rAC-VECs establishes a vascular inventory for treatment of diverse disorders.
Collapse
Affiliation(s)
- Michael Ginsberg
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
| | - Daylon James
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, New York, New York 10065
| | - Bi-Sen Ding
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
| | - Daniel Nolan
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
| | - Fuqiang Geng
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
| | - Jason M Butler
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
| | - William Schachterle
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
| | - Venkat R Pulijaal
- Department of Pathology & Laboratory Medicine, WCMC, New York, NY 10065
| | - Susan Mathew
- Department of Pathology & Laboratory Medicine, WCMC, New York, NY 10065
| | - Stephen T Chasen
- Department of Obstetrics and Gynecology, WCMC, New York, NY 10065
| | - Jenny Xiang
- Genomics Resources Core Facility, WCMC, New York, NY 10065
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, New York, New York 10065
| | - Koji Shido
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, WCMC, New York, NY, 10065
| | - Sina Y Rabbany
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
- Bioengineering Program, Hofstra University, Hempstead, NY, 11549
| | - Shahin Rafii
- Howard Hughes Medical Institute, Ansary Stem Cell Institute, Department of Genetic Medicine, Weill Cornell Medical College (WCMC), New York, NY, 10065
| |
Collapse
|
37
|
Wang WL, Patel NR, Caragea M, Hogendoorn PCW, López-Terrada D, Hornick JL, Lazar AJ. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol 2012; 25:1378-83. [PMID: 22766791 DOI: 10.1038/modpathol.2012.97] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ERG gene encodes for an Ets family regulatory transcription factor and is involved in recurrent chromosomal translocations found in a subset of acute myeloid leukemias, prostate carcinomas and Ewing sarcomas. The purpose of this study was to examine the utility of an ERG antibody to detect EWSR1-ERG rearranged Ewing sarcomas. A formalin-fixed paraffin-embedded tissue microarray and whole-tissue sections from 32 genetically characterized Ewing sarcomas were examined: 22 with EWSR1-FLI1, 8 with EWSR1-ERG and 2 with EWSR1-NFATC2. Immunohistochemistry was performed using a rabbit anti-ERG monoclonal antibody directed against the C-terminus of the protein and a mouse anti-FLI1 monoclonal antibody against a FLI1 Ets domain (C-terminus) fusion protein. Immunoreactivity was graded for extent and intensity of positive tumor cell nuclei. ERG labeling was seen in 7/8 EWSR1-ERG cases (predominantly diffuse (5+), moderate to strong), while only 3/24 non-EWR1-ERG cases showed labeling (very weak). FLI1 labeling was observed in 29/31 cases regardless of fusion variant; 23 displayed diffuse (5+) strong/moderate labeling (5/7 EWSR1-ERG, 18/22 EWSR1-FLI1). Both EWSR1-NFATC2 cases had weak reactivity with FLI1 and weak or no reactivity for ERG. In conclusion, strong nuclear ERG immunoreactivity is specific for Ewing sarcomas with EWSR1-ERG rearrangement. In contrast, FLI1 was not specific to rearrangement type, likely because of cross reactivity with the highly homologous Ets DNA-binding domain present in the C-terminus of both ERG and FLI1.
Collapse
Affiliation(s)
- Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood 2012; 120:4038-48. [PMID: 22983443 DOI: 10.1182/blood-2012-05-429050] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ERG and FLI1 are closely related members of the ETS family of transcription factors and have been identified as essential factors for the function and maintenance of normal hematopoietic stem cells. Here genome-wide analysis revealed that both ERG and FLI1 occupy similar genomic regions as AML1-ETO in t(8;21) AMLs and identified ERG/FLI1 as proteins that facilitate binding of oncofusion protein complexes. In addition, we demonstrate that ERG and FLI1 bind the RUNX1 promoter and that shRNA-mediated silencing of ERG leads to reduced expression of RUNX1 and AML1-ETO, consistent with a role of ERG in transcriptional activation of these proteins. Finally, we identify H3 acetylation as the epigenetic mark preferentially associated with ETS factor binding. This intimate connection between ERG/FLI1 binding and H3 acetylation implies that one of the molecular strategies of oncofusion proteins, such as AML1-ETO and PML-RAR-α, involves the targeting of histone deacetylase activities to ERG/FLI1 bound hematopoietic regulatory sites. Together, these results highlight the dual importance of ETS factors in t(8;21) leukemogenesis, both as transcriptional regulators of the oncofusion protein itself as well as proteins that facilitate AML1-ETO binding.
Collapse
|
39
|
Chen DWC, Saha V, Liu JZ, Schwartz JM, Krstic-Demonacos M. Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia. Oncogene 2012; 32:3039-48. [PMID: 22869147 DOI: 10.1038/onc.2012.321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucocorticoids (GCs) are among the most widely prescribed medications in clinical practice. The beneficial effects of GCs in acute lymphoblastic leukemia (ALL) are based on their ability to induce apoptosis, but the underlying transcriptional mechanisms remain poorly defined. Computational modeling has enormous potential in the understanding of biological processes such as apoptosis and the discovery of novel regulatory mechanisms. We here present an integrated analysis of gene expression kinetic profiles using microarrays from GC sensitive and resistant ALL cell lines and patients, including newly generated and previously published data sets available from the Gene Expression Omnibus. By applying time-series clustering analysis in the sensitive ALL CEM-C7-14 cells, we identified 358 differentially regulated genes that we classified into 15 kinetic profiles. We identified GC response element (GRE) sequences in 33 of the upregulated known or potential GC receptor (GR) targets. Comparative study of sensitive and resistant ALL showed distinct gene expression patterns and indicated unexpected similarities between sensitivity-restored and resistant ALL. We found that activator protein 1 (AP-1), Ets related gene (Erg) and GR pathways were differentially regulated in sensitive and resistant ALL. Erg protein levels were substantially higher in CEM-C1-15-resistant cells, c-Jun was significantly induced in sensitive cells, whereas c-Fos was expressed at low levels in both. c-Jun was recruited on the AP-1 site on the Bim promoter, whereas a transient Erg occupancy on the GR promoter was detected. Inhibition of Erg and activation of GR lead to increased apoptosis in both sensitive and resistant ALL. These novel findings significantly advance our understanding of GC sensitivity and can be used to improve therapy of leukemia.
Collapse
Affiliation(s)
- D W-C Chen
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
40
|
Presence of high-ERG expression is an independent unfavorable prognostic marker in MLL-rearranged childhood myeloid leukemia. Blood 2012; 119:1086-7; author reply 1087-8. [DOI: 10.1182/blood-2011-10-385815] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|